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1. INTRODUCTION

In February of 2000, a series of massive denial-of-service (DoS) attacks incapaci-
tated several high-visibility Internet e-commerce sites, including Yahoo, Ebay, and
E*trade. Then, in January of 2001, Microsoft’s name server infrastructure was dis-
abled by a similar assault, the root DNS servers were targeted in 2002, and SCO’s
corporate Web site was incapacitated in late 2003. Indeed, over the last six years,
denial-of-service attacks against highly visible Internet sites or services have be-
come commonplace. However, the vast majority of attacks are not publicized and
include a wide range of global victims, from small commercial sites, to educational
institutions, public chat servers and government organizations. Many of these at-
tacks are undoubtedly motivated by mischief or spite, others are likely borne out
of religious, ethnic or political tensions and still others have been clearly focused
around commercial gains [Vijayan 2004; Poulsen 2004].

Unfortunately, while it is clear from these anecdotal reports that denial-of-service
attacks continue to be a problem, there is little quantitative data about the preva-
lence of these attacks nor any representative characterization of their behavior.
Worse, there are multiple obstacles hampering the collection of an authoritative
denial-of-service traffic dataset. In particular, service providers and content providers
consider such data sensitive and private. Moreover, even if it were allowed, mon-
itoring traffic at enough sites to obtain a representative measure of Internet-wide
attacks presents a significant logistical challenge. Consequently, the only contem-
porary public data we are aware of is an annual CSI/FBI survey study [Computer
Security Institute and Federal Bureau of Investigation 2004].1

We believe that a strong quantitative foundation is necessary both for under-
standing the nature of today’s threat and as a baseline for longer-term comparison
and analysis. Our paper seeks to answer the simple question: “How prevalent
are denial-of-service attacks in the Internet today?” As a means to this end, we
describe a traffic monitoring technique called “backscatter analysis” for estimating
the worldwide prevalence of denial-of-service attacks. Using backscatter analysis, we
have established the presence of roughly 2,000–3,000 active denial-of-service attacks
per week. Over a three-year period we have collected 22 distinct traces, revealing
68,700 attacks on over 34,700 distinct Internet hosts belonging to more than 5,300
distinct organizations. We are also able to estimate a lower-bound on the intensity
of such attacks — some of which are in excess of 100,000 packets-per-second (pps)
— and characterize the nature of the sites victimized.

The remainder of this paper is organized as follows: Section 2 describes the under-
lying mechanisms of denial-of-service attacks, Section 3 describes the backscatter
technique, and limitations arising from its assumptions, and Section 4 explains our
techniques for classifying attacks from monitored backscatter traffic. In Section 5
we describe our experimental platform and methodology, and present the results of
our study. Finally, in Sections 6 and 7 we cover related work and summarize our
findings.

1The relevant result from this study is that 39 percent of surveyed security professionals reported

experiencing denial-of-service attacks in 2004.
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2. BACKGROUND

Denial-of-service attacks consume the resources of a remote host or network that
would otherwise be used to serve legitimate users. There are two principal classes
of attacks: logic attacks and resource attacks. Attacks in the first class, such as the
“Ping-of-Death”, exploit existing software flaws to cause remote servers to crash or
substantially degrade in performance. Many of these attacks can be prevented by
either upgrading faulty software or filtering particular packet sequences, but they
remain a serious and ongoing threat. The second class, resource attacks, overwhelm
the victim’s CPU, memory, or network resources by sending large numbers of spu-
rious requests. Because there is typically no simple way to distinguish the “good”
requests from the “bad”, it can be extremely difficult to defend against resource
attacks. For the purposes of this study we focus solely on this latter class of attacks.

2.1 Attack types

There are two related consequences to a resource attack — the network load induced
and the impact on the victim’s CPU. To load the network, an attacker sends packets
as rapidly as possible towards the victim — hoping to overwhelm the capacity of
intervening network devices. Since many network devices are limited by packet
processing before bandwidth, packets-per-second is frequently a better measure of
network load during an attack.

An attacker often simultaneously attempts to load the victim’s CPU by requiring
additional processing above and beyond that required to receive a packet. For
example, the best known denial-of-service attack is the “SYN flood” [Computer
Emergency Response Team 1996], which consists of a stream of TCP SYN packets
directed to a listening TCP port at the victim. For each such SYN packet received,
the host victim must search through existing connections and if no match is found,
allocate a new data structure for the connection. Moreover, the number of these
data structures may be limited by the victim’s operating system. Consequently,
without additional protection, even a small SYN flood can overwhelm a remote host.
There are many similar attacks that exploit other code vulnerabilities including
TCP ACK, NUL, RST and DATA floods, IP fragment floods, ICMP Echo Request
floods, DNS Request floods, and so forth.

Finally, while most attacks target their victim directly, some sophisticated at-
tackers will implicitly attack sites by focusing on dependent infrastructure such as
upstream routers or back-end database servers.

2.2 Distributed attacks

While a single host can cause significant damage by sending packets at its maxi-
mum rate, attackers can (and do) mount more powerful attacks by combining the
resources of multiple hosts. Typically an attacker compromises a set of Internet
hosts (using manual or automated methods) and installs a small attack daemon on
each, producing a group of “zombie” or “bot” hosts. This daemon typically con-
tains both the code for sourcing a variety of attacks and some basic communications
infrastructure to allow for remote control. Using variants of this basic architecture,
an attacker can focus a coordinated attack from thousands of zombies onto a single
site.
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Packet sent Response from victim

TCP SYN (to open port) TCP SYN/ACK
TCP SYN (to closed port) TCP RST (ACK)
TCP ACK TCP RST (ACK)
TCP DATA TCP RST (ACK)
TCP RST no response
TCP NULL TCP RST (ACK)
ICMP ECHO Request ICMP Echo Reply
ICMP TS Request ICMP TS Reply
UDP pkt (to open port) protocol dependent
UDP pkt (to closed port) ICMP Port Unreach
... ...

Table I. A sample of victim responses to typical attacks.

2.3 IP spoofing

To conceal their location, thereby forestalling an effective response, many attackers
forge, or “spoof”, the IP source address of each packet they send. Consequently,
the packets appear to the victim to be arriving from one or more third parties.
Spoofing can also be used to “reflect” an attack through an innocent third party.
And finally, an attacker can mount an attack that uses the true source address of
each compromised machine, thereby avoiding IP address spoofing. In this paper
we focus solely on attacks using random address spoofing and in Section 3.2 we
discuss how the existence of these other attacks biases our results in a conservative
direction.

