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ABSTRACT
It is well known that the performance of a TCP flow is af-
fected by its round-trip time (RTT), i.e., the elapsed time
between the instant a packet is released by the source to
the instant the corresponding ack is received by the source.
The distribution of RTTs can dramatically affect not only
the data rates realized by individual flows sharing a link
but also the utilization of Internet links. In this paper we
present a comprehensive study of the RTT distribution for
TCP traffic in the Internet.

Because access to measurement points is so limited, one typ-
ically has access to a node that may be neither the source nor
the destination of most of the TCP flows passing through
it. Thus, our primary challenge is to infer the RTT dis-
tribution by looking at traffic in only one direction (either
source-to-destination or destination-to-source, but not al-
ways both since the ack (reverse) path may differ from the
data (forward) path). We present three different methods of
estimating RTT and show that all three methods provide a
consistent description of the RTT distribution. Further, we
use this data to validate the use of fluid models that have
grown pervasive in TCP analysis. Finally we make a study
of burstiness of TCP flows.
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1. INTRODUCTION
The round trip time (RTT) seen by a TCP flow is defined
as the total time between a sender transmitting a packet
and the reception of its corresponding ack packet. This in-
terval includes propagation, queuing, processing and other
delays at routers and end hosts. A TCP flow’s throughput
is inversely proportional to its RTT, as described in [1]. Re-
cently, the study of TCP dynamics has been enhanced by
the development of fluid models [2, 3, 4, 5]. A common
theme of these models is the analysis of the stability of var-

ious TCP and active queue management (AQM) schemes in
the presence of delayed congestion feedback from the net-
work. These studies conclude that TCP and TCP-like con-
trol mechanisms are stable so long as the TCP and AQM pa-
rameters are inversely proportional to RTT. More recently,
there has been work on protocols such as XCP which outper-
form TCP even in high bandwidth-delay product cases[6].

With fluid models, one analyzes stability by assuming flows
are of infinite duration. The rationale for this assumption is
the now accepted fact that most bytes are carried in large
flows, a consequence of file-size distributions that exhibit a
large (sometimes infinite in heavy-tailed models) variance.
However, what matters for controllability is not the flow
size but flow duration, which must be long enough to allow
the source to obtain sufficient feedback from the network.
Since the RTT, as reflected by the arrival of the ack back
to the source, represents the feedback signal, the important
parameter to model is the number of RTTs rather than the
absolute size or duration of the flow. In other words, if
the duration of a flow is large compared to its RTT, then it
gets sufficient feedback from the network and is amenable to
the fluid modeling assumption. Another common assump-
tion in the analysis of fluid models is that a flow’s RTT is
constant throughout the lifetime of the flow. While some
models explicitly account for queuing delay variations dur-
ing the flow lifetime and some recent studies measure the
variability of RTT [7], typically the analysis of such models
use some constant-RTT approximations to allow application
of stability results from linear control theory [8, 9, 10].

Since the dynamics of TCP flows, in terms of performance
and stability, are intimately related to their RTTs, accurate
methods to measure RTT are essential. It is also important
to verify the two assumptions regarding controllability of
flows and invariance of RTT in time scales of flow durations.
Several researchers have analyzed RTT measurements [11,
12, 13, 14, 15, 16], although typically based on sampling a
TCP session at the beginning of a flow and not throughout
its duration. The completeness of these results remains in
question [17].

Our first challenge is to obtain reliable estimates of RTT.
Broadly speaking we may divide TCP flows into download
flows carrying bulk data and feedback flows which are se-
quences of ack packets. We will formally define these two
types of flows in a later section. Figure 1 depicts a TCP
download flow between hosts X and Y , and corresponding



feedback flow from Y to X. The RTT observed from X to
Y is the total time between sending a packet from X and
the reception of its ack back at X.
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Figure 1: Possible positions of instruments for RTT
measurement

The obvious method to measure RTT, as used in [7], is to
match the sequence number of a data packet and its corre-
sponding ack, and subtract the time stamps, If we receive
only one ack for every two packets, we would obtain one
RTT value for every two packets observed. Overcoming this
limitation requires instrumentation at points A and F in
Figure 1, which is difficult except in special cases. One case
where such instrumentation may be possible is at the access
gateway of an organization with negligible internal delays.
In order to capture as diverse a data set as possible, our main
data sets are from backbone links. These backbone monitor
points correspond to points B and E in the figure, which
means that sequence matching would yield timing informa-
tion only for the path BCDE. Another problem is that the
acks may not be seen in the EF direction or indeed, observed
at all by the monitor. Since sequence matching under these
circumstances is questionable, we do not use this method.
Our challenge is to obtain reliable RTT estimates using uni-
directional data, where we rely on packets observed on a
single directional fiber. We will use three different methods
of estimating RTT using passive measurements. The first is
the well-known syn-ack method used in many of the stud-
ies mentioned above. The other two methods view TCP
flows on a longer time frame using fluid and packet based
approaches.

We organize the paper as follows. We first describe the
data collection method and types of flows observed. Section
3 considers TCP at two different scales, fluid and packet.
This distinction suggests several natural methods for mea-
suring round trip times; we compare three of them in the
next section. The three estimates are obtained at three dif-
ferent phases of the TCP flow: one at the beginning, one
at the slow start phase and another during the congestion
avoidance phase.

