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Abstract. The development of veracious models of the Internet topol-
ogy has received a lot of attention in the last few years. Many proposed
models are based on topologies derived from RouteViews [1] BGP table
dumps (BTDs). However, BTDs do not capture all AS–links of the Inter-
net topology and most importantly the number of the hidden AS–links
is unknown, resulting in AS–graphs of questionable quality. As a first
step to address this problem, we introduce a new AS–topology discovery
methodology that results in more complete and accurate graphs. More-
over, we use data available from existing measurement facilities, circum-
venting the burden of additional measurement infrastructure. We deploy
our methodology and construct an AS–topology that has at least 61.5%
more AS–links than BTD–derived AS–topologies we examined. Finally,
we analyze the temporal and topological properties of the augmented
graph and pinpoint the differences from BTD–derived AS–topologies.

1 Introduction

Knowledge of the Internet topology is not merely of technological interest, but
also of economical, governmental, and even social concern. As a result, discovery
techniques have attracted substantial attention in the last few years. Discovery
of the Internet topology involves passive or active measurements to convey infor-
mation regarding the network infrastructure. We can use topology abstraction to
classify topology discovery techniques into the following three categories: AS–,
IP– and LAN–level topology measurements. In the last category, SNMP–based
as well as active probing techniques construct moderate size networks of bridges
and end-hosts. At the IP–level (or router–level), which has received most of the
research interest, discovery techniques rely on path probing to assemble WAN
router–level maps [2–4]. Here, the two main challenges are the resolution of IP
aliases and the sparse coverage of the Internet topology due to the small number
of vantage points. While the latter can be ameliorated by increasing the number
of measurement points using overlay networks and distributed agents [5–7], the
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former remains a daunting endeavor addressed only partially thus far [8,9]. AS–
level topology discovery has been the most straightforward, since BGP routing
tables, which are publicly available in RouteViews (RV) [1], RIPE [10] and sev-
eral other Route Servers [11], expose parts of the Internet AS–map. However,
the discovery of the AS–level topology is not as simple as it appears.

The use of BTDs to derive the Internet AS–level topology is a common
method. Characteristically, the seminal work by Faloutsos et al. [12] discovered
a set of simple power–law relationships that govern AS–level topologies derived
from BTDs. Several followup works on topology modeling, evolution modeling
and synthetic topology generators have been based on these simple power–law
properties [13–15]. However, it is well–known among the research community
that the accuracy of BTD–derived topologies is arguable. First, a BGP table
contains a list of AS–paths to destination prefixes, which do not necessarily
unveil all the links between the ASs. For example, assume that the Internet
topology is a hypothetical full mesh of size n, then from a single vantage point,
the shortest paths to every destination would only reveal n − 1 of the total
n(n−1)/2 links. In addition, BGP policies limit the export and import of routes.
In particular, prefixes learned over peering links3 do not propagate upwards
in the customer-provider hierarchy. Consequently, higher tier ASs do not see
peering links between ASs of lower tiers. This is one reason BTD–based AS–
relationships inference heuristics [16] find only a few thousands of peering links,
while the Internet Routing Registries reveal tens of thousands [17]. Lastly, as
analyzed comprehensively in [18], RV servers only receive partial views from its
neighboring routers, since the eBGP sessions filter out backup routes.

The accuracy of AS–level topologies has been considered previously. In [19]
Chang et al. explore several diverse data sources, i.e. multiple BTDs, Looking
Glass servers and Internet Routing Registry (IRR) databases, to create a more
thorough AS–level topology. They report 40% more connections than a BTD-
derived AS–map and find that the lack of connectivity information increases for
smaller degree ASs. Mao et al. [20] develop a methodology to map router–graphs
to AS–graphs. However they are more concerned with the methodology rather
then the properties of the resulting AS–graph. Finally, in [21] Andersen et al.

explore temporal properties of BGP updates to create a correlation graph of
IP prefixes and identify clusters. The clusters imply some topological proximity,
however their study is not concerned with the AS–level topology, but rather with
the correlation graph.

