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Abstract

The development of realistic topology generators that
produce faithful replicas of Internet topologies is critical
for conducting realistic simulation studies of Internet pro-
tocols. Despite the volume of research in this area the last
several years, current topology generators fail to capture an
inherent aspect of the autonomous–system (AS) topology of
the Internet, namely the fact that AS links reflect business
agreements between competing entities, which impose re-
strictions on how traffic is routed between ASs. These re-
strictions result in inflated AS paths and generally in sub-
optimal routing in the Internet. In this work, we first eval-
uate the importance of modeling AS relationships when
conducting accurate and realistic simulation studies. We
demonstrate that ignoring AS relationships produces differ-
ent simulation results than modeling AS relationships based
on known relationships between Internet Internet Service
Providers (ISPs). Then, we introduce a framework for gen-
erating synthetic AS topologies annotated with realistic re-
lationships. In addition to modeling the degree distribu-
tion of a network, which is the property that most existing
topology generators model, our framework also models new
properties that capture the characteristics of AS relation-
ships. Finally, we propose a novel algorithm for generating
synthetic graphs, annotated with AS relationships, that re-
produce these AS relationships-aware properties.

1 Introduction

In recent years several efforts have focused on develop-
ing topology models and topology generators that produce
synthetic topologies with characteristics that accurately re-
flect properties of real Internet networks. Accurate topolo-
gies are essential for performing realistic simulations of new
protocols, routing, and architectures. They are especially
important in areas such as multicasting, routing and overlay
networks, where protocol performance is strongly coupled
with the structure of the underlying topology. For example,
in the case of multicasting, the study in [18] demonstrated

that the performance of a well-studied protocol changed
drastically after deploying more accurate topology models.
For this reason, accurate and realistic topology generators
are of paramount importance in conducting reliable perfor-
mance evaluation experiments.

Here, we take at a completely new approach to topology
generation, which is based on the idea of modeling differ-
ent node relationships. Node relationships are an inherent
aspect of many real networks. Links of AS topologies repre-
sent different types of business relationships, like customer-
to-provider (c2p) peer-to-peer (p2p) and sibling-to-sibling
(s2s) relationships [10]. Links in social networks represent
different types of social relationships while links in protein
networks represent different types of protein interactions.
However, current network topology generators overlook the
diversity of node relationships by modeling networks as ab-
stract undirected graphs. Such graphs identify all the links
of a network as equivalent, missing the different types of
node relationships. Yet, knowing the types of relationships
between network nodes and having realistic models of these
relationships is very important for several applications.

The main application that motivates this work is deter-
mining routing AS paths in synthetic AS topologies. Rout-
ing paths between ASs are determined by AS relationships.
These relationships result in the valley-free routing model
which states that every AS path has a hierarchical struc-
ture [10]. Given an AS topology annotated with inferred
AS relationships, we can compute the policy-compliant
AS path between any two ASs using a modified version
of Dijkstra’s algorithm [14]. On the other hand, without
knowing AS relationships we are forced to assume shortest
path routing which leads to unrealistic results. It is well
known that actual AS paths in the Internet are substantially
longer [22, 21, 11, 20] than the shortest path. Unfortu-
nately, the shortest path routing assumption is made by de-
fault in most simulation studies without further investiga-
tion. The reason is that all existing topology generators do
not model AS relationships, which makes it impossible to
simulate path inflation effects.

The second reason for which modeling of node relation-
ships is important is that it enables us to produce more
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accurate synthetic topologies. Different types of links are
likely to exhibit different topological properties. For exam-
ple, borrowing the terminology of [13], c2p links are more
radial, in that they connect small degree to large degree ASs.
However, p2p links are more tangential in that they connect
ASs of similar degree. To capture this diversity of proper-
ties, it is necessary to build a topology generator that takes
into account the existence of different types of links that
may have different topological characteristics. Then, we
can effectively model a wider range of topological proper-
ties than can currently available generators.

In this work, we first focus on the importance of mod-
eling AS relationships in conducting accurate and realistic
network simulations. We identify and discuss the following
three shortcoming of ignoring AS relationships: 1) AS paths
are substantially shorter than in reality, 2) the traffic load on
AS links and on individual ASs is substantially lower than in
reality, and 3) the number of alternative AS paths available
to an AS is substantially larger than in reality. We use sim-
ulation experiments to demonstrate these shortcoming and
to show how they can effect commonly used performance
evaluation metrics.