3. BASIC METHODOLOGY

As noted in the previous section, attackers can spoof the source IP address field to
conceal the location of the attacking host. The key observation behind our tech-
nique is that for direct denial-of-service attacks, programs spoofing their address
typically select source addresses at random for each packet sent.2 When a spoofed
packet arrives at the victim, the victim usually sends what it believes to be an
appropriate response to the faked IP address (such as shown in Table I). Occasion-
ally, an intermediate network device (such as a router, load balancer, or firewall)
may issue its own reply to the attack via an ICMP message [Postel, Editor 1981].
Again, these ICMP messages are sent to the randomly spoofed source address. In-
ternet infrastructure devices may also be the targets of denial-of-service attacks,
either directly via attacks aimed at an interface IP address, or indirectly via a TTL
expiry or similar attack.

Because the attacker’s source address is selected at random, the victim’s re-
sponses are also distributed across the entire Internet address space, an inadvertent
effect called “backscatter”. This behavior is illustrated in Figure 1.

2This behavior was extremely common in the first generation of distributed attack tools, such as

Shaft, TFN, TFN2k, Blitznet, Stacheldraht, mstream and Trinity, and remains in most modern

tools that spoof their source address as well.
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Attack

Backscatter

Attacker

Victim

B

C

D

VB C VD V

SYN packets

Fig. 1. An illustration of backscatter in action. Here the attacker sends a series of SYN packets
towards the victim V, using a series of random spoofed source addresses named B, C, and D. Upon
receiving these packets the victim responds by sending SYN/ACKs to each of spoofed hosts.

3.1 Backscatter analysis

Assuming per-packet random source addresses, reliable delivery and one response
generated for every packet in an attack, the probability of a given host on the
Internet receiving at least one unsolicited response from the victim is 1−(1 −

1
232 )

m

during an attack of m packets. If one monitors n distinct IP addresses, then the
expected probability of observing at least one packet from the attack is:

1 − (1 −
n

232
)
m

Similarly, the expected number of unsolicited responses seen during an attack of
m packets at a single host is m

232 . When monitoring n distinct IP addresses, the
expected number of responses seen is:

E(X) =
nm

232

Thus, by observing a large enough address range, we can effectively “sample” all
such denial-of-service activity on the Internet. Contained in these samples are the
identity of the victim, information about the kind of attack, and a timestamp from
which we can estimate attack duration. Moreover, given these assumptions, we can
also use the average arrival rate of unsolicited responses directed at the monitored
address range to estimate the actual rate of the attack being directed at the victim,
as follows:

R ≥ R
′
232

n

where R
′ is the measured average inter-arrival rate of backscatter from the victim

and R is the extrapolated attack rate in packets-per-second.
We term such a measurement device a network telescope – an analogy to phys-

ical observatories. As random photons are detected by a light-based telescope in
proportion to the size of its aperture, so too do random backscatter packets arrive
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at a network telescope in proportion to the size of its address space. Attacks of
shorter duration or lower intensity generate fewer backscatter packets and thus re-
quire larger network telescopes to resolve. We provide a complete analytic model
covering the impact of network telescope size, confidence, and event duration in a
previous report [Moore et al. 2004].

3.2 Analysis limitations

There are three assumptions that underlie our analysis:

—Address uniformity: attackers spoof source addresses at random.

—Reliable delivery: attack traffic is delivered reliably to the victim and backscatter
is delivered reliably to the monitor.

—Backscatter hypothesis: unsolicited packets observed by the monitor represent
backscatter.

We discuss potential biases that arise from these assumptions below.
Key among our assumptions is the random selection of source address. There

are four reasons why this assumption may not be valid. First, many attacks today
do not use address spoofing at all. There are multiple reasons for this.

First, ISPs increasingly employ ingress filtering [Ferguson and Senie 2000; Cisco
Systems 1999] on their routers to drop packets with source IP addresses outside
the range of a customer’s network. Thus, an attacker’s source address range may
not include any of our monitored addresses and we will underestimate the total
number of attacks. While it is unknown how pervasive such filtering is, we expect
that it will only increase. Over time, this will cause backscatter-based analyses to
increasingly undercount denial-of-service attacks.

“Reflector attacks” pose a second problem for source address uniformity. In this
situation, an attacker “launders” the attack by sending a packet spoofed with the
victim’s source address to a third party. The third party responds by sending a
response back towards the victim. If the packets to the third party are addressed
using a broadcast address (as with the popular smurf or fraggle attacks) then third
parties may further amplify the attack. The key issue with reflector attacks is that
the source address is specifically selected. Unless an IP address in the range we
monitor is used as a reflector, we will be unable to observe the attack. We have
detected no instances of a monitored host involved in this sort of attack. Our
inability to detect “reflector attacks” causes us to underestimate the total number
of denial-of-service attacks.

Finally, and perhaps most importantly, as attackers have improved their auto-
mated methods for compromising hosts, it is widely believed that the motivation for
address spoofing has been reduced. To wit, if a victim is attacked by 100,000 dis-
tinct hosts, the knowledge of their true source IP addresses offers little operational
benefit to the victim and minimal threat to the attacker (the costs of collecting
forensic information across such a large set is prohibitive). Once again, attacks
using their true source addresses will strictly cause us to underestimate the total
number of attacks.

Another limitation arises from our assumption that packets are delivered reliably
and that every packet generates a response. During a large attack it is likely that
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packets from the attacker may be queued and dropped. Those packets that do arrive
may be filtered or rate-limited by firewall or intrusion detection software [Cisco
Systems 1997] and moreover some forms of attack traffic (e.g., TCP RST messages)
do not typically elicit a response. Finally, the responses themselves may be queued
and dropped along the path back to our monitored address range. In particular,
our estimate of the attack rate is necessarily limited both by the capacity of the
smallest bottleneck link between the victim and the monitor and by the ability
of the victim to generate responses to the attack traffic. As with our random
distribution assumption, these limitations will cause us to underestimate the number
of attacks and the attack rate. For example, during the widely publicized attack
on Web servers of the SCO Group, our approach inferred a rate peaking at 50kpps
when monitors at the victim’s ISP recorded inbound attack packets in excess of
200kbps [Moore and Shannon 2003]. Moreover, this underestimation may also bias
our characterization of victims (e.g., if large e-commerce sites are more likely to
have rate-limiting software than educational sites, then we may disproportionately
underestimate the size of attacks on this class of victim).

