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We establish a connection between observed scale-free topologies and hidden hyperbolic geome-
tries of complex networks. Hidden geometries are coarse metric abstractions of the approximately
hierarchical community structure of complex networks, used to estimate node similarities. Space
expands exponentially in hyperbolic geometry, and scale-free topologies emerge as a consequence of
this exponential expansion. Fermi-Dirac statistics connects observed topology to hidden geometry:
observed edges are fermions, hidden distances are their energies; the curvature of the hidden space
affects the heterogeneity of the degree distribution, while clustering is a function of temperature.
Understanding the connection between topology and geometry of complex networks contributes to
studying the efficiency of their functions, and may find practical applications in many disciplines,
ranging from Internet routing to brain, cell signaling, or protein folding research.
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The topology of many complex networks is scale-free.
The distribution P (k) of node degrees k in them often
follows power laws P (k) ∼ k−γ with γ ∈ [2, 3] [1, 2, 3, 4].
These networks also exhibit strong clustering, i.e., high
concentration of triangular subgraphs [1, 2, 3, 4]. Our
previous work [5] demonstrated that the clustering pe-
culiarities of complex networks, and in particular their
self-similarity, finds a natural explanation in the exis-
tence of hidden metric spaces underlying the network and
abstracting the intrinsic similarities between its nodes.
Here we show that the first property—the scale-free
topology of complex networks—appears as a simple con-
sequence of negative curvature of hidden spaces. That is,
we argue that these spaces are hyperbolic.

The main metric property of hyperbolic geometry is
the exponential expansion of space. For example, in the
hyperbolic plane, which is the two-dimensional hyper-
bolic space of constant curvature −1 (Fig. 1), the length
of a circle and the area of a disc of radius R are 2π sinhR
and 2π(coshR − 1) [6], both growing as ∼ eR. From a
purely metric perspective, the hyperbolic plane is equiva-
lent to an e-ary tree, i.e., a tree with the average branch-
ing factor equal to e. Indeed, in a b-ary tree the surface
of a sphere or the volume of a ball of radius R, measured
as the number of nodes lying at or within R hops from
the root, grow as bR. Informally, hyperbolic spaces can
therefore be thought of as “continuous versions” of trees.

To see why this exponential expansion of hidden space
is intrinsic to complex networks, observe that their topol-
ogy represents the structure of connections or interac-
tions among distinguishable, heterogeneous elements ab-
stracted as nodes. The heterogeneity implies that nodes
can be somehow classified, however broadly, into a tax-
onomy, i.e., nodes can be split into large groups consist-
ing of smaller subgroups, which in turn consist of even

FIG. 1: Artistic visualization of the Poincaré disc model of
the hyperbolic plane by Silvio Levy, based on M. C. Escher’s
Circle Limit III, with the permission from the Geometry Cen-
ter, University of Minnesota. The exponential expansion of
fish illustrates the exponential expansion of hyperbolic space.
All fish are of the same hyperbolic size, but their Euclidean
size exponentially decreases, while their number exponentially
increases with the distance from the origin.

smaller subsubgroups, etc. The relationships between
such groups and subgroups, called communities [7], can
be approximated by tree-like structures, in which the
distance between two nodes estimates how similar they
are [8, 9]. Importantly, the node classification hierarchy
need not be strictly a tree. Approximate “tree-ness,”
which can be formally expressed solely in terms of the
metric structure of a space [10], makes the space hyper-
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FIG. 2: Mapping between discs in the Euclidean space R2 and
points in the hyperbolic space H3. The x, y-coordinates of the
disc centers in R2 are the x, y-coordinates of the corresponding
points in H3. The z-coordinates of these points are the radii of
the corresponding discs. This mapping represents the tree-like
hierarchy among the discs. Two points in H3 are connected by
a solid link if one of the corresponding discs is the minimum-
size disc that fully contains the other disc. This hierarchy
is not perfect, and the tree structure is approximate. The
darkest disc in the middle partially overlaps with three other
discs at different levels of the hierarchy. Two points in H3 are
connected by a dashed link if the corresponding discs partially
overlap. These links add cycles to the tree.

bolic.
Fig. 2 illustrates a very general mechanism explaining

why a hyperbolic, tree-like geometry naturally character-
izes the community-based node similarity spaces underly-
ing complex networks. In this illustration, communities,
i.e., abstract sets of nodes, are represented by the Eu-
clidean discs in R2. Each disc in R2 is mapped to a point
in the Poincaré half-space model of the 3-dimensional hy-
perbolic space H3. Colloquially, two discs are similar if
their overlap is approximately equal to each disc, i.e., if
their radii are similar and centers are close in R2. But
the shown mapping has the property that if two discs in
R2 are similar, then the two points representing them in
H3 are hyperbolically close, and vice versa. Formally, if
the ratio of the discs’ radii r, r′ is bounded by a constant
C, 1/C 6 r/r′ 6 C, and the Euclidean distance between
their centers is bounded by Cr, then one can show [10]
that the hyperbolic distance between the corresponding
points in H3 is bounded by some constant C ′, which de-
pends only on C, and not on the disc radii or center lo-
cations. The converse is also true. Therefore, similarity
distances between sets and hyperbolic distances between
their one-point representations are congruent measures.