Next, we introduce a framework for modeling AS rela-
tionships and for generating realistic AS topologies anno-
tated with realistic AS relationships. We start by identifying
topological properties that capture important AS relation-
ships characteristics. Then, we use statistical tools to model
these properties in real AS topologies annotated with in-
ferred AS relationships. Finally, we introduce an algorithm
for reproducing these properties in synthetic AS topologies.

In the next section we briefly review related work in the
area of topology modeling and topology generation. Then,
in section 3 we discuss and demonstrate shortcomings of ig-
noring AS relationships in conducting realistic network sim-
ulations. In section 4 we introduce the topological proper-
ties that enable us to model AS relationships. In section 5
we outline our framework for modeling these properties and
for generating synthetic AS graphs. Finally, in section 6 we
conclude our paper and discuss future research directions.

2 Related Work

A large number of published works have focused on
modeling Internet topologies and on developing realistic
topology generators. The first topology generator that be-
came widely known was introduced by Waxman [23]. Wax-
man generator is a variation of the classical Erdos-Renyi
random graphs. Later, after it became evident that networks
do not have a random structure, new generators like GT-
ITM [25] and Tiers [9] emphasized the hierarchical struc-
ture of networks. Consequently, these topology generators
were characterized as structural. In 1999, Faloutsos et al.
discovered that the degree distributions of router- and AS-

level topologies of the Internet follow a power-law. Struc-
tural generators failed to reproduce this power-law, which
triggered a number of new topology generators that tried to
achieve this goal. These newer topology generators can be
classified into causality-aware and causality-oblivious. The
first class includes the Barabasi-Albert (BA) [2] preferen-
tial attachment model and the model by Chang et al. [4]
based on the idea of highly optimized tolerance [3]. These
models grow a network by incrementally adding nodes and
links into a graph based on some evolution process so that
the resulting graph follows a power-law degree distribution.
In the same family belongs the BRITE [15] topology gen-
erator, which employs the BA model to generate synthetic
Internet topologies. On the other hand, causality-oblivious
generators like PLRG [1], Inet [24] and the model by Gkant-
sidis et al. [12] try to match the power-law degree distribu-
tion of the Internet without accounting for different rules
that might drive the evolution of the topology.

3 AS relationships on simulations

AS relationships reflect business agreements between
ASs and can be classified in three categories. In the c2p
category, a customer AS pays a provider AS for transiting
traffic from the customer and also for delivering traffic to
the customer. In the p2p category, two ASs exchange traffic
between their customers but do not exchange traffic from or
to their providers or peers. Two sibling ASs exchange traffic
between their providers, customers, peers or other siblings.
Sibling ASs usually belong to the same organization or to
strongly affiliated organizations. For example, the relation-
ship between the European and North American divisions
of a global ISP would be s2s. To honor these agreements
network administrators configure export policies on BGP
routers according to the following rules:

• Exporting to a provider: When exporting routes to a
provider, an AS advertises routes received from cus-
tomer ASs and local routes. It does not advertise routes
received from peer and provider ASs.

• Exporting to a customer: When exporting routes to
a customer, an AS advertises all its routes, i.e., local
routes and routes received from customer, provider,
peer and sibling ASs.

• Exporting to a peer: When exporting routes to a peer,
an AS advertises routes received from customer ASs
and local routes. It does not advertise routes received
from peer and provider ASs.

• Exporting to a sibling: When exporting routes to a sib-
ling, an AS advertises all its routes, i.e., local routes
and routes received from customer, provider, peer and
sibling ASs.
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Figure 1. Example AS topology annotated
with AS relationships. The topology is ex-
tracted from a real AS topology and the AS
relationships are inferred using the heuris-
tics in [7]. The dotted lines represent short-
est paths between ASs 4, 6 and 8 to AS 2.
The dashed lines represent policy compliant
paths from the same sources to the same
destination.

If all ASs strictly adhere to these export policies, then
every AS path must comply with the following hierarchical
pattern: an uphill segment of zero or more c2p or s2s links,
followed by zero or one p2p link, followed by a downhill
segment of zero or more provider-to-customer (p2c) or s2s
links. The paths that follow this hierarchical structure are
called valley-free [10] or valid.

In addition to export policies, network administrators
also configure route selection policies. The most widely
used route selection policy is that ASs prefer customer
routes over routes through peers or providers. This is be-
cause ASs do not have to pay for sending traffic to a cus-
tomer and also because they tend to avoid congestion at
peering exchange points. This route selection policy is re-
ferred as prefer-customer routing [10].