Once we have a reliable estimate of RTT, we may use it
to generate relevant statistics. The first is to find the RTT
distributions experienced by flows in the different data sets.
We then show the average RTT in the three phases are very
similar and conclude that RTT and hence congestion level
on the Internet is a slowly varying quantity. §5 deals with
the controllability of flows and time scale separation between
long and short flows. We then study burstiness of flows in
§6. We conclude with some pointers on how to extend our
work.

2. MEASUREMENT METHODS AND
DATA TYPES

All data analyzed in this paper was passively collected on
different links in the USA. Figure 2 depicts our data col-
lection setup. The monitor captures data carried on two
optical fibers, one for each direction of the link. A fiber
splitter divides the light on each fiber, siphoning 10% of the
signal off to a DAG 4.11 NIC card [18] in our monitor PC.

The Endace DAG cards have a clock resolution of 15 ns,
GPS-synchronized to UTC once per second. The DAG cards
record a time stamp when they observe the first byte of a
packet on the fiber. When the packet has traversed the link,
the card transfers its header bytes and the time stamp into
PC memory. Our monitor PCs have two 2.4 GHz Intel Xeon
processors and two large, fast RAID disk arrays so that they
can run two separate header collection tasks in parallel.

We collect traces using the dagsnap program from the dag-
tools package [19]. Output data from dagsnap is piped
through dagsplit, which breaks it into separate gzipped files
at specified intervals. A typical hour of gzipped trace data
from an OC-48 (nominal bit rate 2.5 Gb/s) link with about
625 Mb/s (25% utilization) occupies about 15 GB of disk
space.

Monitor with two DAG cards

Network Network
YX

fiber splitters

Fiber direction−0

Fiber direction−1

Figure 2: Illustration of data collection

2.1 Different Types of Flows
We refer to a flow as a transfer of packets between two ports
of a source-destination pair using a particular protocol. A
flow is thus uniquely identified by the five-tuple consisting
of the source-dest IP addresses, the source-dest ports and
the protocol used [20]. Instead of a timeout-based delin-
eation of flow boundaries, we look at all packets associated
with a particular five-tuple within the interval of measure-
ment. Each DAG card sees all flows on a particular fiber. A
TCP connection is bidirectional and consists of two flows,
one in each direction [21]. A TCP connection is initiated
by a host (caller) sending a syn packet, which generates a
response from the end host (callee) with a syn-ack packet.
The caller responds with an ack packet which completes
the handshake. Asymmetric routing renders it invalid to
assume that a flow will appear on both directions of an ob-
served link. Thus, for flows belonging to a particular TCP
connection, data packets seen on fiber-0 may not receive
acknowledgments on fiber-1.

We divide flows into five major categories:

• TCP-Download Flows (Type-1). The callee might
be in Network X. In direction-0 we observe a syn-ack



packet followed by data packets. These flows each
carry large amounts of data and together represent
a large fraction of overall byte traffic; examples in-
clude peer-to-peer file transfers, FTP, and web brows-
ing. Figure 3(a) illustrates TCP download flows.

• TCP-Feedback Flows (Type-2) The caller may be
in Network X with the callee in Network Y. In direction-
0 we observe a TCP flow whose first packet is a syn
followed by a sequence of responding ack packets from
the callee, as shown in figure 3(b). Typically the ack
packets are feedback provided to the callee. However,
in some cases such as telnet or chat sessions, the traffic
in this responding direction actually carries data. We
distinguish data-feedback flows as those YX flows
for which the total bits transferred in direction XY
(as seen by the range of sequence numbers) is larger
than the bits transferred in the direction Y X (as seen
by the range of acknowledgment numbers).

• TCP-Unknown flows (Type-3). We observe TCP
flows that do not fit into the two above types because
they begin outside the interval of measurement so we
never observe their leading syn or syn-ack.

If a TCP-download flow has source-port 80 (HTTP) we call
it a Web flow. Flows that appear to be TCP-feedback
flows may in fact be scan traffic incurred by hackers, which
does not involve acknowledgment of a data transfer from
the other end. We refer to TCP-feedback flows that are less
than four packets in length as small and those larger than
(or equal) to four as normal.

The other two major types of flows are:

• UDP flows (Type-4), often associated with peer-to-
peer searches [22], DNS lookups and real-time stream-
ing.

• Other flows (Type-5), using any protocol other than
TCP or UDP.

2.2 Data Sets
We use three different packet traces in this paper, all from
OC-48 (≈ 2.5Gb/s) links:

• BB1-2002 was collected on a backbone link of a ma-
jor ISP on Wednesday, 14 August 2002. The data was
collected from 10-11 AM local time on a 25% utiliza-
tion link connecting Seattle to San Jose. This data set
is not anonymized, hence we can use the prefixes to
identify host locations.

• BB2-2003 was collected on a backbone link of a dif-
ferent major ISP on Wednesday, 7 May 2003. The
(also not anonymized) data set was collected from 10-
11 AM local time on a 26% utilization link connecting
San Jose to Seattle.

• Abilene-2002 was collected on a link in the Abilene
research network on Wednesday, 14 August 2002. The
data set was collected from 10-11 AM local time on an

25% utilization eastbound link between Kansas City
and Cleveland, Ohio. This data set is anonymized so
we cannot tell anything about the hosts. It is available
at [23].