We now put these intuitive considerations to qualita-
tive grounds. We want to see what network topologies
emerge in the simplest possible settings involving hidden
hyperbolic metric spaces. Specifically, let us form a net-
work of N � 1 nodes located in the simplest hyperbolic

space of curvature −1, i.e., the hyperbolic plane. Since
the number of nodes is finite, the area that nodes occupy
is bounded. Let it be a disc of radius R � 1. The sim-
plest node distribution within the disc is uniform, mean-
ing that the node density ρ(r) at distance r from the disc
center is

ρ(r) =
sinh r

coshR− 1
≈ er−R ∼ er. (1)

Next, we have to specify the connection probability p(x),
which is the probability that two nodes at hyperbolic
distance x are connected. The only requirement to this
function is that it must be integrable [11]. We first con-
sider the simplest case, the step function

p(x) = Θ(R− x), (2)

and justify this choice later. This p(x) connects each pair
of nodes if the distance between them is not larger than
R.

At this point we have a network formed, and we can
compute the average degree k(r) of nodes at distance r
from the disc center. Such nodes are connected to all
nodes in the intersection area of the two discs of the
same radius R, one in which all nodes reside, and the
other centered at distance r from the center of the first
disc:

r

R

R

Since the node distribution is uniform, k(r) is propor-
tional to the area of this intersection. In Euclidean ge-
ometry this area is given by a trivial expression. In hy-
perbolic geometry the analogous expression is far from
trivial. We have computed it, it matches perfectly the
simulations, but it is rather long, so that we omit it here
for brevity. What matters is that k(r) decreases expo-
nentially, k(r) ∼ e−r/2. Therefore, the inverse function
is logarithmic, r(k) ∼ −2 ln k, and the node degree dis-
tribution in the network is approximately a power law,

P (k) ≈ ρ[r(k)] |r′(k)| ∼ k−3. (3)

We can generalize the node density in Eq. (1):

ρ(r) ≈ αeα(r−R) ∼ eαr, α > 0. (4)

In this case we cannot compute k(r) exactly, but the
approximate expression reads

k(r) ≈ N
{
ξe−

1
2 r + (1− ξ) e−αr

}
, ξ =

2
π

α

α− 1
2

. (5)

The limit α → 1/2 is well defined, k(r) →
N
(
1 + r

π

)
e−

1
2 r, and we see that k(r) ∼ e− 1

2 r if α > 1/2,
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FIG. 3: Visualization of a modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ =
4.98 embedded in the hyperbolic disc of radius R = 15.47.
The Euclidean distance between a node and the origin at the
disc center, shown as the cross, represents the true hyperbolic
distance between the two. The Euclidean distance between
any two nodes is not equal to the hyperbolic distance between
them, as indicated by the shape of the shaded hyperbolic disc
centered at the circled node located at distance r = 10.60 from
the origin. The hyperbolic radius of this disc is also R, and
according to the model, the circled node is connected to all the
nodes lying in this disc. The curves show the hyperbolically
straight lines, i.e., geodesics, connecting the circled node and
the nodes in its disc that are closer to the origin.

and k(r) ∼ e−αr otherwise. Therefore the degree distri-
bution in the network is

P (k) ∼ k−γ , with γ =

{
2α+ 1 if α > 1

2 ,

2 if α 6 1
2 .

(6)

Given Eq. (5), it is easy to see that selecting R according
to N = c eR/2, where c is a constant, fixes the average de-
gree in the network. Fig. 3 visualizes one small network
generated by this model. This network looks conceptu-
ally similar to well-known visualizations of real scale-free
networks [12, 13].