Our methodology is based on exploiting BGP dynamics to discover additional
topological information. In particular we accumulate the AS–path information
from BGP updates seen from RV to create a comprehensive AS–level topol-
ogy. The strength of our approach relies on a beneficial side–effect of the prob-
lematic nature of BGP convergence process. In the event of a routing change,
the so-called “path exploration” problem, [22], results in superfluous BGP up-
dates, which advertise distinct backup AS–paths of increasing length. Labovitz

3 “Peering links” refers to the AS–relationship, in which two ASs mutually exchange
their customers’ prefixes free of charge.
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et al. [22] showed that there can be up to O(n!) superfluous updates during BGP
convergence. We analyze these updates and find that they uncover a substantial
number of new AS–links not seen previously. To illustrate this process, consider
the simple update sequence in Table 1, which was found in our dataset. The
updates are received from a RV neighbor in AS10876 and pertain to the same
prefix. The neighbor initially sends a withdrawal for the prefix 205.162.1/24,
shortly after an update for the same prefix that exposes the unknown to that
point AS–link 2828–14815, and finally an update for a shorter AS–path, in which
it converges. The long AS–prepending in the first update shows that the adver-
tised AS–path is a backup path not used at converged state. We explore the
backup paths revealed during the path exploration phenomenon and discover
61.5% more AS–links not present in BTDs.

Table 1. Example of a simple BGP–update sequence that unveils a backup AS–link
(2828 14815) not seen otherwise.

Time AS–path Prefix

2003-09-20 12:13:25 (withdrawal) 205.162.1/24

2003-09-20 12:13:55 10876-1239-2828-14815-14815-14815-14815-14815 205.162.1/24

2003-09-20 12:21:50 10876-1239-14815 205.162.1/24

2 Methodology

Our dataset is comprised of BGP updates collected between September 2003
and August 2004 from the RV router route-views2.oregon-ix.net. The RV
router has multihop BGP sessions with 44 BGP routers and saves all received
updates in the MRT format [1]. After converting the updates to ASCII format,
we parse the set of AS–paths and mark the time each AS–link was first observed,
ignoring AS–sets and private AS numbers. There are more than 875 million an-
nouncements and withdrawals, which yield an AS–graph, denoted as G12, of
61,134 AS–links and 19,836 nodes. Subscript 12 in the notation G12 refers to the
number of months in the accumulation period. To quantify the extent of addi-
tional information gathered from updates, we collect BTDs from the same RV
router on the 1st and 15th of each month between September 2003 and August
2004. For each BTD we count the number of unique AS–links, ignoring AS–sets
and private AS–numbers for consistency. Figure 1 illustrates the comparison.
The solid line plots the cumulative number of unique AS–links over time, seen
in BGP updates. Interestingly, after an initial super–linear increase, the number
of additional links grows linearly, much faster than the corresponding increase
observed from the BTDs. At the end of the observation window, BGP updates
have accumulated an AS–graph that has 61.5% more links and 10.2% more nodes
than the largest BTD–derived graph GBTD

12
, which was collected on 08/15/2004.
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The notable disparity suggests that the real Internet AS topology may be dif-
ferent from what we currently observe from BTD–derived graphs, and merits
further investigation. To gain more insight in the new information we analyze
the temporal and topological properties of the AS–connectivity.
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Fig. 1. Number of unique AS–links observed in BGP updates vs BTDs.

3 Temporal Analysis of Data

Identifying temporal properties of the AS–connectivity observed from BGP up-
dates is necessary to understand the interplay between the observation of AS–
links and BGP dynamics. In particular, we want to compare the temporal prop-
erties of AS–links present in BTDs with AS–links observed in BGP updates. To
do so, we first introduce the concept of visibility of a link from RV. We say that
at any given point in time a link is visible if RV has received at least one update
announcing the link, and the link has not been withdrawn or replaced in a later
update for the same prefix. A link stops been visible if all the prefix announce-
ments carrying the link have been withdrawn or reannounced with new paths
that do not use the link. We then define the following two metrics to measure
the temporal properties of AS–links:

1. Normalized Persistence (NP) of a link is the cumulative time for which a
link was visible in RV, over the time period from the first time the link was
seen to the end of the measurements.

2. Normalized Lifetime (NL) of a link is the time period from the first time to
the last time a link was seen, over the time period from the first time the
link was seen to the end of the measurements.
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Fig. 2. Distribution of Normalized Persistence and Normilized Lifetime of AS–links
seen between September 2003 and January 2004 in BGP updates.

The NP statistic represents the cumulative time for which a link was visible
in RV, while the NL represents the span from the beginning to the end of the
lifetime of the link. Both are normalized over the time period from the first time
a link was seen to the end of the measurements to eliminate bias against links
that were not seen from the beginning of the observation.

