
17

Graph Annotations in Modeling Complex
Network Topologies

XENOFONTAS DIMITROPOULOS

IBM Research, Zürich
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The coarsest approximation of the structure of a complex network, such as the Internet, is a sim-

ple undirected unweighted graph. This approximation, however, loses too much detail. In reality,

objects represented by vertices and edges in such a graph possess some nontrivial internal struc-

ture that varies across and differentiates among distinct types of links or nodes. In this work, we

abstract such additional information as network annotations. We introduce a network topology

modeling framework that treats annotations as an extended correlation profile of a network. As-

suming we have this profile measured for a given network, we present an algorithm to rescale it in

order to construct networks of varying size that still reproduce the original measured annotation

profile.

Using this methodology, we accurately capture the network properties essential for realistic sim-

ulations of network applications and protocols, or any other simulations involving complex network

topologies, including modeling and simulation of network evolution. We apply our approach to the

Autonomous System (AS) topology of the Internet annotated with business relationships between

ASs. This topology captures the large-scale structure of the Internet. In depth understanding of

this structure and tools to model it are cornerstones of research on future Internet architectures

and designs. We find that our techniques are able to accurately capture the structure of annota-

tion correlations within this topology, thus reproducing a number of its important properties in

synthetically-generated random graphs.
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1. INTRODUCTION

Simulations of new network protocols and architectures are pointless with-
out realistic models of network structure and evolution. Performance of rout-
ing [Krioukov et al. 2007], multicast [Palmer and Steffan 2000], and other pro-
tocols depends crucially on network topology. Simulations of these protocols
with inaccurate topology models can thus result in misleading outcomes.

Inaccuracies associated with representing complex network topologies as
simple undirected unweighted graphs come not only from potential sampling
biases in topology measurements [Lakhina et al. 2003; Clauset and Moore 2005;
Dall’Asta et al. 2006], but also from neglecting link and node annotations. By
annotations we mean various types of links and nodes that abstract their in-
trinsic structural and functional differences to a certain degree. For example,
consider the Internet topology at the Autonomous System (AS) level. Here, link
annotations may represent different business relationship between ASs, for
example, customer-to-provider, peer-to-peer [Dimitropoulos et al. 2007], while
node annotations may represent different types of ASs, for example, large or
small Internet Service Providers (ISPs), exchange points, universities, customer
enterprises [Dimitropoulos et al. 2006]. In router-level Internet topologies, link
annotations can be different transmission speeds, latencies, packet loss rates,
etc. One can also differentiate between distinct types of links and nodes in other
networks, such as social, biological, or transportation networks. In many cases,
simply reproducing the structure of a given network is insufficient; we must
also understand and reproduce domain-specific annotations.

We propose network annotations as a general framework to provide the next
level of detail describing the “microscopic” structure of links and nodes. Clearly,
since links and nodes are constituents of a global network, increasing descrip-
tion accuracy at the microscopic level will also increase overall accuracy at the
“macroscopic” level as well. That is, including appropriate per-node or per-link
annotations will allow us to capture and reproduce more accurately a variety
of important global graph properties. In the AS topology case, for example, in-
stead of considering only shortest paths, we will be able to study the structure
of paths that respect constraints imposed by routing policies and AS business
relationships.

Higher accuracy in approximating network structure is desirable not only
for studying applications and protocols that depend on such structure, but also
for modeling network evolution. For example, realistic Internet AS topology
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growth models should be based on economic realities of the Internet since
AS links are nothing but reflections of AS contractual relationships, that is,
results of business decisions made by organizations that the corresponding
ASs represent. Therefore, economy-based AS topology models naturally pro-
duce links annotated with AS relationships. AS relationship annotations are
thus intrinsic to such models.