We now pause and approach the problem from a differ-
ent angle. Suppose we formally want to generate scale-
free networks by assigning to N nodes two hidden vari-
ables (r, θ), with r distributed exponentially on [0, R] as
in Eq. (4), and θ being uniform on [0, 2π]. We want the
expected degree κ of a node to depend only on r. We then

see that to produce a network with the expected degree
distribution ρ(κ) = κγ−1

0 (γ − 1)κ−γ , we must have

κ = κ0e
ζ
2 (R−r),

ζ

2
=

α

γ − 1
, N = c e

ζ
2R, (7)

where ζ and c are some constants, and κ0 is the mini-
mum expected degree. This change of variables changes
our perception of a node. Its geometric attribute r, radial
coordinate, becomes its topological attribute κ, expected
degree. In the κ-variables, nodes do not have any radial
coordinates, they are effectively located on a Euclidean
circle S1 of some radius, which can be set without loss
of generality to N/(2π), so that the node density on the
circle is fixed to 1 [5]. Measured over this circle, the
distance d between two nodes with expected degrees κ
and κ′ is proportional to the difference of their angular
coordinates ∆θ, d = N∆θ/(2π). As shown in [5], the
connection probability can be any integrable function of
d/(µκκ′), where µ is a constant that depends on the av-
erage degree. Eq. (7) translates this observation to the
r-variables to yield that the connection probability can
be any integrable function of x−R, where the new effec-
tive distance x is

x = r + r′ +
2
ζ

ln
∆θ
2
. (8)

The hyperbolic distance between two points with polar
coordinates (r, θ) and (r′, θ′) in the hyperbolic space H2

of curvature K = −ζ2 is cosh ζx = cosh ζr cosh ζr′ −
sinh ζr sinh ζr′ cos ∆θ, which for sufficiently large r, r′,
and ∆θ is closely approximated by

x = r + r′ +
2
ζ

ln sin
∆θ
2
. (9)

Therefore, parameter ζ in Eq. (7) is the square root of
curvature −K of the hyperbolic space. The subtle dif-
ference between the truly hyperbolic distance in H2 with
K = −ζ2 in Eq. (9), and the effective distance in S1 in
Eq. (8) has virtually no effect on any topological prop-
erty of generated networks, and it justifies a posteriori
the choice of the connection probability as a function of
x−R in Eq. (2).

We thus have a different view on hyperbolic geometry.
We can start with a scale-free network embedded in an
asymptotically flat Euclidean space, and then naturally
redefine distances in this space, Eqs. (7,8), to account for
the topological, degree-induced, hierarchy among nodes.
The result of this redefinition is an effective hyperbolic
geometry, virtually identical, Eqs. (8,9), to the true hy-
perbolic geometry representing the hidden, similarity-
based hierarchy. Is this equivalence “coincidental”?

To answer this question, we consider the Fermi con-
nection probability

p(x) =
1

1 + e
ζ

2T (x−R)
=

1

1 +
(

d
µκκ′

) 1
T

, (10)
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where T is the temperature and µ = c/(πκ2
0). One moti-

vation for this connection probability is that it generates
graphs belonging to the ensemble of exponential random
graphs [14]. From a physical perspective, graph edges are
non-interacting fermions with energies equal to their hid-
den hyperbolic distances, and R is the chemical potential
in the grand canonical sense, i.e., it is defined by the con-
dition that k̄N/2, the number of edges/fermions, is fixed
on average. At T → 0 Eq. (10) converges to the step
function in Eq. (2), and the network is in the strongly
degenerate ground state of the system. As we heat it up,
particles explore higher-energy states, i.e., edges connect
longer distances, which affects clustering. At T → 0,
clustering is maximized. It monotonically decreases with
T , and at T → 1 we have a phase transition with cluster-
ing going to zero, and network losing its cold-state metric
structure. Clustering remains zero for all T > 1.

Fermi-Dirac statistics thus provides a physical inter-
pretation of the “coincidence” between the true hyper-
bolic geometry induced by hidden similarities, and the
effective one, due to observable node degrees. We can
freely switch between the two views on the hierarchi-
cal nature of complex networks using Eqs. (7,10). These
equations also establish a formal equivalence between the
S1 and H2 models we introduced in [5] and here. The
two models are congruent in terms of the topology of
networks that they produce, but if we are to study other,
geometric properties of these networks, such as their nav-
igability [15], then it does matter a lot what distances,
spherical d native to S1 or hyperbolic x native to H2,
we use to navigate a network. The latter distances x
are dominated by r + r′, minus some small θ-dependent
corrections. This effect can be observed in Fig. 3, where
some hyperbolic geodesics are shown. They follow closely
the radial directions between the nodes and the origin.
Spherical distances d are the other extreme, as their gra-
dient lines lie in the orthogonal tangential directions.

