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Abstract. In this paper we present results of a series of bandwidth estimation
experiments conducted on a high-speed testbed at the San Diego Supercomputer
Center and on OC-48 and GigE paths in real world networks. We test and com-
pare publicly available bandwidth estimation tools: abing, pathchirp, pathload,
and Spruce. We also tested Iperf which measures achievable TCP throughput. In
the lab we used two different sources of known and reproducible cross-traffic in
a fully controlled environment. In real world networks we had a complete knowl-
edge of link capacities and had access to SNMP counters for independent cross-
traffic verification. We compare the accuracy and other operational characteristics
of the tools and analyze factors impacting their performance.

1 Introduction
Application users on high-speed networks perceive the network as an end-to-end con-
nection between resources of interest to them. Discovering the least congested end-to-
end path to distributed resources is important for optimizing network utilization. There-
fore, users and application designers need tools and methodologies to monitor network
conditions and to rationalize their performance expectations.

Several network characteristics related to performance are measured in bits per sec-
ond: capacity, available bandwidth, bulk transfer capacity, and achievable TCP through-
put. Although these metrics appear similar, they are not, and knowing one of them does
not generally imply that one can say anything about others. Prasad et al. [1] provide rig-
orous definitions of terms used in the field, survey underlying techniques and method-
ologies, and list open source measurement tools for each of the above metrics.

By definition [1], end-to-end capacity of a path is determined by the link with the
minimum capacity (narrow link). End-to-end available bandwidth of a path is deter-
mined by the link with the minimum unused capacity (tight link). In this study our goal
is to test and compare tools that claim to measure the available end-to-end bandwidth
(Table 1). We did not test tools that measure end-to-end capacity.

Candidate bandwidth estimation tools face increasingly difficult measurement chal-
lenges as link speeds increase and network functionality grows more complex. Consider
the issue of time precision: on faster links, intervals between packets decrease, render-
ing packet probe measurements more sensitive to timing errors. The nominal 1 µs res-
olution of UNIX timestamps is acceptable when measuring 120 µs gaps between 1500
B packets on 100 Mb/s links but insufficient to quantify packet interarrival time (IAT)



Table 1. Available bandwidth estimation tools.

Tool Author Methodology

abing Navratil [2] packet pair
cprobe Carter [3] packet trains
IGI Hu [4] SLoPS
netest Jin [5] unpublished
pathchirp Ribeiro [6] chirp train
pipechar Jin [7] unpublished
pathload Jain [8] SLoPS
Spruce Strauss [9] SLoPS

variations of 12 µs gaps on GigE links. Available bandwidth measurements on high-
speed links stress the limits of clock precision especially since additional timing errors
may arise due to the NIC itself, the operating system, or the Network Time Protocol
(designed to synchronize clocks of computers over a network) [10].

Several other problems may be introduced by network devices and configurations.
Interrupt coalescence improves network packet processing efficiency, but breaks end-
to-end tools that assume uniform per packet processing and timing [11]. Hidden Layer
2 store-and-forward devices distort an end-to-end tool’s path hop count, resulting in
calculation errors [12]. MTU mismatches impede measurements by artificially limit-
ing path throughput. Modern routers that relegate probe traffic to a slower path or im-
plement QoS mechanisms may also cause unanticipated complications for end-to-end
probing tools. Concerted cooperative efforts of network operators, researchers and tool
developers can resolve those (and many other) network issues and advance the field of
bandwidth measurement.

While accurate end-to-end measurement is difficult, it is also important that band-
width estimation tools be fast and relatively unintrusive. Otherwise, answers are wrong,
arrive too late to be useful, or the end-to-end probe may itself interfere with the network
resources that the user attempts to measure and exploit.

1.1 Related Work

Coccetti and Percacci [13] tested Iperf, pathrate, pipechar and pathload on a low speed
(≤ 4 Mb/s) 3 or 4 hop topology, with and without cross-traffic. They found that tool
results depend strongly on the configuration of queues in the routers. They concluded
that in a real network environment, interpreting tool results requires considerable care,
especially if QoS features are present in the network.

Strauss et al. [9] introduced Spruce, a new tool to measure available bandwidth,
and compared it to IGI and pathload. They used SNMP data to perform an absolute
comparison on two end-to-end paths that both had their tight and narrow links at 100
Mb/s. They also compared the relative sensitivity of the tools on 400 paths in the RON
and PlanetLab testbeds. The authors found that IGI performs poorly at higher loads,
and that Spruce was more accurate than pathload.

