The effect of layer-2 store-and-forward devices per-hop capacity estimation 9

Ravi S. Prasad*, Constantinos Dovrolis*

and

Bruce A. Mah[†]

*University of Delaware
†Packet Design

Capacity estimation tools

Parallel TCP streams	Maximum TCP throughput	NLANR-DAST	IPerf
Standardized TCP throughput	Bulk-Transfer-Capacity	Allman	cat
Self-Loading Periodic Streams	End-to-End Avail-BW	Jain	pathload
Packet Trains	End-to-End Avail-BW	Carter	cprobe
Packet Trains	End-to-End Bottleneck	Guojun	pipechar
Variable Packet Size	Per-Hop Capacity	Mah	pchar
Variable Packet Size	Per-Hop Capacity	Downey	clink
Variable Packet Size	Per-Hop Capacity	Jacobson	pathchar
Packet Pairs & Trains	End-to-End Capacity	Dovrolis	pathrate
Packet Pairs	End-to-End Capacity	La.	nettimer
Packet Pairs	End-to-End Capacity	Carter	bprobe
Methodology	Measurement objective	Author	Tool

A single-hop path

В

- What is the capacity from A to B?

And we get...

<i>hrate</i> 97.5±0.5Mbps	h ::- ::- h -
	pathrate
<i>93.</i> 5±3.0Mbps	pipechar
<i>har</i> 47.0±1.0Mbps	pchar
<i>ink</i> 47.5±1.0Mbps	clink
<i>nchar</i> 49.0±1.5Mbps	pathchar
ool Capacity estimate	Tool

Questions

- What is wrong with pathchar, pchar and clink?
- The tool?
- The methodology used?

Overview

- Variable Packet Size (VPS) methodology
- Effect of L2 store-and-forward devices
- Some experimental results
- Other sources of error
- Conclusions

 $\dfrac{L}{C}$: Serialization delay

Components of RTT

VPS tools assume: Minimum RTT for each packet size L, doesn't include any

queuing delays.

 $T_I(L) = \sum_{i=1}^{I} \left(\frac{L}{C_i} + \tau_i^f + \frac{L_{ICMP}}{C_i^r} + \tau_i^r \right)$

2

Linear fit to the minimum RTT obtained experimentally,

$$T_I(L) = \alpha_I + \beta_I L \tag{3}$$

•
$$\alpha_I = \sum_{i=1}^I \left(au_i^f + rac{L_{ICMP}}{C_i^r} + au_i^r
ight)$$
 and $eta_I = \sum_{i=1}^I rac{1}{C_i}$

An example for 2-hop path

$$C_1 = \frac{1}{\beta_1}$$

$$\beta_2 = \frac{1}{C_2} + \frac{1}{C_1}$$

$$C_2 = \frac{1}{\beta_2 - \beta_1}$$

Links : Layer3 (L3) vs Layer2 (L2)

- Each L3 device has an L2 interface
- Each L3 hop has at-least one L2 segment
- However, If an L3 hop has intermediate L2 devices,
- May have more than one L2 segment
- Different L2 segments may have different capacities
- The capacity of i^{th} L3 hop consisting M_i L2 segments

$$C_i^{L3} = \min_{j=1...M_i} \{C_{i,j}^{L2}\} \tag{4}$$

L2 store-and-forward devices

- Can not be detected by upper layers
- do not decrease TTL field
- do not generate ICMP packets
- Affect capacity estimated with VPS tools
- increase RTT proportional to the packet size
- change relation between eta and capacity

L2 store-and-forward devices & serialization delay

 $\hat{C}_1^{L3} =$

6)

(5)

Does this error propagate?

No intermediate L2 store-and-forward devices in the I^{th} hop

$$\beta_I = \frac{1}{C_I^{L3}} + \beta_{I-1}$$

- Path up to $(I-1)^{th}$ hop may include L2 devices.
- ullet The estimated capacity of the I^{th} hop

$$\hat{C}_{I}^{L3} = \frac{1}{\beta_{I} - \beta_{I-1}} = C_{I}^{L3} \tag{8}$$

Experimental results: LAN path

- Single-hop path with two L2 segments
- $\bullet \ C_{1,1}^{L2} = C_{1,1}^{L2} = \text{100Mbps}$
- $\hat{C}_1 = \frac{1}{\frac{1}{100} + \frac{1}{100}} = 50 \text{ Mbps}$

100.0 Mbps	Nominal capacity
47.0±1.0Mbps	pchar
47.5±1.0Mbps	clink
49.0±1.5Mbps	pathchar
Capacity estimate	Tool

Campus paths

Experimental results: Campus path 1

6.5±0.6	3.7±0.1	4.5±0.1	10Mbps	to tsunami.coastal
				from chp-7k-e-2-4.nss
5.7±0.1	5.6±0.1	5.75±0.15	10Mbps	to chp-7k-e-2-4.nss
				from <i>chp-rt1-v-9.nss</i>
101.9±26.0	100.3±22.0	100.5±15.0	100Mbps	to chp-rt1-v-9.nss
				from chp-br4-f-1-0-1.nss
62.3±9.1	64.7±9.3	62.2±7.2	100Mbps	to <i>chp-br4-f-1-0-1.nss</i>
				from 128.4.132.64
17.0±0.4	17.0±0.0	17.0±0.0	100Mbps	to 128.4.132.64
				from orion.ps.cis
pchar	clink	pathchar	capacity	L3 hop

Table 1: Capacity estimates for the path from orion.pc.cis to tsunami.coastal.