Our model has three parameters. The first, tempera-
ture T , controls clustering at T < 1. In this cold regime,
the exponent of the degree distribution γ depends only
on the second parameter, ratio α/ζ: γ = 2α/ζ + 1 if
α/ζ > 1/2, and γ = 2 otherwise. Nodes are distributed
uniformly in the hyperbolic space if α = ζ, in which case
γ = 3. We can think of α as the logarithm of the aver-
age branching factor in the underlying hierarchy. Only
in relation to the square root ζ =

√
−K of the hidden

space curvature K does this branching factor affect the
observed network topology. We can thus set α = 1/2
without loss of generality, so that γ = 1/ζ+ 1 is fully de-
fined by curvature K > −1. At T > 1,

∫
dx/(1 + x1/T )

diverges, and the chemical potential is no longer given by
Eq. (7) but by N = c e

ζ
2T R. In this hot regime, cluster-

ing is always zero, and γ also depends on temperature,
γ = T/ζ + 1. Therefore at T →∞ the graph ensemble is
identical to classical random graphs, as all fermions are
uniformly distributed across all energies, i.e., all pairs of
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FIG. 4: Modeled networks vs. the Internet. The degree
distribution P (k), average nearest neighbors degree k̄nn(k),
and degree-dependent clustering coefficient c̄(k) are shown for
the skitter (average degree k̄ = 6.29 and average clustering
C̄ = 0.46) and Border Gateway Protocol (BGP) (k̄ = 4.68,
C̄ = 0.29) views of the Internet from [16], and for modeled
networks with curvature K = −0.83 and two values of tem-
perature T , 0.47 (k̄ = 6.03, C̄ = 0.44) and 0.71 (k̄ = 4.85,
C̄ = 0.25).

nodes are connected with the same probability regardless
the hidden distance between them, and the network loses
its cold-state hierarchical structure. Combining the cold
and hot regimes,

γ =


1/ζ + 1 if T < 1 and ζ < 1,
T/ζ + 1 if T > 1 and ζ < T ,
2 otherwise.

(11)

The last parameter, c in H2 or µ = c/(πκ2
0) in S1, fixes

the average degree in the network:

c ≈

{
k̄ sinπT

2T (1− ζ)2 ≈ κ2
0

sinπT
2k̄T

if T < 1,

k̄
(
π
2

) 1
T T−1

T 3 (T − ζ)2 if T > 1.
(12)

At T →∞, c = k̄. With these parameters, the model can
generate classical random graphs, and scale-free networks
with any average degree, power-law exponent γ > 2, and
clustering. In Fig. 4 we see that the curvature and tem-
perature of the Internet are approximately K = −0.83
and T = 0.6± 0.1.

In summary, we have shown that hyperbolic geometry
naturally abstracts the two types of hierarchy in complex
networks. The first hierarchy reflects a similarity-based
community structure; the second is induced by node de-
grees. Scale-free degree distributions appear as a conse-
quence of the exponential expansion of hyperbolic space,
which is a metric space, its triangle inequality explaining
strong clustering [5]. We have thus established a con-
nection between the main properties of hyperbolic ge-
ometry and complex networks topology. We have also
shown that Fermi-Dirac statistics establishes the congru-
ency between the two hierarchies, hidden and observed.
Observed edges are fermions, their energies are hidden
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distances. The curvature of the hidden space controls the
heterogeneity of the degree distribution, while cluster-
ing is a function of temperature. This analogy may lead
to novel applications of the standard tools of statistical
mechanics to the analysis of complex networks [14, 17],
which can be informally thought of as negatively curved
containers of ultracold fermions.

In this work we make a step forward specifying the
common structure of hidden metric spaces underlying
real networks. Discoveries of the network-specific struc-
ture of such spaces may find practical applications in
many domains of science and engineering. Such poten-
tial applications include areas where the right estimate
of node similarity is a key, e.g., recommender systems or
other forms of data mining. Another class of applications
is related to transport phenomena in networks, where
hidden spaces may be used to propagate information, or
other forms of media, towards specific destinations with-
out global knowledge of network topology [15]. Examples
include brain, cell signaling, protein folding processes,
and our main interest, Internet routing. A question of
special interest is whether the hyperbolic metric space
explanation of the structure of complex networks is (im-
plicitly) equivalent to existing models, among which pref-
erential attachment [18] appears to be most popular?
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Lett 100, 078701 (2008).

[6] J. W. Anderson, Hyperbolic Geometry (Springer-Verlag,
London, 2005).

[7] M. Girvan and M. E. J. Newman, Proc Natl Acad Sci
USA 99, 7821 (2002).

[8] D. J. Watts, P. S. Dodds, and M. E. J. Newman, Science
296, 1302 (2002).

[9] A. Clauset, C. Moore, and M. E. J. Newman, Nature
453, 98 (2008).

[10] M. Gromov, Metric Structures for Riemannian and Non-
Riemannian Spaces (Birkhäuser, Boston, 2007).
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