Monitoring end-to-end performance on TGrid

Shava Smallen (INCA project)
Margaret Murray (CAIDA)

Talk Outline

- Project goal
- Terms and Conditions
- Measuring available bandwidth: pathload
- The INCA architecture
- Demonstration
- Future Directions
- Discussion

Goal: Understand TGrid endto-end performance

- User goals:
 - Optimize my application performance
 - Move my data... FAST
 - With whom am I sharing network bandwidth?
- Sysadmin goals:
 - Identify problems
 - Set realistic performance expectations
- Common denominator:
 - Maximize available bandwidth

Terms

"Bottleneck" is not a meaningful term

e2e Capacity (C): min link capacity in the path

Tight link A3 (avail-bw)

<u>e2e avail-bw</u> (A): min unused bandwidth at time T

BTC: max achievable TCP throughput

Narrow link C1 (capacity)

...and Conditions (factors in e2e network performance)

- Router buffer sizes and COS or QoS
- Host TCP settings
- Cross-traffic (load level, burstiness)
- Traffic type mix
 - TCP ==> guaranteed delivery + fair share
 - UDP ==> no guaranteed delivery
- Number of competing streams

Measuring end-to-end Available Bandwidth

- It's not easy, and tools haven't been validated.
 - Even fewer tools developed and validated on high speed links.
 CAIDA is performing first comprehensive tool evaluation on high speed links in CAIDA/SDSC lab.
- Iperf (persistent TCP connection w/ large advertised window)
 - Can be intrusive: can saturate the path and increase path delays and jitter...depending on time scale
 - Measures "brute force" avail-bw
- Pathload (Self-Loading Periodic Streams)
 - Attempts to be non-intrusive over time (uses < 10% avail-bw)
 - Measures the dynamics of avail-bw over time

How pathload works...

Concept:

...find the range of the knee

- Send ≈100 probes of equal-sized packets at rate R and measure one-way delays; iterate while modifying R (and limit probing rate to < 10%)</p>
- One-way delays only increase when the stream rate R is larger than the avail-bw A

Why use INCA?

- Infrastructure exists and it works!
- Take advantage of INCA's:
 - Full mesh deployment
 - Data repository/archive
 - Web interface
 - Schedule options
- To collect network performance data:
 - Add Network Reporter
 - Reporter-Pair a new variation
 - Same wrapper can work with multiple avail-bw tools

Inca Architecture

- Data consumer userfriendly web interface, application, etc.
- Framework daemons
 - Planning and execution of reporters
 - Centralized data collection
 - Publishing
- Reporter a script or executable

Gathering performance data

- Write reporter to wrap benchmark and print XML output according to Inca reporter specification
- 2. Write configuration file to express:
 - a) Inputs
 - b) Frequency of execution
 - c) Data to archive
- 3. Write web page to display data

Writing performance reporter

 Perl API to enable running of network probes across sites (uses globusrun)

Executing reporter

- Cron scheduling
 - Schedule far enough apart so they don't collide
 - Not foolproof
- Move to token-passing protocol (NWS)?

Graphing data

- Calls rrdtool commands to generate graphs
- CGI script currently uses SOAP call to get graph from Inca archive

https://repo.teragrid.org/inca/html/pathload.html

Future Directions...

- Scheduling frequency
 - Now: once/hr
 - Check result distributions
 - Refine scheduling: Move to token-passing protocol (NWS)?
- Compare results of other tools
 - pathload, pathchirp, Spruce, iperf
 - Consider error and overhead
- Refine graphs and web interface
- Run network probes across different Oses
- Consider more e2e paths than just between login nodes
- Coming soon: SRB reporter in the works...

Discussion

Will my application perform better if I don't use TCP?

- Claim: TCP is not suitable for Grid apps in high-performance networks.
- Claim: I can get better performance with UDP
 - ...careful what you wish for! App must control everything
 - "Doesn't play well with others."

Try SOBAS instead!

- Socket Buffer Auto-Sizing (SOBAS) [Prasad, Jain & Dovrolis, GaTech]
 - Apps use a SOBAS enabled socket library.
 - Concept: Limit the send window after reaching availbw to avoid "self-induced" packet loss.
 - Experimental results show 20-80% increase in throughput compared to TCP transfers using max possible socket buffer size.
- R. Prasad, M. Jain and C. Dovrolis, "Socket Buffer Auto-Sizing for High-Performance Data Transfers" Journal of Grid Computing June 2004. http://www.cc.gatech.edu/~ravi/tools/sobas.tar.gz

Summary

- The INCA architecture now supports available bandwidth measurements.
- Pathload reports a range variation of available bandwidth on an e2e path.
- INCA/pathload measures available bandwidth on TGrid e2e paths (login node to login node).