Besides these packet traces, we also obtained a NeTraMet
flow data file which we will refer to as UNI-2002. A Ne-
TraMet monitor [24, 25] generates flow summaries in real
time using packet header data from DAG cards. We config-
ured NeTraMet to observe both directions at the same time
and match data packets with corresponding acks by match-
ing sequence numbers. NeTraMet was monitoring a research
university gateway on 21 August 2002. At the time the uni-
versity’s Internet connection was a single OC-12 (622Mb/s)
link and so we were in a position to observe all traffic to and
from the university. This data set does not have per packet
information, but due to the unique location of the monitor
has precise timing information which we use to validate our
analysis of the other data sets.

Together these data sets represent a high diversity of IP ad-
dresses, applications, geographic locations and access types.
For instance, the BB1-2002 data set shows about 30% of
bytes destined for locations in Asia, with flows destined to
about 30% of all global autonomous systems (AS). The BB2-
2203 also has a fairly high diversity with flows from about
24% of all global ASs. The Abilene-2002 data has a large
fraction of non-web traffic. Figure 4 shows the breakdown
of traffic bytes into different flow types. As expected, TCP
flows dominate. But whereas the commercial links show a
large fraction of download flows, this category is less sig-
nificant in the research network, which also shows a large
fraction of feedback flows.

3. TCP BEHAVIOR AT THE FLUID
AND PACKET SCALE

We provide here a short description of TCP and two different
ways of looking at its behavior. These two approaches lead
to different tools that we use later in the paper.

3.1 The Fluid View of TCP
TCP is a window-based protocol with two modes of oper-
ation. The windows are calculated in terms of Maximum
Segment Size (MSS). MSS indicates the maximum number
of data bytes any particular layer-2 technology allows per
packet. TCP/IP headers are later added to the packet (nor-
mally 40 bytes) and the resulting total is called the Max-
imum Transmission Unit (MTU). The congestion window
size at any time indicates the number of bytes “on the wire”,
i.e the number of bytes that have been packetized and sent
out (assuming that there is data to send and the receive win-
dow is large enough to accept it) but for which acks have not
been received. In slow start mode, the congestion window
size increases by one MSS per received ack which results in
its doubling once every RTT. In the congestion avoidance
mode the window size increases by one MSS every RTT.
When a packet is lost, the window size is halved. TCP thus
uses an additive increase, multiplicative decrease algorithm
for congestion control.

At a coarse time scale we can model TCP as a rate-based
algorithm. Rate is an average quantity – the number of
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Figure 3: Types of TCP flows. Solid lines represent observed packets.
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Figure 4: Byte percentages of different flow types on three OC-48 data sets. The Abilene profile is dramati-
cally differs in feedback vs. download flow types.

bits transferred over some interval of time – and packets are
visualized as a fluid of bits on the wire. Figure 5(a) shows
the rate behavior of TCP, i.e., the exponential rate increase
in slow start mode and the sawtooth behavior caused by
packet drops in congestion avoidance mode. The fluid model
has been used extensively [3, 26, 9, 5]. Since we do not
know the RTT, it is difficult to divide the flow into the
two modes. This paper concerns primarily the congestion
avoidance mode, so we assume a fixed threshold above which
the flow has entered congestion avoidance.

Proposition 1. In the congestion avoidance phase of TCP,
the time instant t̂ at which the average rate in an interval
[t0, t1] (during which no drops occur) is the same as the in-
stantaneous rate is t̂ = t1−t0

2
.

Proof. Consider a time interval [t0, t1] in congestion avoid-
ance mode during which no drops occur and t ∈ [t0, t1]. Let

x(t) be the number of bits transferred in the time interval
[t0, t]. Then we have for some constant k

d2x

dt2
= k. (1)

The rate at time t is then given by

dx

dt
= r0 + k(t − t0), (2)

where r0 is the rate at time t0. At t = t1+t0
2

(the middle of
the interval),

dx

dt
= r0 +

k(t1 − t0)

2
. (3)

Also we have

x = r0(t − t0) +
k(t − t0)

2

2
. (4)
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In particular the total number of bits transferred in the in-
terval (t1 − t0) is

x = r0(t1 − t0) +
k(t1 − t0)

2

2
. (5)

Dividing both sides of the above by t1 − t0, the average rate
during the interval [t0, t1] is

r0 +
k(t1 − t0)

2
, (6)

which is identical to equation 3.

Our algorithm for estimating the rate over an interval, is
to count the number of bits transferred by ten packets (in-
cluding the headers) and divide by the time taken for the
transfer. As derived above, the time instant at which this
rate occurs is the middle of the interval. We call the pair
consisting of a time instant and a rate value as a rate point.
We assume that the flow is in congestion avoidance and that
no drops occur while bits are being counted. We ensure this
constraint by finding rate points only for sequences of more
packets than our threshold. These requirements imply that
we can find rate points only for flows with relatively many
packets, and even for these we will not obtain many rate
points. In the next section we show that although stringent,
our requirements allow inferences about a large byte percent-
age of the traffic. TCP download flows lend themselves well
to fluidization as they carry many bits. For feedback-flows,
we only fluidize those with significant amounts of data, i.e
TCP feedback flows for which the range of sequence num-
bers is greater than the range of acknowledgment numbers.