Routing policies reflect business agreements and eco-
nomic incentives, and for this reason they are deemed more
important than quality of service criteria and thus they take
precedence in the route selection process. Consequently,
suboptimal routing and inflated AS paths often occur. The
study by Gao and Wang [11] used BGP data to measure
the extent of AS path inflation due to valley-free and prefer-
customer routing in the Internet. They found that at least
45% of the AS paths observed in BGP data are inflated by
at least one AS hop and that AS paths can be inflated by as
long as 9 AS hops.

Taking into account such inflation effects is important
for conducting meaningful and realistic simulation studies.

Consider, for example the AS topology in Figure 1 that we
extracted from a real topology1. Directed links represent
c2p relationships that point towards the provider and undi-
rected links represent p2p relationships. If we ignore AS
relationships then the shortest paths from ASs 4, 6 and 8
to AS 2 are shown with dotted lines. On the other hand, if
we account for AS relationships these paths are no longer
valid. In particular, the path 4→3→2 transverses two p2p
links; the path 6→3→2 transverses a p2c link followed by a
p2p link; and the path 8→1→2 transverses a c2p link after
having gone through a p2c link. All these paths violate the
hierarchical structure of the valley-free model and thus are
not used in practice. The paths actually used are the policy
compliant paths marked with dashed lines.

The first effect of taking AS relationships into account
is that paths become longer than the corresponding short-
est paths. From a performance perspective, longer paths
can affect metrics such as end-to-end (e2e) delay, server re-
sponse time, jitter, convergence time and others. To demon-
strate this we simulated the topology in Figure 1 using
BGP++ [8, 5]. BGP++ is a BGP simulation module based
on Zebra routing software. We use a single router for each
AS and configured appropriate export rules between ASs ac-
cording the guidelines discussed above. We set the delay of
each link to 10 milliseconds and the bandwidth to 400kbps.
Then, we configured exponential on/off sources at ASs 4, 6
and 8 that send traffic to AS 2 at a rate of 500kbps. We run
the simulation for 120 seconds; for the first 100 seconds we
wait for routers to converge2 and at the 100th second we
start the traffic sources. We first measure the e2e delay be-
tween the sources and the destination under the following
two configuration scenarios: 1) AS relationships disabled,
and 2) AS relationships enabled.

In Figure 2 we depict the cumulative distribution func-
tion (CDF) of the e2e delays for the two scenarios. First,
notice that the CDF corresponding to simulating AS rela-
tionships is skewed to the right, which means that there is
a significant increase in the e2e delay. In particular, the
average e2e delay with AS relationships enabled is 0.853
seconds whereas without AS relationships it drops to 0.389
seconds. Besides this decrease in the e2e delay, note that
in Figure 2 the CDF corresponding to simulating AS rela-
tionships is much smoother than the second CDF, which
exhibits a step-wise increase. This difference shows that
the e2e delay with AS relationships enabled exhibits a much
higher variability compared to ignoring AS relationships.
This variability is likely to affect other performance metrics
like jitter and buffer occupancy.

1AS numbers have been anonymized since AS relationships are consid-
ered sensitive information by the ISPs.

2Typically routers take much less than 100 seconds to converge, but to
be conservative we used a longer period.
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Figure 2. CDF of e2e delay between traffic
sources and destination.

Table 1. Total number of paths for each AS
with AS relationships enabled and AS rela-
tionships disabled.

AS number 1 2 3 4 5 6 7 8
AS relationships enabled 12 9 10 8 8 7 9 6
AS relationships disabled 12 13 16 15 13 15 15 13

A second implication of policy routing is that ASs have
fewer alternative AS paths. For example, in Figure 1 when
ignoring AS relationships AS 7 has three (one through each
neighbor) disjoint paths to reach destination 2. One the
other hand, with AS relationships enabled, AS 7 has only
one possible path through AS 5, since the other two paths
are not valley-free. In Table 1, we show the total number
of paths we find in the BGP tables of the 8 simulated ASs.
The consistent decrease in the number of paths when AS
relationships are enabled highlights that ignoring AS rela-
tionships increases the path diversity of the ASs in a simula-
tion. Path diversity is a property that can play an important
role in simulations measuring such properties as network
resilience, vulnerability to attacks, links and router failures,
load balancing, multi-path routing, convergence of routing
protocols and others.