The final limitation of our technique is that we assume unsolicited responses
represent backscatter from an attack. Any server on the Internet is free to send
unsolicited packets to our monitored addresses, and these packets may be misinter-
preted as backscatter from an attack. It is possible to eliminate accidental errors by
choosing a quiescent address range for monitoring, filtering those packet flows that
are consistently destined to a single host in the range, and by high-pass filtering
to only record sufficiently long and voluminous packet flows. However, a concerted
effort by a third-party to bias our results would be difficult to detect and correct
automatically. The most likely source of such bias arises from misinterpretation of
random port scans as backscatter. While it is impossible to eliminate this possi-
bility in totality, we will show that the vast majority of attacks we observe can be
trivially differentiated from typical scanning activity.

In spite of its limitations, we believe our overall approach is sound and provides
at worst a conservative estimate of current denial-of-service activity.

4. ATTACK DETECTION AND CLASSIFICATION

An important aspect of analyzing denial-of-service attacks is identifying and clas-
sifying them from passive packet measurements. We use a three-step method to
accomplish this. We first process the raw packet trace data to identify and extract
backscatter packets. We then use a flow-based technique to combine related packets
into attack flows based on the victim IP address. Finally, we further filter these
attack flows to select those whose estimate intensity, duration, and rate are worth
further analysis.

4.1 Extracting backscatter packets

Starting with raw traffic traces, we perform the following steps to extract backscat-
ter packets:

—Remove packets involving legitimate hosts in the network telescope address space.

—Remove packets that do not correspond to response traffic, as in Table I. Note
that we remove UDP packets addressed to the telescope, but retain UDP packets
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addressed to the victim that appear inside ICMP responses.

—Remove traffic from hosts that use TCP RST packets for scanning. Most port
scan activity is automatically removed since it does not consist of response traffic.
However, a rare but important exception is RST scanning which is sometimes
used to infer firewall policy rules. It is important to try to exclude such scans since
they do not reflect denial-of-service activity and they can cause attack rates to be
substantially over-estimated. Under manual inspection most of these scans are
evident in clearly sequential scanning patterns. To automatically remove these
packets we search for RSTs with clearly non-random targeting behaviors. More
precisely, for a given source address we remove TCP RSTs (without acknowl-
edgements) for which the ratio of IP addresses scanned to distinct /16 networks
probed is greater than 255 within a given 1-minute period.

—Perform aggressive potential duplicate packet suppression to ensure that packets
duplicated either in the network or by the denial-of-service attack victim (e.g.,
multiple SYN ACKs to a single SYN) do not artificially magnify the scope of
an attack [Moore et al. 2004]. In this study, we remove any packet with the
same flow tuple <source IP address, destination IP address, protocol, source
port, destination port> as another packet seen in the last five minutes. For
ICMP error messages, we extract the IP addresses, protocol and ports from the
original packet within the ICMP messages. Note that a high-rate packet stream
with constant IP addresses, protocol and ports in the raw data would, at most,
result in one packet per five minutes in the extracted backscatter dataset. This
approach provides very aggressive suppression, removing packets that may not
be true packet-level duplicates, thus leading to under-estimation of packet counts
and rates.

4.2 Flow-based classification

After extracting the backscatter packets, we then aggregate related packets into
attacks. Although intuitive at a high level, the choice of a specific aggregation
methodology presents significant technical challenges for automating the process.
For example, it is often unclear whether contemporaneous backscatter indicating
both TCP- and ICMP-based attacks should be classified as a single attack or mul-
tiple attacks – as described below, we treat them as a single attack. More difficult
still is the problem of determining an attack’s start and end times. In the presence
of significant variability, too lenient of a threshold can bias subsequent analyses
towards fewer attacks of longer duration and low average packet rates, while too
strict an interpretation biases towards a large number of short attacks with highly
variable rates. Without knowledge of the intent of the attacker or direct observa-
tion of the attack, it is impossible to create a synthetic classification system that
will group all types of attacks appropriately for all metrics.

4.2.1 Flow-based identification. We have chosen to use a flow-based method of
attack identification as is commonly used to group Internet traffic [Claffy 1994;
Cisco Systems 2004]. For the purpose of this study, we define a flow as a series
of consecutive packets sharing the same victim IP address. We explored several
approaches for defining flow lifetimes and settled on a fixed timeout approach: the
first packet seen for a victim creates a new flow, and we associate any additional
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packets from that victim with that flow if the packets arrive at the telescope within a
fixed timeout relative to the most recent packet in this flow. With this methodology,
the choice of parameters can significantly influence the final results since a more
conservative timeout will lead to fewer, longer attacks, and a shorter timeout will
lead to a large number of short attacks. Next we study the sensitivity of the number
of attacks to the value of the flow timeout parameter to make an informed choice
for subsequent analyses.

4.2.2 Flow timeout. The flow timeout parameter defines the maximum time
interval between two backscatter packets from the same victim for those packets
to belong to the same flow. For a continuous stream of backscatter packets from a
victim, we need to partition it into discrete flows, and the flow timeout parameter
determines when one flow ends and another begins. Note that a smaller flow timeout
will partition a continuous backscatter stream into more flows than a larger flow
timeout.
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Fig. 2. The sensitivity of the number of attacks to the value of the flow timeout parameter.

Figure 2 shows the sensitivity of attack counts to a range of values for the flow
timeout parameter. The curve shows how the number of inferred attack flows
changes as the flow timeout parameter varies between 60 seconds and two hours.
For the analyses in the rest of the paper, we use a conservative flow timeout of
five minutes (300 seconds). Real attacks greater than 0.85 packets per second will
satisfy this requirement in expectation, so attacks inadvertently discarded are also
attacks that are unlikely to cause significant harm to victims (even dialup victims).

4.3 Deriving denial-of-service attacks

Once we partition a stream of packets to a victim into discrete flows, we use three
additional parameters to classify those flows into attacks for further analysis: packet

threshold, attack duration and packet rate. For each parameter, we show the sensi-
tivity of the results to a range of values for the parameter and motivate our choice
of default values shown in Table II. The sensitivity analysis focuses on the first
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Parameter Value in Paper

Flow timeout 5 minutes

Packet threshold > 25 packets

Attack duration > 60 seconds

Packet rate > 0.5 packets-per-second (pps)

Table II. Default values for the parameters used to identify denial-of-service attacks.

week of our data (February 1, 2001), although the results are similar for subse-
quent weeks. When varying one parameter, we use the default values of the other
parameters attained from sensitivity analyses.