3.2 The Packet View and the Controversy re-
garding Flights

We now consider the steady state characteristics of TCP
at a packet level and investigate whether TCP flows have
recognizable fine structure that we can label flight behavior.
We define a flight as a sequence of consecutive packets with
nearly identical inter-arrival times (IAT) followed by a larger
IAT. A TCP flow containing flights would consist of a flight
of packets followed by a gap, then another flight of packets,
and so on. This structure could arise due to TCP’s window-
based congestion control. Figure 5(b) depicts a window of
packets sent off back-to-back, followed by a pause before
acknowledgments arrive.

The phrase nearly identical inter-arrival times is defined
by means of a threshold. Consider a sequence of packets
p1, p2, p3, with IATs δ1 and δ2 between the first and second
pairs of packets, respectively. Then we consider the ratio
g = | δ2−δ1

δ1
|. We decide whether a packet belongs to a par-

ticular flight depending on whether g > T or g ≤ T , where
T is a threshold value. In our analysis we used several val-
ues of T ( 1

16
to 8) with similar results. We use the IAT as

a measure of the size of the flight and call the units IAT
units (IATU). Thus a flight of 1 IATU means that the ob-
served IAT was different from the preceding and following
IATs. An IATU of 2 would mean that two successive IATs
were identical. Figure 5 depicts two flights, the first of size
2 IATU and the second of size 3 IATU.

Our flight-finding algorithm is as follows:

1. Start with IAT = 0, flightsize = 1

2. Compare previous IAT with current IAT



3. If both IATs are within threshold then increment

flightsize by one;

else if flightsize > 1 start a new flight of size 0;

else start a new flight of size 1;

The ‘else if’ line in our above algorithm means that an
out-of-threshold IAT indicates the end of a flight, but a
sequence of out-of-threshold IATs indicates consecutive 1-
IATU flights. Our flights may therefore have 1 packet (1
IATU), 3 packets (2 IATU), 4 packets (3 IATU) and so on.

At this point we must digress and note a phenomenon that
superficially looks similar. Since many TCP implementa-
tions [21, 27] implement delayed-acks, a host may send two
packets for every ack it receives. Thus TCP’s unit of trans-
mission can be pairs of packets. We do not consider two-
packet pairs since that behavior is not derived from the
window-based component of TCP. Our algorithm will see
a packet pair as two single-packet flights.

Flight behavior of TCP has been a matter of considerable
debate. In fact there is not even a standard terminology for
the phenomenon; other names for flight-like phenomena are
bursts [28] and rounds [2]. While modeling TCP flows some
authors simply assume the flight nature of TCP [16, 2]. In
§6 there is a discussion on the validity of the model and
how often flights are observed. Our statistics on flight be-
havior show that although flights are by no means common,
they occur often enough to enable us to draw conclusions
regarding a large byte percentage of the traffic.

4. RTT MEASUREMENT
We have already outlined the challenge of measuring RTT
from unidirectional data. In this section we evaluate three
methods of finding RTT. We first need to understand what
information about RTT is available to us. Consider the
scenario in figure 6 where we have only one instrumented
fiber (in direction XY ). We observe both download as well
as feedback flows in direction XY . But there is a significant
difference in timing information carried by each. The RTT
of the download flows is of path XY X. One simple way to
find the RTT for such flows is (see figure 3(a)) to find the
time between the syn-ack and the data packet. The feedback
flows carry slightly different information. Referring to figure
3(b) we note that the time between sending of syn and ack
gives the RTT XY X. However, once the connection has
been established, ack packets are sent in response to data
packets in direction Y X and so the timing information now
obtained from the feedback flow XY is that of path Y XY .
There will be differences due to different serialization delays
between the two round trips. There are a few other problems
with using feedback flows, discussed below. In our analysis
we are interested in the RTT XY X.

4.1 Three methods of measuring RTT for uni-
directional data

We use three different methods to measure RTT on the uni-
directional data sets. The methods are as follows:

• Syn based Methods. These are the methods de-
scribed above. We can use them on both the down-

download YX

Network Network
YX

download XY

feedback XY
Instrumented Fiber

feedback YX

Figure 6: RTT information from different flows with
a single instrumented fiber

load and feedback flows in direction XY to obtain RTT
information of path XY X. Many authors have used
these methods [12, 14, 29] although Zhang et al. [16]
suggest that the method tends to underestimate RTT.

• Flight Method. This method considers TCP dynam-
ics at the packet level described in section 3. Figure
5(b) depicts the time between the leading edge of a
flight and the leading edge of the next flight as the
RTT. We must be careful when using this method.
Rate-limited flows, which send packets at a constant
rate constrained by hardware or access limitations,
would show up as having large flights, which could
potentially yield a large RTT misestimate since their
traffic rate is independent of RTT. To avoid this source
of false bias we only use flights containing three to five
packets. Our statistics show that this causes us to
ignore only about 4% of all observed flights. Since
each flight yields one RTT value, we average the val-
ues found. Feedback flows have a structure different
from other flows: since the feedback flow is in response
to the data-carrying download flow, a set of back-to-
back ack packets from the callee would result in a dis-
persed sequence of data packets at the caller. Ack -
packets sent in response to these data packets (forming
the feedback flow) would begin somewhat dispersed
and further disperse by the time they reach our in-
strumented link, making the flight difficult to identify.
Since this problem is less pronounced in data-feedback
flows, we use this method on download flows and data-
feedback flows.