An additional implication of policy routing is that due
to the smaller number of available AS paths as compared
to shortest path routing, some ASs or AS links are likely to
receive greater load than when assuming shortest path rout-
ing. For example, in Figure 1 the dashed paths share the
links from AS 7 to AS 5. On the other hand, when assum-
ing shortest path routing the three paths are mostly disjoint,
with only the link between AS 3 and AS 2 being shared by
two flows. Thus, AS links and ASs will receive greater load
than when ignoring AS relationships, which is likely to pro-

Table 2. Average bandwidth per flow with AS
relationships enabled or disabled.

Flow 4 → 2 6 → 2 8 → 2
AS relationships enabled

113 164 121
Bandwidth (Kbps)

AS relationships disabled
202 196 397

Bandwidth (Kbps)

duce more packet drops, increased delay, congestion, router
failures and other important events. In our simulations, we
find that because of the increased load on the links between
AS 7 and AS 5 the average bandwidth of the three flows de-
creases substantially. In Table 2, we list the average band-
width for each of the three flows with and without AS rela-
tionships enabled.

In summary, we highlight that ignoring AS relationships
produces the following important artifacts:

• AS paths are substantially shorter than in reality.

• The number of alternative AS paths available to an AS
is substantially larger than in reality.

• The traffic load on AS links and on individual ASs is
substantially lower than in reality.

4 AS Relationships-aware topological prop-
erties

To represent AS topologies annotated with AS relation-
ships, we use a graph G with edges annotated as c2p or
p2p. c2p edges are directed from the customer AS to the
provider AS, while p2p edges are undirected. We call such
graphs G annotated graphs. Annotated graphs can also be
used to represent other link characteristics, like link band-
widths, link latencies, or node characteristics, like router
vendor models or router locations. In this study, we focus
on using annotated graphs to model AS topologies annotated
with AS relationships.

The topological property that most state-of-the-art topol-
ogy generators reproduce is the degree distribution of a net-
work. For our topology generator we choose to reproduce
the following three properties.

AS-degree distribution. Along the lines of existing
topology generators, we reproduce the degree distribution
of the AS topology of the Internet. The degree distribution
tells us how many nodes of each degree are in the network.

Annotation-degree distributions. The degree distribu-
tion of an AS topology does not convey any information
about the different types of AS relationships in a topology.
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To take into account AS relationships we look at the num-
ber of customers, providers and peers each AS has. We de-
fine the customer-degree dp2c of an AS as the number of
its customers, the provider-degree dc2p as the number of
its providers and the peer-degree dp2p as the number of its
peers. We collectively refer to dp2c, dc2p and dp2p as anno-
tation degrees. The second property we select to reproduce
is the annotation-degree distributions of an AS topology.
These distributions are a natural generalization of the degree
distribution of a network that take into account the presence
of different types of AS relationships. The customer-degree
distribution tells us how many nodes with a specific number
of customers are in the network. Similarly, the provider-
and peer-degree distributions tell us how many nodes with
a specific number of providers and peers, respectively, are
in the network.

Annotation-degree correlations. The annotation-
degree distributions do not tell us anything about the cor-
relations between these degrees, i.e., how many customers,
providers and peers a specific AS has. Correlations between
different annotation degrees appear often in the Internet.
For example, large tier-1 ASs typically have a large number
of customers, i.e., large dp2c, no providers, i.e., zero dc2p,
and a small number of peers, i.e., small dp2p. On the other
hand, medium size ISPs have a small set of customers, sev-
eral peers, and few providers. Note, that simply ignoring
these correlations can lead to graphs that follow the previ-
ous two properties, but have artifacts, like high degree nodes
with many providers.

The exact correlations between the annotation de-
grees of an AS are captured in the joint distribu-
tion P (dp2c, dc2p, dp2p), which is defined as the num-
ber n(dp2c, dc2p, dp2p) of nodes in the network with dp2c

customers, dc2p providers and dp2p peers over the total
number of nodes n:

P (dp2c, dc2p, dp2p) = n(dp2c, dc2p, dp2p)/n.

We call this distribution the joint annotation-degree distri-
bution (JADD). JADD is a multivariate distribution and its
marginals3 are the annotation-degree distributions, i.e., our
second property. From JADD we can also derive the AS-
degree distribution simply by summing the annotation de-
grees of a node. Consequently, JADD is a union of the three
properties we have discussed thus far.