Hu and Steenkiste [4] explored the packet pair mechanism for measuring available
bandwidth and presented two measurement techniques, IGI and PTR. They tested their
methods on 13 Internet paths with bottleneck link capacities of ≤ 100 Mb/s and com-
pared the accuracies to pathload using the bulk data transmission rate (Iperf ) as the



benchmark. On some paths all three tools were in agreement with Iperf, while on oth-
ers the results fluctuated. Since the authors did not have any information about true
properties and state of the paths, the validity of their results is rather uncertain.

Finally, Ubik et al. [14] ran ABwE (a predecessor to abing) and pathload on two
paths on the GEANT network, obtaining one month of hourly measurements. The mea-
sured paths consisted of at least 10 routers, all with GigE or OC-48 links. Measurements
from both tools did not agree. These preliminary results await further analysis.

Our study takes one step further the testing and comparing publicly available tools
for available bandwidth estimation. First, we considered and evaluated a larger number
of tools than previous authors. Second, we conducted two series of reproducible labora-
tory tests in a fully controlled environment using two different sources of cross-traffic.
Third, we experimented on high-speed paths in real networks where we had a complete
knowledge of link capacities and had access to SNMP counters for independent cross-
traffic verification. We compare the accuracy and other operational characteristics of
the tools, and analyze factors impacting their performance.

2 Testing Methodology
From Table 1 we selected the following tools for this study: abing, pathchirp, pathload,
and Spruce. For comparison we also included Iperf [15] which measures achievable
TCP throughput. Iperf is widely used for end-to-end performance measurements and
has become an unofficial standard [16] in the research networking community.

We were unable to test cprobe [3] because it only runs on an SGI Irix platform
and we do not have one in our testbed. We did not include netest in this study since in
our initial tests this tool inconsistently reported different metrics on different runs and
different loads. We excluded pipechar [7] after tests on 100 Mb/s paths and IGI [4]
after tests on 1 Gb/s paths since they were unresponsive to variations in cross-traffic.

2.1 Bandwidth Estimation Testbed

In collaboration with the CalNGI Network Performance Reference Lab [17], CAIDA
researchers developed an isolated high-speed testbed that can be used as a reference
center for testing bandwidth estimation tools. This resource allows us to test band-
width estimation tools against known and reproducible cross-traffic scenarios and to
look deeply into internal details of tools operation. We also attempt to offer remote
access to the lab to tool developers wishing to further refine and enhance their tools.

In our current testbed configuration (Figure 1), all end hosts are connected to switches
capable of handling jumbo MTUs (9000 B). Three routers in the testbed end-to-end
path are each from a different manufacturer. Routers were configured with two separate
network domains (both within private RFC1918 space) that route all packets across a
single backbone. An OC48 link connects a Juniper M20 router with a Cisco GSR 12008
router, and a GigE link connects the Cisco with a Foundry BigIron 10 router. We use
jumbo MTUs (9000 B) throughout our OC48/GigE configuration in order to support
traffic flow at full line speed [18].

Bandwidth estimation tools run on two designated end hosts each equipped with
a 1.8 GHz Xeon processor, 512 MB memory, and an Intel PRO/1000 GigE NIC card
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Fig. 1. Bandwidth Estimation Testbed. The end-to-end path being tested traverses three routers
and includes OC48 and GigE links. Tool traffic occurs between designated end hosts in the upper
part of this figure. Cross-traffic is injected either by additional end hosts behind the jumbo-MTU
capable GigE switches or by the Spirent SmartBits 6000 box (lower part of figure). Passive mon-
itors tap the path links as shown to provide independent measurement verification.

installed on a 64b PCI-X 133 MHz bus. The operating system is the CAIDA reference
FreeBSD version 4.8.

Our laboratory setup also includes dedicated hosts that run CoralReef [19] and Ne-
TraMet [20] passive monitor software for independent verification of tool and cross-
traffic levels and characteristics. Endace DAG 4.3 network monitoring interface cards
on these hosts tap the OC-48 and GigE links under load. CoralReef can either analyze
flow characteristics and packet IATs in real time or capture header data for subsequent
analysis. The NeTraMet passive RTFM meter can collect packet size and IAT distribu-
tions in real time, separating tool traffic from cross-traffic.