• Rate Change Method. This method considers TCP
dynamics at the fluid level. Let x be the number of
bits transferred up to time t from time origin t0. Then
the instantaneous rate is dx

dt
. Let W be the TCP con-

gestion window at time t.

Proposition 2. During the congestion avoidance
phase in an interval [t0, t1] if

– there are no packet drops in [t0, t1], and

– the RTT does not change in [t0, t1] then,

RTT =

s

MTU
d2x

dt2

(7)



Data Sets Byte Percentages
Syn Based Flight Based Rate Change

BB1-2002 82% 53% 58%
BB2-2003 70% 48% 52%
Abilene-2002 64% 44% 59%

Table 1: Byte percentages in flows for which each of
the three methods yields an RTT estimate

Proof. In congestion avoidance mode the conges-
tion window increases by one MSS every RTT if no
drops occur, which results in an increase of one MTU
every RTT. So we have

dW

dt
≈ MTU

RTT
. (8)

If there are no drops on an average, one window of
bytes is transmitted every RTT, giving

dx

dt
≈ W

RTT
. (9)

Hence we have

d2x

dt2
≈ MTU

RTT 2
. (10)

Rearranging, we have the expression (7).

Implementing this method requires fluidization of pack-
ets as described in §3. To ensure that the flow has
entered congestion avoidance mode, we arbitrarily set
a threshold of 15 packets (or the first out of sequence
packet, whichever occurs earlier) as a threshold. We
assume that the flow has entered congestion avoidance
mode after this. We remark at this point that we also
tried values of 25 and 30 for our threshold and noticed
no appreciable changes in our results. The quantity
d2x
dt2

derives from considering two rate points and find-
ing the slope of the ramp between them as shown in
figure 5(a). We assume that the RTT does not change
in the small interval between successive rate points.
We approximate the MTU with the maximum packet
size observed in the duration of the flow. In the case of
rate limiting, the slope will be close to zero or negative.
We flag such cases and do not use them. Toward the
end of flows transferring large files, the rate naturally
comes down as there are not enough bytes to fill the
congestion window. To avoid inaccuracies we do not
use the final rate point obtained. The algorithm yields
multiple RTT values (one value corresponding to each
pair of rate points) and we average these values. We
use this method for TCP download flows and data-
feedback flows which, as mentioned in the last section,
lend themselves well to fluidization.

We ran the three methods on the download flows and feed-
back flows. Table 1 shows the percentage bytes for which
each method yields results. Recall that for TCP-unknown
flows we did not see any syn-ack. Although the other two
methods would yield results for such flows, we do not use
them since we have no values produced by the syn based
method to compare. We see from the table that although

the flight-method and rate-change method are applicable to
a specific subset of flows, namely those containing flights or
ones large enough for fluidization, these methods do provide
results for a significant portion of the traffic bytes. If we
were to normalize the TCP-download and feedback flows to
100% (i.e., set the byte percentage for the syn based method
to 100%), then the byte percentage for which the other two
methods yield values is of the order of 60 − 70%. In other
words these methods work for the flows that count.

We now obtain RTT by the three methods and compare the
values obtained. Figure 7 shows the difference statistics.
The first column compares the RTT values for which the
syn based and Flight methods gave results, the second for
which the Flight and Rate change methods yield results, etc.
We have binned the differences so that 0% to 1% difference
would be in the 1% bin, etc. We see that about 90% of the
time all three methods yield values within 1% of each other.
This surprisingly strong result suggests two things:

• The syn based method does not underestimate RTT.
Since two other methods relying on entirely different
facets of TCP dynamics yield the same values, the syn
based method likely gives correct results. We will fur-
ther justify this claim in section 4.2. The results imply
that passive monitors such as NeTraMet may use the
syn based method to reliably estimate RTTs in real
time.

• The three methods yield RTT values at three different
phases of the flow, the syn based at the starting epoch,
the flight method in the early (in general slow start)
phase and the rate change yields the average in the
later (congestion control) phase. This suggests that
the average RTT experienced by a flow is very close to
what it experiences in the early part. So although the
variance of RTT might be high (which in fact is an ob-
servation in [7]) the average RTT during the different
phases is very similar. This in turn suggests that av-
erage queuing delay is a slowly varying quantity with
respect to the duration of a flow.

4.2 RTT distribution
Finally we find the actual RTT distribution for the packet
traces (BB1-2002, BB2-2003, Abilene-2002). The algorithm
we use to determine RTT is,

• If only one method yields results, use the value so ob-
tained.

• If two methods yield results, use their average.

• If all three yield results, use the average of the lower
two. This rule minimizes any artificial overestimates
of RTT.

For the UNI-2002 data set we present RTT statistics ob-
tained by sequence matching. Such values are most precise
as they are what the flows actually see.