4.3.1 Packet threshold. The first criterion we use to classify a flow as an attack is
the packet threshold. The packet threshold parameter defines the minimum number
of seen packets in a flow necessary to classify that flow as an attack. For a given
set of candidate flows, larger packet thresholds result in fewer qualifying as attacks.
Our goal is to filter out attacks with very few packets since, as flooding attacks,
small attacks have a negligible impact on a host. Including them biases aggregate
metrics towards smaller attacks and exaggerates their importance.
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Fig. 3. The sensitivity of the number of flows to the value of the packet threshold parameter.

Figure 3 shows the sensitivity of flow counts to a range of values for the packet
threshold parameter. The curve shows how the number of flows changes as the
packet threshold parameter varies between 1 and 250 packets. From the graph, we
see that the number of flows drops rapidly as a function of the packet threshold. For
the analyses in the paper, we conservatively chose a packet threshold of 25 packets
to classify a packet flow as an attack. Although negligible to a well-connected
Internet host, a packet threshold of 25 packets corresponds to a 22-minute attack
on a 56.6 Kb/s modem using 1500 byte packets.

4.3.2 Attack duration. In addition to satisfying a packet threshold, we only
classify a flow as an attack flow if it also satisfies a time duration threshold called
the attack duration. The attack duration is simply the minimum amount of time
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between the first and last packet of the flow. For a given set of candidate flows,
larger durations result in fewer qualifying as attacks. As with the packet threshold,
our goal is to filter out short attacks that have negligible impact on a host.
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Fig. 4. The sensitivity of the number of flows to the value of the attack duration parameter.

Figure 4 shows the sensitivity of flow counts to a range of values for the attack
duration parameter. The curve shows how the number of flows depends on the
value of the attack duration as it varies between one second and one hour. From the
graph, we see that the number of flows is relatively insensitive to attack durations
less than 100 seconds, but beyond that drops off quickly.

For the analyses in the paper, we chose an attack duration of 60 seconds. It is a
reasonable minimum threshold for a denial-of-service attack of interest, and, from
the graph, we include most attacks in the study since most flows have a duration
much longer than this threshold.

4.3.3 Packet rate. As the final criterion, we only classify a flow as an attack if
the flow meets a threshold for maximum rate of packet arrivals (i.e., backscatter
response packets) during some period of the flow. We compute the maximum packet
rate for a flow as the largest packet rate across any 1-minute bucket during the flow.
A flow can only be classified as an attack if the observed maximum packet rate is
greater than the packet rate threshold. We use the maximum packet rate over a
1-minute period, as opposed to the average packet rate over the entire flow lifetime,
because there can be high variability in the ability of victims to generate response
packets over time. For a given set of candidate flows, a larger packet rate threshold
results in fewer flows qualifying as attacks. With the packet rate parameter, our
goal again is to filter out attacks that have negligible impact on a host.

Figure 5 shows the sensitivity of flow counts to a range of values for the packet
rate parameter as it varies between 0 packets-per-second (pps) and 2 pps. From
the graph, we see that the number of flows drops rapidly for packet rates between
0 pps and 0.2 pps, after which point the decline is gradual.
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Fig. 5. The sensitivity of the number of flows to the value of the maximum backscatter packet

rate seen in 1-minute period.

For the analyses in the paper, we chose a packet rate threshold of 0.5 pps. Note
that selecting a 0.5 pps filter corresponds to a 41 Kb/s attack using minimum-sized
TCP packets or 1.5 Mb/s using 1500 byte packets. By excluding flows with packet
rates less than 0.5 pps, we do not classify small events with minimal impact as
attacks.

4.4 Extracted information

Using the parameter values in Table II, we extract attacks from raw packet traces.
We then examine each attack and extract the following information:

—IP protocol: whether the attacking packets were TCP, UDP, ICMP, etc.

—TCP flag settings: whether the flow consists of SYN/ACKs, RSTs, etc.

—ICMP payload: for ICMP packets that contain copies of the original packet (e.g.,
TTL expired), we extract the enclosed addresses, protocols, ports, etc.

—Port settings: for source and destination ports (for both UDP and TCP) we
record whether the port range is fixed or not.

—DNS information: the full DNS record of the source address (i.e., the victim).

Using this information, we generate a database in which each record characterizes
the properties of a single attack. We use this database as the foundation for the
higher level attack analyses in the next section.

5. ANALYSIS OF DENIAL-OF-SERVICE ACTIVITY

In this section we analyze the denial-of-service activity observed in our three years
of traces. We start by describing our measurement platform for recording the
packet traces in our study. Then we analyze the attacks in these traces from three
perspectives. First, we present a high-level summary of the attack workload and
the overall frequency of attacks seen in our traces. Second, we characterize various
aspects of the attacks themselves, including their duration, their estimated rate,
the network protocols used, and the network service (port) targeted. Finally, we
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Monitor

Hub

/8 Network

Internet

Fig. 6. Our experimental backscatter collection platform. We monitor all traffic to a /8 network
by passively capturing data as it is forwarded through a shared hub. This monitoring point
represents the only ingress into the network.

characterize the victims of attacks in terms of victim type, top-level domain, and
popularity. Generally, our analyses are comprehensive and include all of the attacks
in our traces. Where appropriate, we also highlight aspects of denial-of-service
activity that has changed over the last three years.

5.1 Experimental platform

For our experiments we monitored the sole ingress link into a lightly utilized /8
network (comprising 224 distinct IP addresses, or 1/256 of the total IPv4 Internet
address space). Our monitoring infrastructure, shown in Figure 6, consisted of
a PC configured to capture all Ethernet traffic attached to a shared hub at the
router terminating this network. During this time, the upstream router did filter
some traffic destined to the network (notably external SNMP queries), but such
filtering does not significantly impact our results. We also have some evidence
that small portions of our address prefix are occasionally “hijacked” by inadvertent
route advertisements elsewhere in the Internet, but at worst this should cause us
to slightly underestimate attack intensities.

5.2 Summary of attack activity

Over a period of three years, from February 1, 2001 through February 25, 2004,
we used our backscatter collection platform described in Section 5.1 to periodically
capture 22 traces of denial-of-service activity. Each trace roughly spans one week,
and isolates the inbound portion of traffic to the /8 network. Using the methodology
described in Section 4, we processed these traces to classify backscatter packets into
individual attacks.