2.2 Methods of Generating Cross-traffic

The algorithms used by bandwidth estimating tools make assumptions about character-
istics of the underlying cross-traffic. When these assumptions do not apply, tools cannot
perform correctly. Therefore, test traffic must be as realistic as possible with respect to
its packet IAT and size distributions.

In our study we conducted two series of laboratory tool tests using two different
methods of cross-traffic generation. These methods are described below.

Synthetic Cross-traffic Spirent Communications SmartBits 6000B [21] is a hard-
ware system for testing, simulating and troubleshooting network infrastructure and per-
formance. It uses the Spirent SmartFlow [22] application that enables controlled traffic
generation for L2/L3 and QoS laboratory testing.

Using SmartBits and SmartFlow we can generate pseudo-random, yet reproducible
traffic with accurately controlled load levels and packet size distributions. This traffic



generator models pseudo-random traffic flows where the user sets the number of flows
in the overall load and the number of bytes to send to a given port/flow before moving
on to the next one (burst size). The software also allows the user to define the L2 frame
size for each component flow. The resulting synthetic traffic emulates realistic protocol
headers. However, it does not imitate TCP congestion control and is not congestion-
aware.

In our experiments we varied traffic load level from 100 to 900 Mb/s which cor-
responds to 10-90% of the narrow GigE link capacity. At each load level, SmartFlow
generated nineteen different flows. Each flow had a burst size of 1 and consisted of ei-
ther 64, 576, 1510 or 8192 byte L2 frames. The first three sizes correspond to the most
common L2 frame sizes observed in real network traffic [23]. We added the jumbo
packet component because high-speed links must employ jumbo MTUs in order to
push traffic levels to line saturation. While [23] data suggest a tri-modal distribution of
small/medium/large frames in approximately 60/20/20% proportions, we are not aware
of equivalent published packet-size data for links where jumbo MTUs are enabled. We
mixed the frames of four sizes in equal proportions.

Packet IATs (Figure 2(a)) ranged from 4 to more than 400 µs. We used passive
monitors CoralReef and NeTraMet to verify the actual load level of generated traffic
and found that it matched the requirements within 1-2%.
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Fig. 2. SmartBits and tcpreplay cross-traffic packet inter-arrival times.

Playing back traces of the real traffic. We replayed previously captured and anonymized
traffic traces on our laboratory end-to-end path using a tool tcpreplay [24]. This method
of cross-traffic generation reproduces actual IAT and packet size distributions but is not
congestion-aware. The playback tool operated on two additional end hosts (separate
from the end hosts running bandwidth estimation tools) and injected the cross-traffic
into the main end-to-end path via GigE switches.

We tested bandwidth estimation tools using two different traces as background
cross-traffic:

– a 6-minute trace collected from a 1 Gb/s backbone link of a large university with
approximately 300-345 Mb/s of cross-traffic load;



– a 6-minute trace collected from a 2.5 Gb/s backbone link of a major ISP showing
approximately 100-200 Mb/s of cross-traffic load.

Neither trace contained any jumbo frames. Packet sizes exhibited a tri-modal distri-
bution as in [23]. Packet IATs (Figure 2(b)) ranged from 1 to 60 µs.

We used CoralReef to continuously measure tcpreplay cross-traffic on the labora-
tory end-to-end path and recorded timestamps of packet arrivals and packet sizes. We
converted this information into timestamped bandwidth readings and compared them to
concurrent tool estimates. Both traces exhibited burstiness on microsecond time scales,
but loads were fairly stable when aggregated over one-second time intervals.

3 Tool Evaluation Results
In this section we present tool measurements in laboratory tests using synthetic, non-
congestion-aware cross-traffic with controlled traffic load (SmartFlow) and captured
traffic traces with realistic workload characteristics (tcpreplay). In Section 4 we show
results of experiments on real high-speed networks.

3.1 Comparison of Tool Accuracy

Experiments with Synthesized Cross-traffic. We used the SmartBits 6000B device
with the SmartFlow application to generate bi-directional traffic loads, varying from
10% to 90% of the 1 Gb/s end-to-end path capacity in 10% steps. We tested one tool at
a time. In each experiment, the synthetic traffic load ran for six minutes. To avoid any
edge effects, we delayed starting the tool for several seconds after initiating cross-traffic
and ran the tool continuously for five minutes. Figure 3 shows the average and standard
deviation of all available bandwidth values obtained during these 5 minute intervals for
each tool at each given load.