Experimental results: Campus path 2

_	6.1±0.2	6.95±0.5	100Mbps	to <i>orion.pc.cis</i>
				from 128.175.137.66
35.6±8.8	39.9±6.0	38.3±1.7	100Mbps	to 128.175.137.66
				from chp-br4-g-5-0-0.nss
450.2±110.0	414.70±580.0	613.33±150.0	1Gbps	to chp-br4-g-5-0-0.nss
				from chp-rt1-v-29.nss
11.1±0.9	10.8±0.4	10.5±0.5	10Mbps	to chp-rt1-v-29.nss
				from <i>newark-gw</i>
4.0±1.2	4.0±0.0	4.05±0.05	10Mbps	to newark-gw
				from tsunami.coastal
pchar	clink	pathchar	capacity	L3 hop

Table 2: Capacity estimates for the path from tsunami.coastal to orion.pc.cis.

Experimental results: WAN path 2

to atla-wash.abilene.ucaid.edu	from abilene-wash-gsr.nss.udel.edu	L3 hop
2480Mbps		capacity
$460\pm^{800}_{200}$		pathchar
$520\pm^{680}_{410}$		clink
$1031\pm^{12600}_{800}$		pchar

Table 3: Capacity estimates for an Abilene OC-48 core link.

Other sources of errors in VPS tools

- Traffic load
- Non-zero queuing delays
- Limited clock resolution
- Error propagation from the previous hop
- ICMP generation latency?

Traffic load

- High network traffic \implies High probability of observing queuing delays.
- The probability of not observing any queuing for a packet in i^{th} link

$$P_i = (1 - \rho_i) \tag{9}$$

where ho_i is the utilization of the i^{th} link.

The probability of not observing any queuing in I hops by at least 1 out of K

$$P(I,K) = 1 - \left[1 - \prod_{i=1}^{I} P_i \right]^{IX}$$
 (10)

Traffic load (contd.)

						$\overline{}$
10	œ	ග	4	2	→	Path length ${\it I}$
21	13	∞	Ŋ	ω	2	ρ =0.2
380	136	49	17	o	3	ρ =0.4
21959	3515	562	89	14	5	ρ =0.6
22486182	899447	35977	1438	57	11	ρ =0.8

Table 4: minimum number of packets K so that $P(I,K) \geq 0.9$.

- VPS tools use same number of probes (default 32) for each hop
- too few for remote hops under heavy load

Limited clock resolution

• If clock resolution is 2σ ,

$$T_1 = \alpha + L_1 \beta \pm \sigma$$

(11)

$$T_2 = \alpha + L_2\beta \pm \sigma \tag{12}$$

The estimated capacity would be

$$\hat{C} = \frac{C}{1 \pm \frac{2\sigma C}{\Delta L}} \tag{13}$$

For OC-48, $1\mu sec$ resolution and $\Delta L=1500B$ can result in 25% error.

Error propagation from previous hop

- Any probabilistic error will propagate to next hop.
- if measured RTT slopes are

$$\hat{\beta}_1 = \beta_1(1+\epsilon_1), \ \hat{\beta}_2 = \beta_1(1+\epsilon_2) + \beta_2$$
 (14)

estimated capacity of second hop

$$\hat{C}_2 = \frac{1}{\hat{\beta}_2 - \hat{\beta}_1} = \frac{C_2}{1 + (\epsilon_2 - \epsilon_1) \frac{C_2}{C_1}} \tag{15}$$

Error in a Gigabit hop after an Ethernet hop gets magnified by a factor of 100

ICMP generation latency

- Latency of ICMP generation
- not related to probing packet size
- doesn't affect RTT slope measurement
- Variation of these latencies may affect RTT slope
- Minimum ICMP generation latency in high traffic load
- large number of probes required to catch this
- effect is similar to that of non-zero queuing delays

Conclusions

- Methodology used by VPS tools can introduce large errors
- Errors due to L2 store-and forward devices
- consistent and hard to identify
- Probabilistic errors
- can be detected by repetitive run of the tools

Non-zero queuing delays

Minimum RTT measurement for packet sizes L_1 and L_2

$$T_1 = \alpha + L_1 \beta + \frac{q_1}{C}$$

$$T_2 = \alpha + L_2 \beta + \frac{q_2}{C}$$

(16)

$$= \alpha + L_2 \beta + \frac{\Im^2}{C} \tag{17}$$

where q_1 and q_2 are minimum queue sizes

Estimated capacity will be

$$\hat{C} = \frac{\Delta L}{\Delta T} = \frac{C}{\left(1 + \frac{\Delta q}{\Delta L}\right)} \tag{18}$$

Non-zero queuing delays cause a multiplicative error in capacity estimate

Effect of ATM switches on RTT

Experimental results: WAN path 1

to delaware2-gw-H2-0-T3.voicenet.net	from delaware-gw-f2-0.voicenet.net	to delaware-gw-f2-0.voicenet.net	from chp-br4-f-1-0-1.nss.udel.edu	L3 hop
45Mbps		45Mbps		capacity
44.6±20.0		30.5±3.5		pathchar
48.0±1.6		30.3±5.6		clink
45.2±10.0		28.3±5.6		pchar

Table 5: Capacity estimates for the Univ-Delaware access link to VoiceNet, and for a VoiceNet edge link.