Capacity estimation using packet dispersion

techniques: recent progress and open issues

Ravi S. Prasad

and

Constantinos Dovrolis

Computer and Information Sciences
University of Delaware

Capacity estimation tools

Tool	Author	Measurement objective	Methodology
pathchar	Jacobson	Per-Hop Capacity	Variable Packet Size
clink	Downey	Per-Hop Capacity	Variable Packet Size
pchar	Mah	Per-Hop Capacity	Variable Packet Size
bprobe	Carter	End-to-End Capacity	Packet Pairs
nettimer	<u>а</u> .	End-to-End Capacity	Packet Pairs
sprobe	Saroiu	End-to-End Capacity	Packet Pairs
pathrate	Dovrolis	End-to-End Capacity	Packet Pairs & Trains
pipechar	Guojun	End-to-End Bottleneck	Packet Trains
cprobe	Carter	End-to-End Avail-BW	Packet Trains
pathload	Jain	End-to-End Avail-BW	Self-Loading Periodic Streams
TReno	Mathis	Bulk-Transfer-Capacity	Emulated TCP throughput
cat	Allman	Bulk-Transfer-Capacity	Standardized TCP throughput
lPerf	NLANR-DAST	Maximum TCP throughput	Parallel TCP streams

Overview

- Packet dispersion techniques : a review
- Packet pair/train dispersion
- Dispersion and capacity
- Role of receiving host
- Important issues for high capacity paths
- Instruction cache misses
- Batched interrupt
- NIC to userspace latency
- * Minimum measurable dispersion

Packet dispersion

Inter-arrival time of first and last packet of a train

 Δ : Packet Dispersion for a train of length 4.

- If packets arrive back-to-back, dispersion "set" by the capacity of the path
- May get affected by cross-traffic
- All tools use some statistical method to discard wrong measurement
- Cross-traffic effects are not considered here
- * see Dovrolis et. al. INFOCOM 2001

Packet dispersion and capacity estimation

The dispersion after the bottleneck link

$$\Delta = \frac{(n-1)L}{C} \tag{1}$$

- C : Capacity of the bottleneck link and path
- n : Train length
- L : Size of each packet
- For packet pair, n=2

$$\Delta = \frac{L}{C} \tag{2}$$

Packets arrive Role of receiving host Packets timestamped Kernelspace Userspace

Questions

- Is dispersion preserved till timestamping?
- If one packet takes more processing time than other?
- What is the minimum dispersion can be measured?
- What if processing takes more time than dispersion?

Important issues for high capacity paths

- Instruction cache misses
- Batched interrupt
- NIC to userspace latency

Instruction cache misses

- The first packet of each train needs different processing time
- "Incorrect" dispersion measured for the 1st packet-pair in each train
- pathrate sends an extra packet to initialize the cache.

Batched interrupt

If a packet arrives while interrupt handler still running?

Smaller packets, slower hosts get affected

NIC to userspace latency

- The minimum dispersion that a host can measure
- To calculate it?
- Calculate user to kernel latency
- Multiple by a factor to get NIC to userspace latency
- To find this factor?

For linux kernel 2.4.2 (with hacked interrupt handler),

- Obtained interrupt handler to user process latency
- Obtained kernel to user process latency
- This factor is assumed to be constant over different OSes.

Effect of minimum acceptable dispersion

Summary

- OS issues become important for high capacity paths
- Need a better way to measure minimum acceptable dispersion
- Data transfer rate may be limited by the hosts and not the network