Network annotations should also be useful for researchers studying only
those networks that preserve some domain-specific constraints, thus avoiding
“too random” networks that violate these constraints. Examples of such “techno-
logical” constraints for router topologies include maximum node degree limits,
specific relationships between node degree and centrality, etc. [Li et al. 2004]. In
this context, we note that any node or link attributes, including their degrees
and centrality, are forms of annotations. Therefore, one can use the network
annotation framework to introduce domain-specific or any other constraints to
work with network topologies narrowed down to a specific class. We also note
that the network annotation framework is sufficiently general to include di-
rected and weighted networks as partial cases, since both link directions and
weights are forms of annotations.

After reviewing, in Section 2, past work on network topology modeling and
generation, which largely ignores annotations, we make the following contri-
butions in this article:

—In Section 3, we demonstrate the importance of network annotations using
the specific example of AS business relationships in the Internet.

—In Section 4, we introduce a general network annotation formalism and apply
it to the Internet AS topology annotated with AS business relationships.

—In Section 5, we formulate a general methodology and specific algorithms
to: i) rescale the annotation correlation profile of the observed AS topology
to arbitrary network sizes; and ii) construct synthetic networks reproduc-
ing the rescaled annotation profiles. While we discuss our graph rescaling
and construction techniques in the specific context of AS topologies, these
techniques are generic and can be used for generating synthetic annotated
networks that model other complex systems.

—In Section 6, we evaluate the properties of the resulting synthetic AS topolo-
gies and show that they recreate the annotation correlations observed in
real annotated AS topologies as well as other important properties directly
related to common metrics used in simulation and performance evaluation
studies.

We conclude by outlining some implications and directions for future work in
Section 7.

2. RELATED WORK

A large number of works have focused on modeling Internet topologies and
on developing realistic topology generators. Waxman [1988] introduced the
first topology generator that became widely known. The Waxman generator
was based on the classical (Erdős-Rényi) random graph model [Erdős and
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Rényi 1959]. After it became evident that observed networks have little in
common with classical random graphs, new generators like GT-ITM [Zegura
et al. 1996] and Tiers [Doar 1996] tried to mimic the perceived hierarchical
network structure and were consequently called structural. In 1999, Faloutsos
et al. [1999] discovered that the degree distributions of router- and AS-level
topologies of the Internet followed a power law. Structural generators failed to
reproduce the observed power laws. This failure led to a number of subsequent
works trying to resolve the problem.

The existing topology models capable of reproducing power laws can be
roughly divided into the following two classes: causality-aware and causality-
oblivious. The first class includes the Barabási-Albert (BA) [Albert and Barabási
2000] preferential attachment model, the Highly Optimized Tolerance (HOT)
model [Carlson and Doyle 1999], and their derivatives. The BRITE [Medina
et al. 2001] topology generator belongs to this class, as it employs preferential
attachment mechanisms to generate synthetic Internet topologies. The models
in this class grow a network by incrementally adding nodes and links to a graph
based on a formalized network evolution process. One can show that both BA
and HOT growth mechanisms produce power laws.

On the other hand, the causality-oblivious approaches try to match a given
(power-law) degree distribution without accounting for different forces that
might have driven evolution of a network to its currently observed state. The
models in this class include random graphs with given expected [Chung and Lu
2002] and exact [Aiello et al. 2000] degree sequences, Markov graph rewiring
models [Maslov et al. 2004; Gkantsidis et al. 2003], and the Inet [Winick and
Jamin 2002] topology generator. Recent work by Mahadevan et al. [2006a] in-
troduced the dK-series extending this class of models to account for node degree
correlations of arbitrary order. Whereas the dK-series provides a set of increas-
ingly accurate descriptions of network topologies represented as graphs, net-
work annotations are another, independent and “orthogonal” to dK-series, way
to provide more accurate and complete information about actual complex sys-
tems that these graphs represent.

