

Performance Prediction in the Multivariate Resource SWN

Martin Swany
UCSB

NWS Architecture

Sensor Elements Produce Time Series

Time Series are Stored

In the nws_meemory

Time Series are Passed through **Forecasters**

Forecasting System

Implemented as a library or a daemon - nws_forecaster

Elements Register with the Directory Service

Network Sensors Form Peer Groups

A Fully-Connected Cluster or Site

A Hierarchy of Cliques for scalability

Measurement Issues

- Active measurements are intrusive
- More accuracy often means more intrusiveness
- The NWS defaults to lightweight probes that have questionable usefulness
- 64KB transfers
- Clearly not a measure of nominal bandwidth!
- Especially as bw *delay grows
- Nominal bandwidth isn't the idea here

Some philosophy

- dynamic Resource performance is extremely
- Presenting up to date performance essential for their effective operation information to distributed systems is
- Particularly the case for Grid environments
- Most measurement in this context is performance used as a prediction of future
- No privelaged access
- UCSB There is no mind / body dualism

Time

How much Information?

- Intuitively, there seems to be a relationship between shorter and longer measurements

 Go ahead, squint
- But, they are significantly different

Mbit/second

Experimental Methodology

- Collect 64KB NWS measurements every
- Time 16MB HTTP transfers every 60
- The file to be transferred comes from the
- Heavily used, general purpose system
- It can't all be in the buffer cache

Recall this picture

- Factor of 4 (ish)
 difference in
 maximum throughput
- Figure out the difference and use a simple linear scaling function?

The relationship isn't that easy

- The relationship isn't necessarily linear
- This makes the regression more difficult
- The relationship might change over time
- The problem of data matching is tricky, too
- Perhaps different amounts of information
- Particularly if application instrumentation data is used.

- **Experiments of Network Throughput** Lyon), CCGrid 02 Network Weather Service, P. Primet, R. Measurement and Forecasting Using the Harakaly, F. Bonnassieux (INRIA, ENS-
- Attempts to compute the relationship between NWS data and Iperf data with a magic scaling factor
- We tried this too, but weren't happy with the results

Recent Work

- Predicting Sporadic Grid Data Transfers, S. Vazhkudai, J. Schopf, to appear HPDC 11
- Focuses on using NWS data to predict GridFTP transfers
- Explores a variety of matching techniques tor regression

Multivariate Forecasters

We want to take a suspected predictor X, and use it to make forecasts of a target Y

Correlation Mechanism

- Most correlation mechanisms assume standard deviation, etc.) normal distributions (as they deal with
- Network traffic does not enjoy a normal distribution
- (see, well, lots of stuff)
- such as Spearman Rank correlation assume datasets of the same size Distribution-free correlation mechanisms

The Cumulative Distribution Function

The empirical CDF is defined as

 $P(X) \mid X < X$

So, our CDF correlator uses the CDF to translate X into Y

Some Terminology

- MAE Mean Average Error
- MSE Mean Square Error
- MNEP Moving Normalized Error Percentage

frequencies of HTTP measurements Comparison of Mean Absolute Error multivariate forecasts for different (MAE) between univariate and

Percent (MNEP) of the Mean Absolute Error forecasts for different frequencies of HTTP (MAE) between univariate and multivariate Comparison of Moving Normalized Error

multivariate forecasts for different frequencies Square Error (MSE) between univariate and Comparison of the square root of the Mean

(MAE) between ``Last Value" and multivariate Percent (MNEP) of the Mean Absolute Error Comparison of Moving Normalized Error forecasts.

Conclusions

- We have developed a novel multivariate prediction technique
- Much yet to be done, although the CDF is proving useful in situations where a distribution is required