To calculate the NP and NL statistics, we replicate the dynamics of the RV
routing table using the BGP updates dataset. We implement a simple BGP
routing daemon that parses BGP updates and reconstructs the BGP routing
table keeping per–peer and per–prefix state as needed. Then for each link we
create an array of time intervals for which the link was visible and calculate the
NP and NL statistics. Unfortunately, the BGP updates cannot explicitly pinpoint
the event of a session reset between RV and its immediate neighbors. Detection
of session resets is necessary to flush invalid routing table entries learned from
the neighbor and to adjust the NP and NL statistics. We implement a detection
algorithm, described in the Appendix, to address the problem.

We measure the NP and NL statistics over a 5–month period, from Septem-
ber 2003 to January 2004, and plot their distributions in Figure 2. Figure 2(a)
demonstrates that NP identifies two strong modes in the visibility of AS–links.
At the lower end of the x axis, more than 5,000 thousand links have NP ≤ 0.2,
portraying that there is a significant number of links that only appear during
BGP convergence turbulence. At the upper end of the x axis, almost 35,000
links have an NP close to 1. The distribution 2(b) of the NL statistic is even
more modal, conveying that most of the links have a high lifetime span. At the
end of the 5–month period, BGP updates have accumulated a graph G5 that we
decompose into two parts. One subgraph, GBTD

5
, is the topology seen in a BTD

collected from RV at the end of the 5–month period and the second subgraph is
the remaining G5 − GBTD

5
. Table 2 shows the number of links with NP ≤ 0.2,
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0.2 < NP < 0.8 and NP ≥ 0.8 in GBTD
5

and in G5 − GBTD
5

. Indeed, only 0.2%
of the links in GBTD

5
have NP ≤ 0.2, demonstrating that BTDs capture only the

AS–connectivity seen at steady–state. In contrast, most links in G5−GBTD
5

have
NP ≤ 0.2, exhibiting that most additional links found with our methodology
appear during BGP turbulence.

Table 2. Normalized Persistence in GBTD

5 and G5 − GBTD

5 .

GBTD

5 G5 − GBTD

5

NP ≤ 0.2 65 (0.2%) 6891 (57.5%)

0.2 < NP < 0.8 1096 (3.2%) 1975 (16.5%)

NP ≥ 0.8 33141 (96.6%) 3119 (26.0%)

4 Topological Analysis of Data

Ultimately, we want to know how the new graph is different from the BTD
graphs, e.g. where the new links are located, and how the properties of the graph
change. A handful of graph theoretic metrics have been used to evaluate the
topological properties of the Internet. We choose to evaluate three representative
metrics of important properties of the Internet topology:

1. Degree Distribution of AS–nodes. The Internet graph has been shown to
belong in the class of power–law networks [12]. This property conveys the
organization principle that few nodes are highly connected.

2. Degree–degree distribution of AS–links. The degree–degree distribution of the
AS–links is another structural metric that describes the placement of the
links in the graph with respect to the degree of the nodes. More specifically,
it is the joint distribution of the degrees of the adjacent ASs of the AS–links.

3. Betweenness distribution of AS–links. The betweenness of the AS–links de-
scribes the communication importance of the AS–links in the graph. More
specifically, it is proportional to the number of shortest paths going through
a link.

One of the controversial properties of the Internet topology is that the de-
gree distribution of the AS–graph follows a simple power–law expression. This
observation was first made in [12] using a BTD–derived AS–graph, later dis-
puted in [23] using a more complete topology, and finally reasserted in [24] using
an augmented topology as well. Since our work discovers substantial additional
connectivity over the previous approaches, we re–examine the power–law form
of the AS–degree distribution. For a power–low distribution the complementary
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cumulative distribution function (CCDF) of the AS–degree is linear. Thus, after
plotting the CCDF, we can use linear regression to fit a line, and calculate the
correlation coefficient to evaluate the quality of the fit. Figure 3 plots the CCDF
of the AS–degree for the updates-derived graph, G12, and for the correspond-
ing BTD-derived graph, GBTD

12
. Due to the additional connectivity in G12, the

updates–derived curve is slightly shifted to the right of the GBTD
12

curve, without
substantial change in the shape. Figures 4 and 5 show the CCDF of the AS–
degree and the corresponding fitted line for G12 and GBTD

12
, accordingly. The

correlation coefficient for GBTD
12

is 0.9836, and in the more complete AS–graph
G12 it slightly decreases to 0.9722, which demonstrates that the AS–degree dis-
tribution in our updates–derived graph follows a power–law expression fairly
accurately.
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Fig. 3. CCDF of the AS–degree for the updates–derived AS–graph (G12) and the
largest BTD–derived AS–graph (GBTD

12 ).

