Bandwidth Estimations and it's Applications

Bandwidth Estimation Meeting

CAIDA/SDSC

Jin Guojun

Lawrence Berkeley National Lab.

June 5—7

Overview

- Interested areas of research
- Focus
- Help from other resources
- Status

Measurement Tool Development

• Interested areas of research

* Provide information applications need

- General
 - Capacity
 - Available bandwidth (Cross traffic information)
 - Achievable throughput of TCP and/or UDP
 - RTT
- Application specific
 - # of parallel streams
 - optimal window size
 - etc.
- * Aim on High-speed network
 - Link speed above OC-3
 - NIC speed exceeds I/O bus speed
- * Be Time efficient, accuracy and less intrusive
 - High utilized and high dynamic network, such as LBNL-net, ESNet
 - Request measurement done in a short period of time without history information

• Focus

* Research these issues on top of the current technologies and algorithms we have

* Emphasize on develop algorithms to provide information about network characteristics to TCP applications, this will allow them to better utilize the available bandwidth and increase performance.

* Expect to develop time efficient algorithms to measure link characteristics in short period of time of measurement with limited resources.

- Collaborate other projects and share their resources

* Integrate the result into SciDAC projects

• Get help from other resources

* Joined adventure with SCNM and DMF

- Use SCNM to analyze network traffic and measurement traffic
- Work with ESNet, LBNL, NERSC, ORNL and other folks to deploy and use SCNM and optical fiber analyzer
- Add our tools into DMF to do statistics and tests and to refine algorithms

Network Characteristics

- Info for traffic control and cross traffic analysis
 - * Difficulty bandwidth shaping
 - Capacity
 - * More difficulty time frame (measuring window)
 - Available bandwidth

• Info for improving applications' productivity

- * Relatively easier if networks are not so dynamic
 - Achievable throughput
 - Optimal TCP window size
 - Number parallel streams
 - RTT

Measure High-speed Network

- Link speed over 155 Mbit/s
 - * Technique to send packet trains
 - Ensure the packets sent with less gaps
 - routers reply multiple ICMP to a large UDP packet is good for synchronous train probe, bad for asynch probe.
 - routers reply one ICMP to a large UDP packet is good for asynchronous train probe, but less efficient for synch probe.
 - Ensure no self disruptive
 - Avoid method based on kernel modification (PeriScope Linux API, Boston Univ.; the other company makes similar API for MS Window) which may be good for commercial product.

• Link speed over 2480 Mbit/s or exceed the system I/O bus

- * Signal to noise ratio is low (< 1)
 - Use on NIC timer
 - availability
 - Use long train large MTU may not be a solution
 - Train length may be limited by RTT on hop-by-hop measurement
- * Inherit from NCS technologies
 - Multiple convergency steps many algorithms depend on a certain condition or ideal status
 - Multiple algorithms

Bandwidth Estimation Meeting — June 5-7 — CAIDA/SDSC

Develop and Improve Algorithms

* Capture Dynamic Info.

- Fast measurement algorithm to accommodate the volatility of networks
- Keep measurement results accurate
- Non intrusive

• Use SCNM and DMF to assist development

Endpoint

SCNM Monitor

Netest

Used for automatically detecting the maximum throughput of different applications and traffics.

A simple output format:

--- General section ---Round Trip Time (RTT): 54.3600 ms Burst size (largest): 1675504 Bytes

--- UDP section ---Single stream UDP throughp

Single stream UDP throughput: 471.1614 Mbps Multi- stream UDP throughput: 915.8085 Mbps Use multiple streams to gain UDP throughput is recommended

--- TCP section ---Optimal TCP Window size: 2505463 Bytes Single stream TCP throughput: 94.6152 Mbps Use parallel TCP streams: is recommended 6 TCP streams can improve the throughput friendly 9 TCP streams can maximize throughput aggressively

Integration

• Apply developed tools to SciDAC, GIRD, and applications where they need.