Our end-to-end path includes three different routers with different settings. To check
whether the sequence of routers in the path affects the tool measurements, we ran tests
with synthesized cross-traffic in both directions. We observed only minor differences
between directions. The variations are within the accuracy range of the tools and we
suspect are due to different router buffer sizes.

We found that abing (Figure 3a) reports highly inaccurate results when available
bandwidth drops below 600 Mb/s (60% on a GigE link). Note that this tool is currently
deployed on the Internet End-to-End Performance Monitoring (IEPM) measurement
infrastructure [25] where the MTU size is 1500 B, while our high-speed test lab uses a
jumbo 9000 B MTU. We attempted to change abing settings to work with its maximum
8160 B probe packet size, but this change did not improve its accuracy.

We looked into further details of abing operating on an empty GigE path. The tool
continuously sends back-to-back pairs of 1478 byte UDP packets with a 50 ms wait-
ing interval between pairs. abing derives estimates of available bandwidth from the
amount of delay introduced by the ”network” between the paired packets. abing puts a
timestamp into each packet, and the returned packet carries a receiver timestamp. Com-
puting the packet IAT does not require clock synchronization since it is calculated as
a difference between timestamps on the same host. Since these timestamps have a µs
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Fig. 3. Comparison of available bandwidth measurements on a 4-hop OC48/GigE path loaded
with synthesized cross-traffic. For each experimental point, the x-coordinate is the actual avail-
able bandwidth of the path (equal to the GigE link capacity of 1000 Mb/s minus the generated
load). The y-coordinate is the tool reading. Measurements of the end-to-end path in both direc-
tions are shown. The dash-dotted line shows expected value from SmartBits setting.

granularity, the IAT computed from them is also an integer number of µs. For back-
to-back 1500 B packets on an empty 1 Gb/s link (12 Kbits transmitted at 1 ns per bit)
the IAT is between 11 and 13 µs, depending on rounding error. However, we observed
that every 20-30 packets the IAT becomes 244 µs. This jump may be a consequence of
interrupt coalescence or a delay in some intermediate device such as a switch. The aver-
age IAT then changes to more than 20 µs yielding a bit rate of less than 600 Mb/s. This
observation explains abing results: on an empty 1 Gb/s tight link it reports two discrete
values of available bandwidth, the more frequent one of 890-960 Mb/s and occasional
drops to 490-550 Mb/s. This oscillating behavior is clearly observed in time series of
abing measurements (Figure 4) described below.

Another tool, Spruce (Figure 3d), uses a similar technique and, unsurprisingly, its
results are impeded by the same phenomenon. Spruce sends 14 back-to-back 1500 B
UDP packet pairs with a waiting interval of 160-1400 ms between pair probes (depend-
ing on some internal algorithm). In Spruce measurements, 244 µs gaps between packet
pairs occur randomly between normal 12 µs gaps. Since the waiting time between pairs
varies without pattern, the reported available bandwidth also varies without pattern in
the 300-990 Mb/s range.

Results of our experiments with abing and Spruce on high-speed links caution that
tools utilizing packet pair techniques must be aware of delay quantization possibly
present in the studied network. Also, 1500-byte frames and microsecond timestamp
resolution are simply not sensitive enough for probing high-speed paths.

In SmartBits tests, estimates of available bandwidth by pathchirp are 10-20% higher
than the actual value determined from SmartBits settings (Figure 3b). This consistent
overestimation persists even when there is no cross-traffic. On an empty 1 Gb/s path
this tool yields values up to 1100 Mb/s. We have as yet no explanation for this behavior.



We found that results of pathload were the most accurate (Figure 3c). The discrep-
ancy between its readings and actual available bandwidth was <10% in most cases.

The last tested tool, Iperf, estimates not the available bandwidth, but the achievable
TCP throughput. We ran Iperf with the maximum buffer size of 227 KB and found it
to be accurate within 15% or better (Figure 4e). Note that a smaller buffer size setting
significantly reduces the Iperf throughput. This observation appears to contradict the
usual rule of thumb that the optimal buffer size is the product of bandwidth and delay,
which in our case would be (109 b/s) x (10−4 s) ∼ 12.5 KB. Dovrolis et al. discuss this
phenomenon in [26].