We then examine the degree–degree distribution of the links. The degree–
degree distribution M(k1, k2) is the number of links connecting ASs of degrees
k1 and k2. Figure 6, compares the degree–degree distributions of the links in the
full G12 graph and of the links present only in updates, G12−GBTD

12
. The overall

structure of the two contourplots is similar, except for the differences in the areas
of links connecting low-degree nodes to low-degree nodes and links connecting
medium-degree nodes to medium-degree nodes (the bottom-left corner and the
center of the contourplots). The absolute number of such links in G12 − GBTD

12

is smaller than in G12, since G12 − GBTD
12

is a subgraph of G12. However, the
contours illustrate that the ratio of such links in G12−GBTD

12
to the total number

of links in G12 − GBTD
12

is higher than the corresponding ratio of links in G12.
Figure 7 depicts the contourplot of the ratio of the number of links in GBTD

12
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linear regression fitted line.
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over the number of links in G12 connecting ASs of corresponding degrees. The
dark region between 0.5 and 1.5 exponents on the x and y axes, signifies the
fact that BGP updates contain additional links, compared to BTDs, between
low and medium-degree ASs close to the periphery of the graph.
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Fig. 6. Degree–degree distributions of AS–links. The x and y axes show the logarithms
of the degrees of the nodes adjacent to a link. The color codes show the logarithm of
the number of the links connecting ASs of corresponding degrees.

Finally, we examine the link betweenness of the AS–links. In graph G(V, E),
the betweenness B(e) of link e ∈ E is defined as

B(e) =
∑

ij∈V

σij(e)

σij

,

where σij(e) is the number of shortest paths between nodes i and j going through
link e and σij is the total number of shortest paths between i and j. With this
definition, link betweenness is proportional to the traffic load on a given link
under the assumptions of uniform traffic distribution and shortest–path routing.
Figure 8 illustrates the betweenness distribution of G12 and of GBTD

12
and reveals

that our updates–constructed graph yields more links with small betweenness.
Links with small betweenness have lower communication importance in a graph
theoretic context, demonstrating that our methodology unveils backup links and
links used for local communication in the periphery of the graph.

Overall, our topological analysis shows that our augmented graph remains a
power-law network and has more links between low and medium–degree nodes
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and more links of lower communication importance compared to BTD–derived
graphs.

5 Conclusions

In this work we exploit the previously unharnessed topological information that
can be extracted from the most well–known and easily accessible source of Inter-
net interdomain routing data. We evidence that the Internet topology is vastly
larger than the common BTD–derived topologies and we show how an unde-
sired aspect of the interdomain architecture can be used constructively. We find
that our substantially larger AS–graph retains the power–law property of the
degree distribution. Finally, we show that our method discovers links of small
communication importance connecting low and medium–degree ASs, suggesting
AS–links used for backup purposes and local communication in the periphery of
the Internet.

Closing, we highlight that our work is a step forward showing a large gap
in our knowledge of the Internet topology. For this reason, we pronounce the
need to focus more on the perpetual problem of measuring Internet topology
before accepting far–reaching conclusions based on currently available AS–level
topology data, which are undeniable rich but substantially incomplete.
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APPENDIX

Detection of session resets

The problem of detection of BGP session resets has also been addressed by
others. In [25] Maennel et al. propose a heuristic to detect session resets on AS–
links in arbitrary Internet locations by monitoring BGP updates in RV. We are
concerned with a seemingly less demanding task: detection of session resets with
immediate neighbors of RV. Our algorithm is composed of two components. The
first detects surges in the BGP updates received from the same peer over a short
time window of s seconds. If the number of unique prefixes updated in s are
more than a significant percent p of the previously known unique prefixes from
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the same peer, then a session reset is inferred. The second component detects
periods of significant inactivity when a threshold t is passed from otherwise
active peers. We combine both approaches and set low thresholds (t = 4mins,
p = 80%, s = 4secs) to yield an aggressive session reset detection algorithm.
Then, we calculate NP and NL over a period of a month with and without
aggressive session reset detection enabled. We find that the calculated statistics
are virtually the same with less then 0.1% variation. Implying that the short
time scale of the lifetime of session resets does not affect the span of the NP and
NL statistics. Hence, we leave out the detection of session resets in the remaining
NP and NL measurements.