Frank and Strauss first formally introduced the annotated (colored) random
Markov graphs in Frank and Strauss [1986]. In their definition, every edge is
colored by one of T colors. More recently, Söderberg [2003b] suggested a slightly
different definition, where every half-edge, that is, stub, is colored by one of T
colors. Every edge is thus characterized by a pair of colors. This definition is
very generic. It includes uncolored and standard colored [Frank and Strauss
1986] random graphs, random vertex-colored graphs [Söderberg 2002],1 and
random directed graphs [Boguñá and Serrano 2005] as partial cases. Söderberg
[2003a] considers some analytic properties of the ensemble of these random col-
ored graphs. Söderberg [2005], he observes strong similarities between random
graphs colored by T colors and random Feynman graphs representing a per-
turbative description of a T -dimensional system from quantum or statistical
mechanics.

1Random graphs with colored nodes are a partial case of random graphs with hidden variables

[Boguñá and Pastor-Satorras 2003].
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Recent works on annotation techniques specific to AS graphs include
[de Launois] and [Chang et al. 2006]. The GHITLE [de Launois] topology
generator produces AS topologies with c2p and p2p annotations based on simple
design heuristics and user-controlled parameters. Chang et al. [2006] describe a
topology evolution framework that models ASs’ decision criteria in establishing
c2p and p2p relationships. Our methodology is different in that it explores the
orthogonal, causality-oblivious approach to modeling link annotations. Its main
advantage is that it is applicable to modeling any type of complex networks.

3. AS RELATIONSHIPS AND WHY THEY MATTER

In this section, we introduce our specific example of network annotations—
AS relationships. We first describe what AS relationships represent and then
discuss the results of simple simulation experiments showing why preserving
AS relationship information is important.

AS relationships are annotations of links of the Internet AS-level topology.
They represent business agreements between pairs of AS neighbors. There are
three major types of AS relationships: (1) customer-to-provider (c2p), connecting
customer and provider ASs; (2) peer-to-peer (p2p), connecting two peer ASs; and
(3) sibling-to-sibling (s2s), connecting two sibling ASs. This classification stems
from the following BGP route export policies, dictated by business agreements
between ASs:

—exporting routes to a provider or a peer, an AS advertises its local routes and
routes received from its customer ASs only;

—exporting routes to a customer or a sibling, an AS advertises all its routes,
that is, its local routes and routes received from all its AS neighbors.

Even though there are only two distinct export policies, they lead to the three
different AS relationship types when combined in an asymmetric (c2p) or sym-
metric (p2p or s2s) manner.

If all ASs strictly adhere to these export policies, then one can easily
check [Gao 2001] that every AS path must be of the following valley-free or
valid pattern: zero or more c2p links, followed by zero or one p2p links, fol-
lowed by zero or more p2c links, where by p2c links we mean c2p links in the
direction from the provider to the customer.

Routing policies reflect business agreements and economic incentives. For
this reason, they are deemed more important than quality of service and other
criteria. As a result, suboptimal routing and inflated AS paths often occur. Gao
and Wang [2002] used BGP data to measure the extent of AS path inflation in
the Internet. They found that at least 45% of the AS paths observed in BGP
data are inflated by at least one AS hop and that AS paths can be inflated by
as long as 9 AS hops.

Taking into account such inflation effects is important for meaningful and
realistic simulation studies. For example, consider the AS topology in Figure 1,
which is a small part of the real (measured) AS topology annotated with AS rela-
tionships inferred using heuristics in Dimitropoulos et al. [2005]. Directed links
represent c2p relationships that point towards the provider and undirected
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Fig. 1. Example AS topology annotated with AS relationships. The dotted lines represent shortest

paths between ASs 4, 6 and 8 to AS 2. The dashed lines represent policy compliant paths from the

same sources to the same destination.

links represent p2p relationships. If we ignore AS relationships then the short-
est paths from ASs 4, 6, and 8 to AS 2 are shown with dotted lines. On the
other hand, if we account for AS relationships these paths are no longer valid.
In particular, the path 4→3→2 transverses two p2p links; the path 6→3→2
transverses a p2c link followed by a p2p link; and the path 8→1→2 transverses
a c2p link after having gone through a p2c link. As all these paths are not valid,
they are not used in practice. The paths actually used are the policy compliant
paths marked with dashed lines.