Figure 8 shows that all of the data sets show similar RTT
distribution. The main features of the distributions are:



0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Percentage difference

P
er

ce
nt

 V
al

ue
s

Methods 1−2
Methods 1−3
Methods 2−3

(a) BB1-2002

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Percentage difference

P
er

ce
nt

 V
al

ue
s

Methods 1−2
Methods 1−3
Methods 2−3

(b) BB2-2003

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Percentage difference

P
er

ce
nt

 V
al

ue
s

Methods 1−2
Methods 1−3
Methods 2−3

(c) Abilene-2002

Figure 7: Differences in RTT calculated by the three methods for the three data sets. The left column in
each graph is the comparison between the syn based and the flight methods, the middle column between syn

based and rate change methods and the right column is between the flight and rate change methods. We see
that about 90% of the time the difference between any two methods is below 1%.
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Figure 8: RTT distribution for the four data sets. The two spikes correspond to coast-to-coast US and
Asian/European traffic.



• BB1-2002 Since the trace was not anonymized we
could check the geographical locations of the hosts. We
attribute the spike at about 180 ms to traffic between
Seattle and Beijing on that link. The pure propagation
delay between these locations (smallest RTT) is of the
order of 130 ms, which yields a queuing delay estimate
of 50 ms.

• BB2-2003 Again, this is a non-anonymized trace. This
data set has a much larger spread in the lower RTTs,
consistent with the dominance of US traffic.

• Abilene-2002 The trace Abilene-2002 has two marked
spikes. Since this trace is anonymized we are unable
to identify the sources of the spikes, but the position
of the link in the Eastern United States is consistent
with spikes that correspond to coast-to-coast US traf-
fic (74ms) and European/Asian traffic (180ms). The
propagation delay for coast to coast in the US is of
the order of 60 ms, giving a queuing delay estimate of
about 14 ms.

• UNI-2002 For comparison we also show the distribu-
tion of the UNI-2002 data set, which has fewer points
resulting in a jagged appearance. This plot is from
direct sequence matching of packets.

We draw the following conclusions from the RTT distribu-
tions:

• We see that there are queuing delays present in the
system which are accentuated by distance (number of
queues increases). This would imply that implemen-
tation of AQM mechanisms [4, 8] which aim at reduc-
ing queuing delays to zero, might possibly improve the
RTT and hence the TCP performance for physically
distant locations.

• TCP is inherently unfair to high RTT flows. The prob-
lem of stability and fairness is bound to crop up more
often as Asian traffic increases in volume (the data set
BB1-2002 for instance has 30% of bytes going to Asia).
Calls for TCP fixes are likely to occur more often as
this happens.

• If viewed in log-log scales, the tails of all the distribu-
tion fit the tail scaling law 500T−1.5 laid down in [15].
The law may be explained as a consequence of Asia
and Europe being similar in distance to the US. Decay
of RTTs after this point (about 180 ms) is likely to
be due to the fact that countries in Eastern Europe,
Africa and Southern Asia do not have very much traf-
fic. The far end of the tail (over 500 ms) is unlikely to
be due to queuing delays and might be worth investi-
gating.

5. CONTROLLABILITY OF FLOWS ON
THE INTERNET

Internet congestion control has been of timeless interest.
Kelly [3, 26] proposed a framework that views congestion
control as a mechanism for fair resource allocation in a net-
work of users with elastic requirements, such as the Internet.
This framework, and more generally, differential equation

models of congestion control, can be used to study the sta-
bility of congestion control and active queue management
(AQM) schemes using control-theoretic methods [4, 30, 6,
31, 32]. All these are based on a fundamental premise:
flows are controllable.

The primary means of controlling flows on the Internet is by
feedback control mechanisms, of which TCP is the best ex-
ample. The object of the feedback controller is to attain the
operating point which allocates the resource fairly. The time
taken for the system to change by 1

e
is called the time con-

stant of the system. A system is considered to have changed
its state after the elapse of three time constants, which cor-
responds to a 95% change in state. We define the lifetime
of a flow to be the time interval between the transmission of
the first and last packet. If the lifetime of a flow is greater
than three time constants then the control mechanism would
be effective. But what is the time constant of a TCP flow?
Intuitively there seems to be a close link between RTT and
the time constant for TCP flows. If the RTT is large then it
is possible that the acks are not received during the flow’s
lifetime. In this case, the flow is never under the auspices
of TCP’s feedback control. However, if the flow’s lifetime
is long then even for large RTTs the feedback mechanism
would be effective.

We illustrate the connection between RTT and the time con-
stant for TCP flows by looking at the fluid model of TCP.
Consider the fluid model of TCP with a single bottleneck
link and a single source. Using the same notation as in sec-

tion 3, we have the instantaneous rate as dx
dt

. Define ν
4
= dx

dt
.

Let the RTT experienced by the flow be T . We use the well
known fluid approximation [33]

ν̇ =
1

T 2
− 1

2
ν(t)ν(t− T )p(ν(t− T )).

The first term models the rate of additive increase and the
second term models the multiplicative decrease factor. The
term p(x) is the probability of marking/dropping at the link.
The rate at which marked packets are received is then ν(t−
T )p(ν(t−T ). So the the rate at which the bit rate is halved
is given by the second term. Discretizing the above equation
with a sampling time of k = t/T yields

ν[k + 1] − ν[k] =
1

T
− 1

2
Tν[k]ν[k − 1]p(ν[k − 1]).

Linearizing the discrete time controller about the equilib-
rium ν∗ found by setting ν̇ = 0 , we obtain

y[k + 1] = y[k]

„

1 − 1

2
Tν∗p(ν∗)

«

−y[k − 1]

„

1

2
Tν∗2p′(ν∗) +

1

2
Tν∗p(ν∗)

«

.