5 AS Topology Generator

In this section we outline our framework for modeling
and reproducing the JADD of real AS topologies. Our topol-

3Given three jointly distributed random variables X , Y and Z, the
marginal distribution of X is the probability distribution of X ignoring
information about Y and Z, typically calculated by summing or integrat-
ing the joint probability distribution over Y and Z.

ogy generation scheme proceeds in two phases. In the first
phase, given the number of nodes N in the target graph we
produce N degree triplets di

p2c, di
c2p and di

p2p, 1 � i � N ,
such that the JADD of these triplets follows the JADD of
real AS topologies. In the second phase given the N degree
triplets we contract the annotated graph.

5.1 Modeling JADD

We model JADD using copulas [17], an powerful statis-
tical tool that fully quantifies the dependence among mul-
tiple random variables. In contrast to other well-known
correlation metrics, like Pearson’s coefficient, Kendall’s tau
or Spearman’s rho, copulas do not provide a single scalar
value but a function that can capture complex correlations
and fine-grained details of the dependence structure.

According to Sklar’s theorem [19], any continuous4 3-
dimensional multivariate cumulative distribution function
(CDF) F can be written in the form:

F (x1, x2, x3) = C(F1(x1), F2(x2), F2(x3)), (1)

where F1, F2 and F3 denote the marginal CDFs. The
function C is called a copula and has uniform distributed
marginals in [0, 1]3. Given the copula function and the
marginal CDFs F1, F2 and F3, we can determine the joint
distribution F using equation 1. Thus, copulas have two
important properties: 1) given the marginals they fully de-
scribe the joint distribution F , and most importantly, 2) they
enable the practitioner to model the dependence structure
independently of the marginal distributions.

Modeling marginal distributions is a fairly easy task,
since there exist a wealth of statistical methods and distribu-
tions for matching univariate samples. To find the appropri-
ate marginal distributions we constructed an AS topology
from RouteViews [16] data. We downloaded a BGP table
from the collector route-views2.oregon-ix.net
on 07/18/2005 and extracted AS links, ignoring private AS
numbers and AS sets. We inferred c2p and p2p relation-
ships using the heuristics in [7, 6]. This way, we derived a
real AS topology annotated with c2p and p2p relationships.
From this topology, we extracted the customer-, provider-
and peer-degree distributions and evaluated alternative fit-
ting models. We find that the customer-degree distribu-
tion can be well approximated using a generalized Pareto
distribution (GPD). Moreover, the peer-degree distribution
can be accurately modeled with a pair of GDPs, one for
the body and one for the tail of the distribution. For the
provider-degree distribution, we were not able to fit a para-
metric model. For this reason, we model the distribution by

4Degree distributions are inherently discrete distributions. Neverthe-
less, they can be turned into continuous by adding a random uniform
noise U(−0.5, 0.5) to each degree sample.
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treating its six highest quantiles as invariant. This approx-
imation results in underestimating the degree of the nodes
in the tail of the distribution. However, the tail accounts
for only 2% of the nodes and the maximum provider-degree
(17) is relatively small. Thus our approximation is not ex-
pected to induce significant bias. The first step to reproduce
JADD is to generate N customer, N provider and N peer
degrees from the corresponding fitted models.

Next, we model the copula by resampling historical cor-
relation data. We first construct a set with all the degree
triplets of the collected AS topology. Then, we sample N
degree triplets from this set. These N triplets include infor-
mation on both the actual annotation degrees and the corre-
lations between them. We extract the correlation informa-
tion by mapping each triplet into the [0, 1]3 space. To do so,
we replace each annotation degree with its rank normalized
by 1/N . The resulting triplets (ui

p2c, u
i
c2p, u

i
p2p) reflect the

correlations between the annotation degrees in the original
AS topology and are independent of the actual annotation
degrees. Each of the ui

p2c, ui
c2p and ui

p2p is uniformly dis-
tributed in [0, 1].

Finally, we combine the (ui
p2c, u

i
c2p, u

i
p2p) triplets with

the generated annotation degrees to derive the final de-
gree triplets that follow the JADD of the original topol-
ogy. Each (ui

p2c, u
i
c2p, u

i
p2p) triplet is resolved into a degree

triplet (di
p2c, d

i
c2p, d

i
p2p) by mapping each ui

p2c, ui
c2p, ui

p2c

into the inverse CDF of the corresponding annotation de-
grees. For example, we map ui

p2c into di
p2c, where di

p2c is
the value of the inverse CDF of the generated customer de-
grees at the point ui

p2c. Thus, we derive the N annotation-
degree triplets (di

p2c, d
i
c2p, d

i
p2p), 1 � i � N , that follow

the JADD of the original topology.