Table III summarizes the high-level characteristics of the traces and the attacks
observed in them. Each trace was roughly 1–2 weeks in duration and observed 500–
5700 attacks to 500–3100 victims. In total, we observed 68,700 attacks to 34,700
unique victim IP addresses in 5,300 distinct DNS domains. Across all traces, we
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Starting Duration Attacks Backscatter Unique Victim
Date Packets IPs Domains TLDs

2001-02-01 7.5 days 2,618 21,090,742 1,636 729 66
2001-02-11 6.2 days 2,242 30,222,201 1,510 659 63
2001-02-18 7.1 days 2,858 32,159,992 1,921 820 65
2001-02-25 8.9 days 3,346 49,449,404 2,050 677 62
2001-03-06 12.9 days 4,968 59,552,132 2,587 759 73
2001-03-19 8.2 days 2,635 23,588,586 1,618 506 60
2001-04-06 11.8 days 4,343 44,508,551 2,563 694 70
2001-04-22 5.4 days 1,944 14,386,681 1,197 398 55
2001-04-30 6.7 days 828 6,574,228 557 193 41
2001-05-07 14.1 days 4,990 60,647,948 2,933 774 80
2001-05-23 9.1 days 2,993 40,269,047 1,916 546 71
2001-06-01 8.5 days 3,026 47,508,181 1,930 575 60
2001-06-25 8.8 days 2,861 17,408,501 1,897 559 68
2001-07-04 15.8 days 5,666 52,882,496 3,102 747 79
2001-07-19 7.9 days 2,078 36,824,562 1,291 371 60
2001-08-01 7.0 days 974 16,420,358 670 248 47
2001-08-08 6.8 days 1,624 40,248,436 1,059 300 53
2002-05-09 17.5 days 4,820 69,933,861 2,855 681 82
2002-05-29 17.2 days 4,458 103,761,678 2,837 733 87
2002-12-11 7.3 days 2,340 31,139,696 1,016 296 46
2003-11-06 5.0 days 1,416 58,160,582 735 195 51
2004-02-25 10.0 days 5,692 210,181,843 3,088 531 63
Total 209.9 days 68,720 1,066,919,706 34,725 5,273 167

Table III. Summary of backscatter database.

captured more than 1,066 million backscatter packets (representing less than 1
256

of the backscatter traffic generated by victims during these periods).
Figure 7 shows a time series graph of the denial-of-service activity across all of our

traces. The graphs show three interesting features of our denial-of-service backscat-
ter workloads. First, in contrast to other Internet workloads such as Web [Wolman
et al. 1999] and peer-to-peer file sharing [Saroiu et al. 2002], the number of ac-
tive attacks does not exhibit the strong diurnal patterns of those other workloads.
Second, the rate of attacks does not change significantly, even over extensive time
periods. The average rate of attacks across three years of traces is 24.5/hour; the
average rate in the first trace is 20.9/hour and the rate in the last trace is 74.4/hour.

Additionally we examined the time series of attacks grouped by victim /24 sub-
nets to see if attacks were clustered on particular subnets. The number of attacks
per hour to individual victim IP addresses is roughly equivalent to the number of
attacks to victim /24 subnets. Counter-examples exist, however: for the last trace
starting February 25, 2004, we see that many of the attacks targeted multiple hosts
in the same subnet.

When examining individual attacks in more detail, many attacks exhibit interest-
ing behavior over time. For instance, Figure 8 shows the intensity of one particular
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Fig. 7. Estimated number of victims per hour as a function of time (UTC).
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Fig. 8. The measured intensity of an attack to one particular host during the week of February

18, 2001. The spikes occur at noon local time and last for an hour. The attack skipped February

20, 2001, which was a Tuesday.

attack over the course of one week that exhibits daily periodic behavior. Like
clockwork, at the same time every day the attack increases in intensity from a
background rate of 10 measured packets per second (an estimated 2,500 pps) to
400–625 measured packets per second (an estimated 100,000–160,000 pps). The
intense attack persists for an hour, and then subsides into the background. In-
terestingly, the attack does not flare up on one day of the week, Tuesday. Many
attacks exhibit such daily periodic behavior, including consistently skipping a day,
suggesting that the attacks are scripted.

5.3 Attack classification

Next we characterize the attacks observed in our traces, focusing on the protocols
used in the original attack packets as well as attack rates and durations.
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Kind Total

Attacks (%) Packets×1000 (%) Victims (%)

TCP 64,952 (95) 949,373 (89) 32,275 (93)
ICMP 1,797 (2.6) 24,567 (2.3) 1,334 (3.8)
TCP/UDP 696 (1.0) 8,526 (0.80) 566 (1.6)
UDP 466 (0.68) 723 (0.07) 312 (0.90)
ICMP/TCP 441 (0.64) 63,728 (6.0) 356 (1.0)
ICMP/IGMP/TCP/UDP 118 (0.17) 342 (0.03) 104 (0.30)
ICMP/TCP/UDP 87 (0.13) 18,865 (1.8) 64 (0.18)
IGMP/TCP/UDP 27 (0.04) 42 (0.00) 22 (0.06)
Other 21 (0.03) 22 (0.00) 10 (0.03)
Other/TCP 18 (0.03) 62 (0.01) 18 (0.05)
ICMP/UDP 16 (0.02) 38 (0.00) 15 (0.04)
ICMP/IGMP/Other/TCP/UDP 16 (0.02) 368 (0.03) 13 (0.04)
IGMP/Other/TCP/UDP 10 (0.01) 56 (0.01) 8 (0.02)
IGMP/TCP 9 (0.01) 32 (0.00) 8 (0.02)
ICMP/IGMP/TCP 7 (0.01) 4 (0.00) 7 (0.02)
ICMP/Other/TCP 6 (0.01) 13 (0.00) 3 (0.01)
ICMP/Other 6 (0.01) 3 (0.00) 4 (0.01)
IGMP/Other/TCP 5 (0.01) 145 (0.01) 5 (0.01)
Other/TCP/UDP 5 (0.01) 2 (0.00) 5 (0.01)
IGMP/Other 5 (0.01) 3 (0.00) 4 (0.01)

Table IV. Breakdown of protocols used in all attacks across all traces. An entry with
multiple protocols indicates an attack consisting of a combination of packets from each
of the protocols listed. “Other” indicates that the attack contained packets with one or
more miscellaneous protocols other than those named in the table.