In other words, the first effect of taking AS relationships into account is
that paths become longer than the corresponding shortest paths. From a per-
formance perspective, longer paths can affect metrics such as end-to-end (e2e)
delay, server response time, jitter, convergence time, and others.

To illustrate this effect, we simulated the topology in Figure 1 using
BGP++ [Dimitropoulos and Riley 2003]. We used a single router per AS and
configured appropriate export rules between ASs according to the guidelines
discussed above. We set the delay of each link to 10 milliseconds and the band-
width to 400kbps. Then, we configured exponential on/off traffic sources at ASs
4, 6 and 8 that send traffic to AS 2 at a rate of 500kbps. We ran the simulation
for 120 seconds; for the first 100 seconds we waited for routers to converge2 and
at the 100th second we started the traffic sources. We then measured the e2e
delay between the sources and the destination with AS relationships disabled
and enabled.

In Figure 2 we depict the cumulative distribution function (CDF) of the e2e
delays for the both cases. We first notice that the CDF with AS relationships
enabled shifts to the right, which means that there is a significant increase

2Typically routers take much less than 100 seconds to converge, but to be conservative we used a

longer period.
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Fig. 2. CDF of e2e delay between traffic sources and destination.

Table I.

Total number of paths for each AS with AS relationships enabled and AS relationships disabled

AS Number 1 2 3 4 5 6 7 8

Number of paths
AS relationships disabled 12 13 16 15 13 15 15 13

AS relationships enabled 12 9 10 8 8 7 9 6

in the e2e delay. In particular, the average e2e delay with AS relationships
enabled is 0.853 seconds, whereas without AS relationships it drops to 0.389
seconds. Besides the decrease in the e2e delay, we see that the CDF with AS
relationships is much smoother than the other CDF, which exhibits a stepwise
increase. The reason for that difference is that in the former case we have
more flows sharing multiple queues and, consequently, more diverse queue
dynamics, while in the latter case, almost all paths are disjoint, leading to
mostly fixed e2e delays. The observed difference signifies that the e2e delay
with AS relationships enabled exhibits a much higher variability compared to
the case with AS relationships ignored. This difference in variability is likely
to affect other performance metrics such as jitter and router buffer occupancy.

Another consequence of policy-constrained routing is that ASs have fewer al-
ternative AS paths. For example, in Figure 1 when ignoring AS relationships,
AS 7 has three (one through each neighbor) disjoint paths to reach destination 2.
One the other hand, with AS relationships enabled, AS 7 has only one possible
path through AS 5, since the other two paths are not valid. In Table I, we show
the total number of paths we found in the BGP tables of the eight ASs in our sim-
ulations. The consistent decrease in the number of paths when AS relationships
are enabled highlights that ignoring AS relationships increases the path diver-
sity of the ASs in a simulation. Path diversity is an important property related
to network robustness, vulnerability to attacks, links and router failures, load
balancing, multi-path routing, convergence of routing protocols, and others.

Yet another effect of policy routing is different distribution of load on ASs and
AS links. Indeed, due to the smaller number of available AS paths, compared
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Table II.

Average bandwidth per flow with as relationships enabled or disabled

Flow 4 → 2 6 → 2 8 → 2

Bandwidth (Kbps)
AS relationships disabled 202 196 397

AS relationships enabled 113 164 121

to shortest path routing, some nodes and links are likely to experience greater
traffic load. For example, in Figure 1 the dashed paths share the links from
AS 7 to AS 5. On the other hand, when assuming shortest path routing, the
three paths are mostly disjoint: only one link, the link between AS 3 and AS 2,
is shared by two flows. Thus, AS links and nodes will receive greater load,
compared to the case with AS relationships ignored. Higher load is likely to
produce more packet loss, increased delay, congestion, router failures, and other
undesirable effects. In Table II we list the average bandwidth in our simulations
for each of the three flows with and without AS relationships enabled. We find
that because of the increased load on the links between AS 7 and AS 5 the
average bandwidth of the three flows decreases substantially.