This is of the form

y[k + 1] = ay[k] − by[k − 1],

whose eigenvalues are given by

λ =
a ±

√
a2 − 4b

2
.

The time constant of the system (assuming stability, |λ| < 1)
is given by −1

log|λ|max

.



We illustrate the effect of RTT on the time constant derived
above using a marking function p =

`

ν−C
ν

´+
, where C =

capacity of the link = 4.5 MTU/ms ' 45 Mb/s. The figure
9 shows time constants corresponding to only stable, real
eigenvalues. The relation between RTT and time constant
can be understood from the graph. We see that an RTT
of 100 ms corresponds to a time constant of 300 ms, i.e
the flow’s lifetime would have to be 900 ms or 9 RTTs for
convergence. Thus, increasing RTT causes the system takes
longer to converge to the final value.
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Figure 9: Variation of Time Constant of a TCP flow
with RTT. Notice that it monotonically increases
with RTT.

The above discussion suggests that from the viewpoint of a
flow, time is a relative quantity. What is really relevant to
for the transmission rate to converge and the system to reach
stability, is that the flows’ lifetimes be at least three time
constants. Considering the close correspondence between
time constant and RTT, we change the measure of time for
each flow, in particular using a a dimensionless quantity:

controllability
4
=

lifetime

RTT
.

For instance in the graph, a time constant of 300 ms would
imply that the flow would require a controllability of 9 for
it to converge. A high controllability factor would give the
flow many time constants to converge, while a low one would
mean that the flow is uncontrollable. We may also think
of controllability as the minimum number of acks received
in time interval. For instance a controllability factor of 10
would indicate that at least 10 acks would be received in the
lifetime of the flow.

We apply these ideas to the three traces, to answer three
questions:

1. What fraction of Internet traffic is in controllable flows?

2. What fraction of Internet traffic is in flows which carry
a large number of bytes?

3. Do byte-rich flows get higher transmission rates?

The first column of graphs in figure 10 shows how time-
scale separation occurs by means of controllability plots.
Weighted by flow implies that each flow gets a weight of
one unit, whereas weighted by bytes implies that each flow
is weighted by the number of bytes it transfers. On average
over 90% of the bytes are in flows with a controllability fac-
tor of 10 and above. On the other hand about 75% of flows
have a controllability factor below 10. Flows which have a
controllability factor of 10 and above have a mean controlla-
bility of 5000. This means that if a flow lasts over ten RTTs,
on an average, it lasts for an interval of the order of 5000
RTTs. Thus there is a division between numerous short
(uncontrollable) flows carrying a small number of bytes and
a small number of long (controllable) flows carrying a large
number of bytes.

The second column of graphs in figure 10 depicts the sep-
aration between large (elephant) and small (mouse) flows.
Using 10kB as a threshold puts an average of over 90% of
the bytes in flows over this threshold. However, about 70%
of the flows are below 10kB in size. We also observe that if
a flow is larger than 10kB, then on an average it is of the
order of 5MB in size.

The third column in figure 10 shows the distribution of rates
for the three data sets. There is no substantial separation
of rates when looked at by flows or bytes, suggesting that
large flows do not exhibit higher rates than small flows. We
conclude that a large size flow is also likely to be a highly
controllable flow, but does not have any particular bias rate-
wise. Similarly, a small size flow is likely to be uncontrollable
regardless of its rate. These results lend validity to mod-
els that assume the division of Internet traffic into a small
number of highly controllable flows (long running streams)
transferring a large byte fraction and a large number of un-
controllable flows (noise) transferring a small byte fraction.

6. A CLOSER LOOK INTO TCP FLIGHTS
In previous sections we discussed TCP flight behavior and
how to estimate RTTs. We have not yet studied the nature
of flights, how often they occur, how well they reflect TCP
behavior and what causes them. We devote this section to
answering these questions.

We first obtain an idea of how flights appear at the point of
instrumentation by looking at a few sequence number plots.
Figure 11 shows two such plots, each for a TCP-download
flow. The first example is a flow with a rate of about 300
kbps and the second at about 23 kbps. Flights are observed
in both but do not show either doubling (corresponding to
slow start) or single increases (corresponding to congestion
avoidance) in flight sizes with any regularity. However, they
are both parabolic in shape in accordance with equation
4. The curvature of the parabola is indicative of the RTT.
Example 1 has a much lower RTT than example 2 as its
curvature is much greater. The lower RTT of example 1 can
also be gauged by looking at the inter-flight times.

To go into more detail, figure 12 shows the distribution of
flight sizes for download-flows. The unit of flight size is
IATU. We can convert this into packets by recalling that
a 1 IATU flight is a single packet flight, a 2 IATU flight
has three packets and so on. We see that regardless of the
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Figure 10: Controllability, flow size and rate distributions for the three data sets BB1-2002 (top row), BB2-
2003 (middle row) and Abilene-2002 (bottom row). Weighted by flow implies that each flow gets a weight of
one unit and weighted by bytes implies that each flow is weighted by the number of bytes transferred. We see
separation based on controllability and flow size but there is no significant separation by rate. Note that the
point of intersection of the two curves on each plot has no physical meaning, however it is the point which
achieves the best separation of the two measures
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(b) Example 2

Figure 11: Sequence number plots showing flight behavior for TCP download flows. Notice that flights do
not follow any particular pattern that suggests slow-start or congestion avoidance mode. The examples show
linear rate increases as seen by their parabolic shapes.

number of packets in the flow, flight sizes are usually quite
small, flights larger than 7 IATU are rare. Figure 13 shows
the distributions of number of flights in download-flows. We
see that flights are much more common in flows with a large
number of packets.