5.3.1 Attack protocols. Table IV shows the distribution of attack protocols across
all attacks in our traces. The attack protocol is the network protocol used by the
attacker to produce the backscatter monitored at our network. The table shows
the breakdown according to the number of attacks and the number of backscatter
packets comprising those attacks. The vast majority of attacks (93%) and packets
(88%) use TCP as their protocol of choice. A small fraction of attacks used ICMP
(2.6%), although per-attack they produced more than twice the number of packets
on average than the TCP attacks. Other protocols represent a small fraction of both
attacks and backscatter packets, and the remaining attacks employed a combination
of protocols in each attack.

Table V further breaks down the TCP attacks in terms of the service targeted by
the attack, as determined by the victim port number specified in the attack packets.
Overall, the attacks target a wide range of popular TCP services. However, most
of the attacks target multiple ports, and most of these are well spread throughout
the port address range. Individually, the most popular services targeted are HTTP
(port 80), IRC (6667), port 0, and Authd (113).

5.3.2 Attack rate. A key metric for characterizing the severity of attacks is the
rate at which attack packets bombard a victim. Figure 9 shows two cumulative dis-
tributions of estimated attack rates in packets per second. The lower curve shows
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Kind Total

Attacks (%) Packets×1000 (%) Victims (%)

Multiple 54,461 (82) 696,920 (69) 27,623 (83)
HTTP (80) 3,634 (5.5) 154,625 (15) 1,555 (4.7)
IRC (6667) 1,116 (1.7) 50,791 (5.0) 641 (1.9)
0 950 (1.4) 4,034 (0.40) 736 (2.2)
Authd (113) 698 (1.1) 4,118 (0.41) 529 (1.6)
Netbios (139) 587 (0.88) 28,887 (2.8) 427 (1.3)
1 542 (0.82) 14,651 (1.4) 267 (0.80)
Telnet (23) 431 (0.65) 10,050 (0.99) 256 (0.77)
FTP (21) 411 (0.62) 4,342 (0.43) 318 (0.96)
SSH (22) 219 (0.33) 2,560 (0.25) 159 (0.48)
DNS (53) 204 (0.31) 1,802 (0.18) 153 (0.46)
33000 132 (0.20) 23 (0.00) 107 (0.32)
7100 115 (0.17) 225 (0.02) 23 (0.07)
SMTP (25) 105 (0.16) 1,236 (0.12) 50 (0.15)
POP (110) 94 (0.14) 282 (0.03) 32 (0.10)
5000 86 (0.13) 531 (0.05) 41 (0.12)
1080 76 (0.11) 121 (0.01) 52 (0.16)
1025 66 (0.10) 139 (0.01) 46 (0.14)
135 53 (0.08) 67 (0.01) 40 (0.12)
7000 46 (0.07) 267 (0.03) 17 (0.05)

Table V. Breakdown of TCP attacks by victim port number. Percentages based only
upon attacks using TCP. “Multiple” indicates that an attack targeted multiple ports.

 20

 40

 60

 80

 100

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

P
er

ce
nt

 o
f A

tta
ck

s

Estimated Rate (Packets Per Second)

Avg. PPS over attack
Max. PPS over 1 minute

Fig. 9. Cumulative distributions of estimated attack rates in packets per second.

the cumulative distribution of the maximum estimated attack rate seen in 1-minute
intervals, and the upper curve shows the cumulative distribution of estimated aver-
age attack rates. As described earlier, we calculate the attack rate by multiplying
the average arrival rate of backscatter packets by 256 (assuming that an attack
represents a random sampling across the entire address space, of which we monitor
1

256
). Note that the graph shows the attack rate (x-axis) using a logarithmic scale.

How threatening are the attacks that we see? Experiments with SYN attacks
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on commercial platforms show that an attack rate of only 500 SYN packets per
second is enough to overwhelm a server [Darmohray and Oliver 2000]. In our trace,
65% of attacks had an estimated rate of 500 packets per second or higher. The
same experiments show that even with a specialized firewall designed to resist SYN
floods, a server can be disabled by a flood of 14,000 packets per second. In our
data, 4% of attacks would still compromise these attack-resistant firewalls. These
attack rates indicate that the majority of the attacks we have monitored are intense
enough to overwhelm commodity solutions, and a small fraction are intense enough
to overwhelm even optimized countermeasures.
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Fig. 10. Cumulative and probability distributions of attack durations.

5.3.3 Attack duration. While attack event rates characterize the intensity of
attacks, they do not give insight on the duration of attacks. For this metric, we
measured the duration of attacks across all of traces. Figures 10(a) and 10(b) show
the results of these measurements.

Figure 10(a) shows the cumulative distribution of attack durations in units of
time (note the x-axis is logarithmic). We find that most attacks are relatively
short: 60% of attacks are less than 10 minutes in duration, 80% are less than 30
minutes, and 85% last less than an hour. However, the tail of the distribution is
long: 2.4% of attacks are greater than five hours, 1.5% are greater than 10 hours,
and a tiny percentage (0.53%) span multiple days.

Figure 10(b) shows the probability density of attack durations as defined using a
histogram of 150 buckets in the log-time domain. The x-axis is in logarithmic units
of time, and the y-axis is the percentage of attacks that lasted a given amount of
time. For example, 4.3% of attacks had a duration of one minute. As we saw in
Figure 10(a), the bulk of the attacks are relatively short, lasting from 1–30 minutes.
Peaks in the distribution occur around durations of five minutes (10.8% of attacks),
10 minutes (9.7%), and 1.5 hours (1.7%).
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Kind Total

Attacks (%) Packets×1000 (%)

In-Addr Arpa 28,547 (42) 498,775 (47)
Unclassified 25,216 (37) 404,111 (38)
Broadband 5,520 (8.0) 31,006 (2.9)
Dial-Up 4,864 (7.1) 39,479 (3.7)
IRC Server 1,156 (1.7) 49,950 (4.7)
Nameserver 1,141 (1.7) 17,685 (1.7)
Web Server 996 (1.4) 11,968 (1.1)
Router 885 (1.3) 11,148 (1.0)
Mail Server 377 (0.55) 2,501 (0.23)
Firewall 18 (0.03) 297 (0.03)

Table VI. Breakdown of victim hostnames.

5.4 Victim classification

In this section we characterize the victims of the attacks in our traces, focusing on
victim host types inferred from DNS names, the top-level domains of victims, and
the popularity of victims over time.