Experiments with trace playbacks. The second series of laboratory tests used pre-
viously recorded traces of real traffic. For these experiments we extracted six-minute
samples from longer traces to use as a tcpreplay source. As in SmartBits experiments,
in order to avoid edge effects we delayed the tool start for a few seconds after starting
tcpreplay and ran each tool continuously for five minutes.

Figure 4 plots a time series of the actual available bandwidth, obtained by comput-
ing the throughput of the trace at a one-second aggregation interval and subtracting that
from the link capacity of 1 Gb/s. Time is measured from the start of the trace. We then
plot every value obtained by a given tool at the time it was returned.

As described in Section 2.2, we performed tcpreplay experiments with two different
traces. We present tool measurements of the University backbone trace, which produced
a load of about 300 Mb/s leaving about 700 Mb/s of available bandwidth. The tool
behavior when using the ISP trace with a load of about 100 Mb/s was similar and is not
shown here.

In tests with playback of real traces, abing and Spruce exhibit the same problems
that plagued their performance in experiments with synthetic cross-traffic. Figure 4a
shows that abing returned one of two values, neither of which was close to the expected
available bandwidth. Spruce results (Figure 4d) continued to vary without pattern.

pathchirp measurements (Figure 4b) had a startup period of about 70 s when the
tool returned only a constant value. The length of this period is related to the tool’s
measurement algorithm and depends on the number of chirps and chirp packet size
selected for the given tool run. After the startup phase, pathchirp’s values alternate
within 15-20% of the actual available bandwidth.

The range reported by pathload (Figure 4c) slightly underestimates the available
bandwidth by <16%.

Iperf reports surprisingly low results when run against tcpreplay traffic (Figure 4e).
Two factors are causing this gross underestimation: packet drops requiring retransmis-
sion and a too long retransmission timeout of 1.2 s (default value). In the experiment
shown, the host running Iperf and the host running tcpreplay were connected to the
main end-to-end path via a switch. We checked the switch’s MIB for discarded packets
and discovered a packet loss of about 1% when the tool and cross-traffic streams merge.
Although the loss appears small, it causes Iperf to halve its congestion window and trig-
gers a significant number of retransmissions. The default retransmission timeout is so
large it consumes up to 75% of the Iperf running time. Decreasing the retransmission
timeout to 20 ms and/or connecting the tcpreplay host directly to the path bypassing the
switch considerably improves Iperf ’s performance. Note that we were able to reproduce
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Fig. 4. Comparison of available bandwidth tool measurements on a 4-hop OC48/GigE path loaded
with played back real traffic. The X-axis shows time from the beginning of trace playback. The
Y -axis is the measured available bandwidth reported by each tool. The dotted line shows the
actual available bandwidth that was very stable on a one-second aggregation scale.

the degraded Iperf performance in experiments with synthetic SmartBits traffic when
we flooded the path with a large number of small (64 B) packets. These experiments
confirm that ultimately the TCP performance in the face of packet loss strongly depends
on the OS retransmission timer.

3.2 Comparison of Tool Operational Characteristics

We considered several parameters that may potentially affect a user’s decision regard-
ing which tool to use: measurement time, intrusiveness, and overhead. We measured
all these characteristics in experiments with SmartBits synthetic traffic where we can
stabilize and control the load.

We define tool measurement time to be the average measurement time of all runs at
a particular load level. On our 4-hop OC-48/GigE topology, the observed measurement
durations were: 1.3 s for abing, 11 s for Spruce, 5.5 s for pathchirp, and 10 s for Iperf
independent of load. The pathload measurement time generally increased when the
available bandwidth decreased, and ranged between 7 and 22 s.

We define tool intrusiveness as the ratio of the average tool traffic rate to the avail-
able bandwidth, and tool overhead as the ratio of tool traffic rate to cross-traffic rate
(Figure 3.2). pathchirp, abing, and Spruce have low overhead, each consuming less
than 0.2% of the available bandwidth on the GigE link and introducing practically no
additional traffic into the network as they measure. pathload intrusiveness is between 3
and 7%. Its overhead slightly increases with the available bandwidth (that is, when the
cross-traffic actually decreases) and reaches 30% for the 10% load. As expected, Iperf



200 400 600 800
Actual Bandwidth (Mb/s)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

R
at

io
 o

f 
T

oo
l T

ra
ff

ic
 to

 C
ro

ss
-T

ra
ff

ic

Iperf
pathload
pathchirp
abing
Spruce

Fig. 5. Tool overhead vs. available bandwidth. Note that pathchirp, abing, and Spruce exhibit
essentially zero overhead.

is the most expensive tool both in terms of its intrusiveness (74-79%) and overhead
costs. Since it attempts to occupy all available bandwidth, its traffic can easily exceed
the existing cross-traffic.