To summarize this section, we have provided three examples showing that
ignoring AS relationship annotations leads to inaccuracies, which make the
corresponding properties look “better” than they are in reality. Indeed, if AS
relationships are ignored, then:

—paths are shorter than in reality;

—path diversity is larger than in reality; and

—traffic load is lower than in reality.

4. NETWORK TOPOLOGY ANNOTATIONS

In this section we first introduce our general formalism to annotate network
topologies. We then show how this formalism applies to our example of the
AS-level Internet topology annotated with AS relationships.

4.1 General Formalism

Our general formalism is close to random colored graph definitions
from Söderberg [2003b] and borrows parts of the convenient dK-series termi-
nology from Mahadevan et al. [2006a].

We define the annotated network as a graph G(V , E), |V | = n and |E| = m,
such that all 2m edge-ends (stubs) of all m edges in E are of one of several
colors c, c = 1 . . . C, where C is the total number of stub colors. We also allow
for node annotations by an independent set of node colors θ = 1 . . . �. We do
not use node annotations in this paper and we do not include them in the
expressions below in order to keep them clearer. It is, however, trivial to add
node annotations to these expressions.

Compared to the nonannotated case when the node degree is fully specified
by an integer value k of the number of stubs attached to the node, we now have
to list the numbers of attached stubs of each color to fully describe the node
degree. Instead of scalar k, we thus have the node degree vector

k = (k1, . . . , kC),
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Fig. 3. The 1K - and 2K -annotations. Three different stub colors are represented by dashed (color

red), dash-dotted (color green), and dash-double-dotted (color blue) lines.

which has C components kc, each specifying the number of c-colored stubs at-
tached to the node, cf. the left side of Figure 3. The L1-norm of this vector yields
the node degree with annotations ignored,

k = |k|1 =
C∑

c=1

kc. (1)

The number n(k) of nodes of degree k defines the node degree distribution,

n(k)

n
−−−→
n→∞ P (k), (2)

in the large-graph limit. We can think of n(k) as a nonnormalized form of P (k).
From the statistical perspective, the n(k) (P (k)) distribution is a multivariate
distribution. Its C marginal distributions are the distributions of node degrees
of each color c:

n(kc) =
∑

k′
∣∣ k′

c=kc

n(k′), (3)

where the summation is over all vectors k′ such that their c’s component is
equal to kc. The degree distribution n(k) thus represents per-node correlations
of degrees of different colors. Following the terminology in Mahadevan et al.
[2006a], we call the node degree distribution n(k) (P (k)) the 1K -annotated
distribution.

We then define the 2K -annotated distribution as correlations of annotated
degrees of connected nodes, or simply as the number of edges that have stub of
color c connected to a node of degree k and the other stub of color c′ connected to
a node of degree k′, n(c, k; c′, k′). See the right side of Figure 3 for illustration.

As in the nonannotated case, the 2K -distribution yields a more exhaus-
tive statistics about the annotated network topology and fully defines the
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1K -distribution. To see that, we introduce the following notations:

k̃ = (c, k),

k̃′ = (c′, k′),
μ(c, c′) = 1 + δ(c, c′),

μ(k, k′) = 1 + δ(k, k′),
μ(k̃, k̃′) = 1 + δ(k̃, k̃′),

where δ(x, x ′) is the standard Kronecker delta:

δ(x, x ′) =
{

1 if x = x ′,
0 otherwise,

and x is either c, k, or k̃. With these notations, one can easily check that the
normalized 2K -annotated distribution is