5.4.1 Victim Type. Table VI shows the distribution of attacks according to the
DNS name associated with the victim’s IP address. We classify these using a
hand-tuned set of regular expression matches (i.e., DNS names with “dialup” cor-
respond to modem connections, “dsl” or “home.com” represent broadband, etc.).
The majority of attacks are not classified by this scheme, either because they are
not matched by our criteria (shown by “Unclassified”), or, more likely, because
there was no valid reverse DNS mapping (shown by “In-Addr Arpa”).

To gain insight into the nature of these “unknown” addresses, we selected two
weeks of data almost two years apart (the weeks beginning February 1, 2001 and
December 11, 2002) and analyzed 100 random victim hostnames in more detail.
By visiting websites on the same network as these hostnames, we then categorized
these victim addresses into one of several specific categories. Through this more
in-depth analysis of hostnames, we observed that roughly half of the victims in
these samples are broadband users, while slightly less than 10% are dial-up. An
additional 5–10% of the victims are located on educational networks, while a small
number of victims appear to be Internet hosting centers. This experiment suggests
that the majority of victims of the attacks we observed are home users and small
businesses rather than larger corporations.

Several interesting observations support this notion. Some of these attacks
against home machines, particularly those directed towards cable modem users, con-
stitute relatively large, severe attacks with rates in the thousands of packets per sec-
ond. One explanation is that minor denial-of-service attacks are being used to settle
personal vendettas. In the same vein, we anecdotally observe a significant number
of attacks against victims running “Internet Relay Chat” (IRC), victims support-
ing multi-player game use (e.g., battle.net), and victims with DNS names that are
sexually suggestive or incorporate themes of drug use. We further note that many
reverse DNS mappings have been clearly compromised by attackers (e.g., DNS res-
olutions such as “is.on.the.net.illegal.ly” and “the.feds.cant.secure.their.shellz.ca”).
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Kind Total

Attacks (%) Packets×1000 (%) Victims (%)

arpa 28,547 (42) 498,775 (47) 14,513 (42)
net 9,291 (14) 150,339 (14) 5,113 (15)
com 7,721 (11) 162,539 (15) 4,046 (12)

ro 7,235 (11) 33,661 (3.2) 3,031 (8.7)
br 2,822 (4.1) 22,286 (2.1) 1,228 (3.5)

edu 1,219 (1.8) 13,258 (1.2) 659 (1.9)
ca 1,167 (1.7) 5,307 (0.50) 636 (1.8)

org 890 (1.3) 26,340 (2.5) 431 (1.2)
it 638 (0.93) 5,843 (0.55) 424 (1.2)
mx 610 (0.89) 1,793 (0.17) 375 (1.1)
nl 566 (0.82) 1,857 (0.17) 306 (0.88)
jp 520 (0.76) 14,467 (1.4) 154 (0.44)
de 435 (0.63) 3,114 (0.29) 247 (0.71)
no 429 (0.62) 4,422 (0.41) 220 (0.63)
uk 409 (0.60) 3,510 (0.33) 221 (0.64)
be 405 (0.59) 1,516 (0.14) 177 (0.51)
pl 383 (0.56) 1,794 (0.17) 188 (0.54)
au 378 (0.55) 7,710 (0.72) 244 (0.70)
se 346 (0.50) 11,548 (1.1) 216 (0.62)
fr 313 (0.46) 1,083 (0.10) 145 (0.42)

Table VII. Breakdown of victim top-level domains (TLDs). The “arpa” TLD represents
those attacks for which a reverse DNS lookup failed on the victim IP address.

Second, there is a small but significant fraction of attacks directed against net-
work infrastructure. Over 1.3% of attacks target routers (e.g., core2-corel-oc48.paol.
above.net), while 1.7% target name servers (e.g., ns4.reliablehosting.com). And
some of these attacks, particularly a few targeting routers, are comprised of a dis-
proportionately large number of packets. This behavior is particularly disturbing
since overwhelming a router could deny service to all end hosts that rely upon that
router for connectivity.

Finally, we were surprised at the diversity of different commercial targets. While
we certainly find attacks on bellwether Internet sites such as aol.com, amazon.com,
ebay.com, microsoft.com, and yahoo.com, we also see attacks against a large range
of smaller and medium-sized businesses.

5.4.2 Top-level domains. Table VII shows the distribution of attacks to the 20
most frequently targeted top-level domains (TLDs) across all traces. Each row
shows the number of attacks and backscatter packets to a given TLD. We deter-
mined a victim’s TLD by issuing a reverse DNS lookup on its IP address. The
largest category is the arpa TLD, which represents those attacks for which a re-
verse DNS lookup failed. In terms of the “three-letter” domains, over 10% of the
attacks targeted the com and net TLDs, whereas an order of magnitude fewer at-
tacks (1.3–1.7%) targeted the edu and org domains. This bias is not surprising
considering that sites in the com and net TLDs include most commercial ISPs and
their customers, and consequently present more attractive and newsworthy targets.

In terms of the “country-code” TLDs, we see a disproportionate concentration
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Host Type Number of Victims

Nameservers 5
IRC servers 3
Broadband 4
Education 2

No Hostname 1

Table VIII. The host types of the 15 most frequently attacked victims.

of attacks to a small group of countries. Surprisingly, attackers targeted Romania
(ro) — a country with a relatively limited networking infrastructure — nearly as
frequently as net and com, and attackers targeted Brazil (br) more than edu and
org combined.
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Fig. 11. Attack spans for victims attacked during more than one trace.

5.4.3 Victims of repeated attacks. Finally, we examine the extent to which vic-
tims are attacked repeatedly over long time periods. For this measure, we count
the number of times a victim appears in separate traces. Figure 11(a) shows these
results. The values on the x-axis correspond to the number of distinct traces a vic-
tim address appeared in, and the values on the y-axis show the number of victims
that appeared in this many distinct traces.

Overall, most victims (89%) were attacked in only one trace (typically spanning
roughly one week), and most of the remaining victims (7.8%) appear in two traces.
Victims can appear in multiple traces because of attacks that span trace boundaries,
causing the victims to be represented in both sets of trace data. For example, in
four traces in adjacent weeks, on average 81% of the victims in each trace were
unique to that trace. In contrast, five traces that were an average of eight months
apart contained 98% unique victims to each trace. Looking at all 22 traces, 74%
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Country Number of Victims

United States 6
Romania 4
Norway 2
Japan 1
France 1
Austria 1

Table IX. The countries in which the 15 most frequently attacked victims are located.

of the victims in each trace were targeted only during the collection of that trace.
Nonetheless, a small percentage of victims (3%) appear in more than three traces,
suggesting that these victims were indeed repeatedly targeted over time.