4 Real World Validation
Comparisons of bandwidth estimation tools have been criticized for their lack of vali-
dation in the real world. Many factors impede if not prohibit comprehensive testing of
tools on production networks. First, network conditions and traffic levels are variable
and usually beyond the experimenters’ control. This uncertainty prevents unambigu-
ous interpretation of experimental results and renders measurements unreproducible.
Second, a danger that tests may perturb or even disrupt the normal course of network
operations makes network operators reluctant to participate in any experiments. Only
close cooperation between experimenters and operators can overcome both obstacles.

We were able to complement our laboratory tests with two series of experiments in
the real world. In both setups, the paths we measured traversed exclusively academic,
research and government networks.

Experiments on the Abilene Network. We carried out the available bandwidth
measurements on a 6 hop end-to-end path from Sunnyvale to Atlanta on the Abilene
Network. Both end machines had a 1 Gb/s connection to the network and sourced no
traffic except from running our tools. The rest of links in the path had either 2.5 or 10
Gb/s capacities.

We chose not to test Spruce on the Abilene Network since this tool performed poorly
in our laboratory experiments3. We ran pathload, pathchirp, abing, and Iperf for 5 min
each, in that order, back-to-back. We concurrently polled the SNMP 64-bit InOctect
counters for all routers along the path every 10 s and hence knew the per-link utilization
with 10 s resolution. We calculated the per-link available bandwidth as the difference

3 We tested Spruce in the other series of real network experiments, see subsection on SDSC-
ORNL paths below
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between link capacity and utilization. The end-to-end available bandwidth is the min-
imum of per-link available bandwidths. During our experiments, the Abilene network
did not have enough traffic on the backbone links to bring their available bandwidth
below 1 Gb/s. Therefore, the end machines’ 1Gb/s connections were both narrow and
tight links in our topology.

Figure 4 shows our tool measurements and SNMP-derived available bandwidth.
Measurements with pathload, pathchirp, and Iperf are reasonably accurate, while abing
readings wildly fluctuate in the whole range between 0 and 1000 Mb/s.

The discrepancy between Iperf measurements and SNMP-derived values reflects
tool design: Iperf generates large overhead (>70%) because it intentionally attempts
to fill the tight link. Consequent readings of SNMP counters indicate how many bytes
traversed an interface of a router during that time interval. They report total number of
bytes without distinguishing tool traffic from cross-traffic. If a tool’s overhead is high,
then available bandwidth derived from SNMP data during this tool run is low. At the
same time, since tools attempt to measure available bandwidth ignoring their own traf-
fic, a high-overhead tool will report more available bandwidth than SNMP. Therefore,
Iperf shows a correct value of achievable TCP throughput of ∼950 Mb/s while concur-
rent SNMP counters account for Iperf ’s own generated traffic, and thus yield less than
200 Mb/s of available bandwidth. A smaller discrepancy between pathload and SNMP
results reflects pathload’s overhead (∼10% per our lab tests).

Experiments on SDSC-ORNL paths. In the second series of real-world exper-
iments we tested abing, pathchirp, pathload, and Spruce between our host at SDSC
(running CAIDA reference FreeBSD version 4.8) and a host at Oak Ridge National
Lab (running Red Hat Linux release 9 with a 2.4.23 kernel and Web100 patch [27]).
These experiments are of limited value since we did not have concurrent SNMP data
for comparison with our results. However, we had complete information about link ca-
pacities along the paths which at least allows us to distinguish plausible results from
impossible ones. We include these experiments since they present first insights into the
interplay between the probing packet size and the path MTU.