Now that we have established that flights are not a common
phenomenon, we study the relation between them and the
bandwidth-delay product (BDP). [28] suggests that flights
are associated with high bandwidth, low delay flows. Fig-
ure 14 shows the relation between BDP and flight behavior.
The bi-modal graph common to all the data sets is strik-
ing. Values of BDP at which flights are common are of the
order of 1 kb and 16 kb. However, when we plot the BDP
distribution (figure 15), we find that it shares the same bi-
modal nature as the previous graph. So all the plots reveal is
that Internet flows have two distinct regimes of BDPs, most
likely corresponding to access methods (possibly home users
with low BDP and office users with high BDP). To further
understand the relation among flights, bandwidth, and de-
lay, figure 15 plots 3D graphs of RTT, bandwidth and flight
probability. Flights occur along two distinct lines on each
figure (the scale is log-log), corresponding to the constant
BDPs seen in the previous figure.

We are now in a position to draw inferences about flight
behavior. We have seen that flights are not common and
usually not large. They occur with greater frequency in
two regimes: large RTT with medium bandwidth, and large
bandwidth with medium RTTs. The results lead us to con-
clude that flights in general are a small window phenomenon.
This would correspond in a majority of flows to the slow-
start phase. When window sizes are small and network
conditions correspond to one of the above regimes, TCP
is forced to wait for acks causing flights.

6.1 The T-RAT tool
Recently Zhang et al. [16] proposed a new tool called T-
RAT. The tool is built with the assumption that TCP sends
packets in flights. It further assumes that by observing flight
sizes, one can determine the mode at which TCP operates:
a doubling of flight size indicates slow-start and an increase
by one MTU indicates congestion avoidance.

The authors provided no statistics as to how often T-RAT
actually finds flights, how often expected increases of win-
dow sizes corresponding to different TCP modes are ob-
served, or a distribution of RTTs obtained. The tool is vali-
dated using a single data set N2, collected in Nov-Dec 1995
[27] to study the dynamics of different TCP flavors. The
data consists of packet traces of specific transfers of 10 kB
between select cooperating pairs of sites. The data set does
not represent a particularly rich mix of Internet traffic. The
authors claim that the syn-based method under estimates
RTT, which is at variance with our results as well as [7]. In
fact [14] observe that it has potential to overestimate RTT.
This result is counterintuitive and requires explanation that
has not been provided.

7. CONCLUSION
In this paper we have investigated the performance of TCP
as a delayed feedback system. We examined how the dy-
namics of a TCP flow is affected by the RTT it sees and
emphasized the intimate relation between TCP and RTT
with regard to performance and stability.

As a measurement tool contribution, we implemented three
methods of determining RTT from unidirectional packet trace
files, and found insignificant differences in results. We con-
cluded that the syn based method provides a good estimate
of RTT that can be exploited in real time analysis of Internet
traffic.
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Figure 12: Flight size distribution for the three packet traces. The left column in each graph is for flows
greater than 3 packets in length, the middle for those greater than 50 and the right column is for flows greater
than 100 packets in length. We notice that flights are usually small irrespective of the number of packets in
the flow.
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Figure 13: Number of flights in download flows on a per flow basis. The left histogram in each graph is for
flows greater than 3 packets in length, the middle for those greater than 50 and the right histogram is for
flows greater than 100 packets in length. We notice that flights are more common in flows with a larger
number of packets.

In the context of modeling and simulation, we considered
models of TCP fluidization and flights and showed that av-
erage RTT in different phases of a flow is a slowly varying
quantity. We also provided distributions of RTT, which sim-
ulations could use as a source of realistic RTTs for flows.

With regard to network control, we examined the time scale
separation on the Internet by introducing a measure of flow
lifetimes in terms of their associated RTTs. Our empiri-
cal analysis implies that that the paradigm of numerous-
short-small flows and few-long-large flows is valid and that
rate-wise the two modes have similar behavior. We made a
case for implementation of AQM schemes to improve TCP
performance in large RTT scenarios. The XCP paradigm as-
sumes that there are short-large flows. Our work indicates
that there are very few such flows. However, the fairness

and stability issues with TCP in the high RTT regime is a
case for XCP.

A byproduct of our work is a simple algorithm for flight iden-
tification based on packet inter-arrival times and we made
use of this to collect statistics on flight behavior.

We plan to continue studying TCP dynamics, starting with
identification of packet drops by observing rate halving. We
also hope to use NeTraMet in a project to observe RTTs
over a large time scale and map the congestion topology of
the Internet. This would enable us to find the points at
which AQM schemes would have maximum impact.
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Figure 14: Plots showing the relation between BDP and flights
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Figure 15: Flight behavior for the three data sets as a function of RTT and bandwidth
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