5.2 Generating annotated AS topologies

Given the N annotation-degree triplets, we construct a
random annotated graph using the following algorithm:

1. For each of the generated triplets, we introduce a node
with di

p2c customer stubs, di
c2p provider stubs and di

p2p

peer stubs5.

2. We connect stubs by performing one random matching
between p2p stubs and a second random matching be-
tween c2p and p2c stubs. If the number of p2p stubs
is odd or if the number of c2p stubs is not equal to
the number of p2c stubs, then some stubs will remain
unmatched. We ignore such stubs.

3. Random matchings can lead to self-loops and multi-
edges. We extract the final graph by removing self-
loops and multi-edges.

5A stub is a half edge that is adjacent to a single node. By connecting
two stubs we get a regular edge.

This algorithm for constructing random graphs is a gen-
eralization of the algorithm used by the PLRG topology
generator [1]. The PLRG algorithm uses random match-
ing to create an undirected graph ignoring AS relationships.
We extend this algorithm by using different types of stubs
to account for customer, provider, and peer edges. Then, we
perform two random matchings6 between stubs of the same
type and of compatible direction. A limitation of the PLRG
topology generator is that it produces graphs that contain
self-loops and multi-edges. Self-loops and multi-edges usu-
ally appear on or between large degree ASs. This is because
large degree ASs have many stubs and thus it is quite likely
that the random matching will match two stubs that belong
to the same AS or more then two stubs between two ASs. In
our generalization this two problems are diminished. This
is because edges of high degree ASs are mainly customer
edges that can only connect to customer ASs, which usually
are of small degree, and not to other high degree ASs.

To make a first evaluation of the accuracy of the resulting
synthetic graphs, we generate a topology with 20,305 ASs,
which is the number of ASs we found in the AS topology
we constructed from RouteViews. Then, we compare the
customer-, provider-, and peer-degree distributions of the
synthetic topology with the corresponding distributions of
the real topology. In Figure 3 we plot the CDF of the cus-
tomer, provider, and peer degrees. The empty points show
the distributions observed in the real AS topology, whereas
the solid points depict the same distributions in the synthetic
topology. We first observe that the customer distribution ex-
hibits the longest tail, followed by the peer distribution, fol-
lowed by the provider distribution, which has a rather short
tail. The maximum number of customers is 2,384, the max-
imum number of peers is 434 and the maximum number of
providers is 17. These distributions confirm that different
types of relationships can have radically different proper-
ties as we argued in the introduction. Next, we see that the
generated degree distributions follow closely the real de-
gree distributions, which highlights the effectiveness of our
marginal models.

6 Conclusions

We highlighted the problems that the Internet commu-
nity is facing due to the lack of AS relationship models and
discussed its implications on conducting realistic and reli-
able simulation studies. We used simulation experiments
to demonstrate that ignoring AS relationships can change
a wide range of performance metrics, which are typically
used by researchers in performance evaluation studies. We

6More generally, we need to perform as many random matchings as the
number of different link annotations. Thus, if we also want to model s2s
links, then we can add s2s stubs and perform a random matching between
them.
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draw motivation from our findings first to note that short-
est path routing is a questionable assumption that should
be used with great care in simulation studies and secondly
to introduce a novel topology generation framework. Our
framework improves the state-of-the-art by producing AS
graphs that follow the degree distribution of the Internet as
well as two new properties: 1) the annotation-degree dis-
tributions, and 2) the joint annotation-degree distribution
(JADD). These two properties extract information about the
number of customers, providers and peers of ASs in the In-
ternet and enable us to create synthetic AS graphs with re-
alistic customer, provider and peer assignments. We use
powerful statistical tools to model these properties on real
AS topologies and, finally, we introduce an algorithm to re-
produce these properties in synthetic AS topologies.

Soon, we intend to supplement our framework with a
comprehensive evaluation of the properties of the resulting
graphs. An additional promising venue is to use our anno-
tated graphs to model router level topologies and other in-
teresting network characteristics, like link bandwidths, link
latencies, router vendor models or router locations. Finally,
we will make publicly available a new topology generator
capable of modeling and generating annotated graphs.
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