The two paths we measured are highly asymmetric. The SDSC-ORNL path crosses
CENIC and ESNet, has a narrow link capacity of 622 Mb/s (OC12) and MTU of 1500
bytes. The ORNL-SDSC path crosses Abilene and CENIC, has a narrow link capacity
of 1 Gb/s and supports 9000-byte packets end-to-end. Both paths remained stable over
the course of our experiments and included OC12, GigE, 10 GigE, and OC192 links.
Under most traffic scenarios, it seems highly unlikely for the 10 Gb/s links to have less
than 1 Gb/s of available bandwidth. Lacking true values of available bandwidth from
SNMP counters for absolute calibration of tool results, we assume that the narrow link
is also the tight link in both our paths.

Table 2. Summary of wide-area bandwidth measurements (“f”= produced no data).

Direction Path Capacity, Probe Packet Tool readings (Mb/s)
MTU Size abinga pathchirp pathload Spruce

SDSC to 622 Mb/s (OC12), 1500 178 / 241 543 >324 296
ORNL 1500 9000 f / 664 f 409 – 424 0

ORNL to 1000 Mb/s (GigE), 1500 727 / 286 807 >600 516
SDSC 9000 9000 f / 778 816 846 807

a Sender at SDSC for 1st value and at ORNL for 2nd value.

We ran each tool using either 1500 or 9000 byte packets. abing, pathchirp, and
pathload support large probe packet size as an option4. Spruce uses a hardcoded packet
size of 1500 bytes; we had to trivially modify the code to increase the packet size to
9000 B. Table 2 summarizes our results while a detailed description is available in [28].

abing has a sender module on one host and a reflector module on the other host
and measures available bandwidth in both directions at once. We found that its behav-
ior changed when we switched the locations of sender and reflector. abing with 9000
B packets did not return results from SDSC to ORNL (“f” in Table 2). We could see
that the ORNL host was receiving fragmented packets, but the abing reflector was not
echoing packets. In the opposite direction, from ORNL to SDSC, abing with 9000 B
packets overestimates the available bandwidth for the OC12 path (reports 664 Mb/s
on 622 Mb/s capacity). Note that almost the factor of 3 difference in GigE path mea-
surements with 1500 B packets (727 and 286 Mb/s) may be due to different network
conditions since these tests occurred on different days.

pathchirp produced results on both paths when run with 1500 B packets and on the
GigE path with 9000 B packets, but failed on the OC12 path with large packets. There
does not appear to be any significant advantage to using large packets over small ones.
Variations between consequent measurements with the same packet size are sometimes
greater than the difference between using large and small packets.

In tests with 1500 B packets, on both paths pathload reports that results are limited
by the maximum host sending rate. With 9000 B packets, this tool yielded available
bandwidth estimates for both paths, but issued a warning “actual probing rate [does not
equal] desired probing rate” for the OC12 path.

4 The abing reflector has a hardcoded packet size of 1478 bytes.



Spruce performed poorly in experiments with small packets from SDSC to ORNL,
reporting wildly fluctuating values of available bandwidth. Tests with 9000 B packets
in this direction always produced 0 Mb/s. However, in the ORNL to SDSC direction,
its readings were more consistent and on par with other tools.

We suspect that fragmentation is responsible for most of the problems when probing
packet size and path MTU mismatch. While using large packets to measure high-speed
links is beneficial, more work is necessary to consistently support large packets and to
reduce failures and inaccuracies stemming from fragmentation.

5 Conclusions and Future Work
Our study is the first comprehensive evaluation of publicly available tools for available
bandwidth estimation on high-speed links. We conducted testing in the lab and over
research networks. We found that pathload and pathchirp are the most accurate tools
under conditions of our experiments.

Iperf performs well on high-speed links if run with its maximum buffer window
size. Even small (∼1%) but persistent amounts of packet loss seriously degrade its per-
formance. Too conservative settings of the OS retransmission timer further exacerbate
this problem.

Results of our experiments with abing and Spruce caution that tools utilizing packet
pair techniques must be aware of delay quantization possibly present in the studied net-
work. Also, 1500 byte frames and microsecond timestamp resolution are not sensitive
enough for probing high-speed paths.

Despite the revealed problems, experimenting with available bandwidth estimating
tools using large packets is worthwhile, considering the importance of using large pack-
ets on high-speed links.

We demonstrated how our testbed can be used to evaluate and compare end-to-
end bandwidth estimation tools against reproducible cross-traffic in a fully controlled
environment. Several bandwidth estimation tool developers have taken advantage of
our offer of remote access to the testbed to conduct their own tests. We plan to use what
we have learned from our testing methodology to conduct monitoring efforts on both
research and commodity infrastructure.
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