Figure 11(b) shows the distribution of attack durations for victims attacked in
more than one trace. While most victims were attacked for only two weeks, a few
remained a target for a period of years. A small number of victim addresses (15)
appear in 10 or more traces, raising the possibility that these unfortunate victims
are regularly targeted for denial-of-service attacks. Looking qualitatively at the
hostnames of these victims (Table VIII), we observe that nameservers and IRC
servers are the most common perpetual targets for denial-of-service attacks. The
most frequently targeted hosts were located in six countries (Table IX), with six
victims in North America, eight in Europe, and two in Asia. The most frequently
attacked host was install.tu-graz.ac.at, a host at the Graz University of Technology
in Austria. Attacks targeted this machine in 17 out of 22 traces in attacks spanning
22 months.

5.5 Validation

The backscatter hypothesis states that unsolicited packets represent responses to
spoofed attack traffic. This theory, which is at the core of our approach, is difficult
to validate beyond all doubt. However, we can increase our confidence significantly
through careful examination of the data and via related experiments.

First, most of the attacks and nearly all of the packets are attributed to backscat-
ter that does not itself provoke a response (e.g., TCP RST, ICMP Host Unreach-
able). Consequently, these packets could not have been used for probing our mon-
itored network, and network probing is not a good alternative explanation for this
traffic.

Next, for a portion of our dataset, we computed the Anderson-Darling test statis-
tic to determine if the distribution of destination addresses seen in each attack is
consistent with a uniform distribution (as predicted by the backscatter hypothesis).
We validated this finding for most attacks at the 0.05 significance level.

We were also able to duplicate a portion of our analysis using data provided by
Vern Paxson taken from several University-related networks in Northern California.
This dataset overlaps three of our traces from February 1, 2001 to February 25,
2001, but only detects TCP backscatter with the SYN and ACK flags set. The
address space monitored was also much smaller, consisting of three /16 networks
( 3
65536

’s of the total IP address space). For 98% of the victim IP addresses recorded
in this smaller dataset, we find a corresponding record at the same time in our
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larger dataset. We can think of no other mechanism other than backscatter that
can explain such a close level of correspondence.

Finally, Asta Networks provided us with data describing denial-of-service attacks
directly detected at monitors covering a large backbone network. While their ap-
proach captures different sets of attacks (in part due to ingress filtering as discussed
in Section 3, and in part due to limited peering in the monitored network), their
data from February 2001 qualitatively confirms our own. In particular, we were
able to match several attacks they directly observed with contemporaneous records
in our backscatter database.

6. RELATED WORK

While denial-of-service has long been recognized as a problem [Gilgor 1983; Need-
ham 1994], there has been limited research on the topic. Most of the existing work
can be roughly categorized as being focused on tolerance, diagnosis and localiza-
tion. The first category is composed of both approaches for mitigating the impact
of specific attacks [Cisco Systems 1997; Karn and Simpson 1999] and general sys-
tem mechanisms [Banga et al. 1999; Spatscheck and Peterson 1999] for controlling
resource usage on the victim machine. Usually such solutions involve a quick triage
on data packets so minimal work is spent on the attacker’s requests and the victim
can tolerate more potent attacks before failing. These solutions, as embodied in
operating systems, firewalls, switches and routers, represent the dominant current
industrial solution for addressing denial-of-service attacks.

The second area of research, akin to traditional intrusion detection, is about tech-
niques and algorithms for automatically detecting attacks as they occur [Fullmer
and Romig 2000; Romig and Ramachandran 1999]. These techniques generally in-
volve monitoring links adjacent to the victim and analyzing patterns in the arriving
and departing traffic to determine if an attack has occurred.

The final category of work focuses on identifying the source(s) of DoS attacks in
the presence of IP spoofing. The best known and most widely deployed of these
proposals is so-called ingress and egress filtering [Cisco Systems 1999; Ferguson and
Senie 2000]. These techniques, which differ mainly in whether they are manually
or automatically configured, cause routers to drop packets with source addresses
that are not used by the customer connected to the receiving interface. Given
the practical difficulty of ensuring that all networks are filtered, other work has
focused on developing tools and mechanisms for tracing flows of packets through
the network independent of their ostensibly claimed source address [Bellovin 2000;
Burch and Cheswick 2000; Dean et al. 2001; Savage et al. 2000; Song and Perrig
2001; Stone 2000].

There is a dearth of research concerned with quantifying attacks within the In-
ternet – denial-of-service or otherwise. Probably the best known prior work is
Howard’s Ph.D. thesis – a longitudinal study of incident reports received by the
Computer Emergency Response Team (CERT) from 1989 to 1995 [Howard 1998].

Since then, several projects have started to collect large-scale attack data – pri-
marily driven by logs from firewalls and intrusion detection systems. Among the
better known of these is Symantec’s DeepSight system and the SANS Internet
Storm Center. Yegneswaran et al. provide an analysis of this latter data source, al-
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though it is largely focused on port scanning activity as opposed to denial-of-service
attacks [Yegneswaran et al. 2003].

An alternative approach for detecting and characterizing denial-of-service attacks
was recently presented by Hussain et al. [Hussain et al. 2003]. Their work uses the
spectral behavior of attack dynamics to infer the number of distinct sources behind
a given attack. This work holds promise at exploring the dynamics of individual
attacks (as observed on a given network) but does not provide any data about
global prevalence of such attacks. To our knowledge, our research remains the only
quantitative and empirical study of wide-area denial-of-service attacks to date.

7. CONCLUSIONS

In this paper we have presented a new technique, “backscatter analysis”, for esti-
mating denial-of-service attack activity in the Internet. Using this technique, we
have observed widespread DoS attacks in the Internet that are distributed among
many different domains and ISPs. The size and length of the attacks we observe
are heavy-tailed, with a small number of large and long attacks, surrounded by
thousands of small short attacks. Moreover, we see a surprising number of attacks
directed at a few foreign countries, at home machines, and towards particular In-
ternet services. Finally, during three years we have witnessed over 68,000 attacks
– with little sign of abatement – and it has become clear that such attacks are a
common threat for those depending on the Internet.
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