P (k̃, k̃′) = n(k̃, k̃′)μ(k̃, k̃′)/(2m), (4)

the number of edges of any pair of colors connecting nodes of degrees k and k′

is

n(k, k′) =
∑
c,c′

n(k̃, k̃′)μ(k̃, k̃′)/μ(k, k′),

the normalized form of this distributions is

P (k, k′) = n(k, k′)μ(k, k′)/(2m),

and the 1K -distribution is given by

n(k) =
∑
k′

n(k, k′)μ(k, k′)/k, (5)

P (k) = k̄
k

∑
k′

P (k, k′), (6)

where k̄ = 2m/n is the average degree. The last two expressions show how one
can find the 1K -annotated distribution given the 2K -annotated distribution,
and they look exactly the same as in the nonannotated case [Mahadevan et al.
2006a], except that we have vectors k, k′ instead of scalars k, k′.

The d K -annotated distributions with d > 2 [Mahadevan et al. 2006a] can
be defined in a similar way.

4.2 The AS Relationship Annotations

In the specific case of the AS-level Internet topology that interests us in this
article, we have just three colors: customer, provider, and peer.3 We assign the

3We ignore sibling relationships, since they typically account for a very small fraction of the total

number of edges. As found in [Dimitropoulos et al. 2007], the number of s2s edges is only 0.46% of

the total number of edges in the AS-level Internet.
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following numeric values to represent these three colors:

c =

⎧⎪⎨
⎪⎩

1 customer,

2 provider,

3 peer.

These three stub annotations come under the following two constraints defining
the only two types of edges that we have: (1) c2p edges: if one stub of an edge
is customer, then the other stub of the same edge is provider, and vice versa;
and (2) p2p edges: if one stub of an edge is peer, then the other stub of the same
edges is also peer. The c2p edges are thus asymmetric, that is, a generalization
of directed edges, while the p2p edges are symmetric, that is, a generalization
of bidirected or undirected edges.

While the 2K -annotated distribution n(k̃, k̃′) contains the most exhaustive
information about the network topology, it has too many (seven) independent
arguments. As a result, the full 2K -annotated statistics is extremely sparse,
which makes it difficult to model and reproduce directly. We thus have to find
some summary statistics of n(k̃, k̃′) that we can model in practice. For each
concrete complex network type, these summary statistics might be different.
Given measurement data for a specific complex network, one would usually
have to start with identifying a meaningful set of summary statistics of the
2K -annotated distribution, and then proceed from there. At the same time, we
believe that as soon as the 2K -annotated distribution fully defines an observed
complex network, that is, the network is 2K -annotated-random [Mahadevan
et al. 2006a], one can generally use the set of summary statistics that we found
necessary and sufficient to reproduce in order to model correctly the Internet
AS topology. In the rest of this section, we list these statistics and describe the
specific meanings that they have in the AS topology case.

Degree distribution (DD). This statistics is the traditional nonannotated de-
gree distribution n(k), where k is as in Equation (1). The DD tells us how many
ASs of each total degree k are in the network.

Annotation distributions (ADs). The DD of an AS topology does not convey
any information about the AS relationships. The initial step to account for this
information is to reproduce the distributions of ASs with specific numbers of at-
tached customer, provider, or peer stubs. These annotation distributions (ADs)
are the marginal distributions n(kc), c = 1, 2, 3, of the 1K -annotated distribu-
tion. They are given by Equation (3). If k1 (k2) customer (provider) stubs attach
to an AS, then this AS has exactly k1 (k2) providers (customers), since the c2p
edges are asymmetric. Consequently, the ADs n(k1) and n(k2) tell us how many
ASs with the specific numbers of providers and, respectively, customers the net-
work has. Since the p2p edges are symmetric, the AD n(k3) is the distribution
of ASs with specific numbers of peers.

Annotated degree distribution (ADD). The ADs do not tell us anything about
the correlations among annotated degrees of the same node, that is, how many
customers, providers, and, simultaneously, peers a specific AS has. Correlations
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of this type are fully described by the 1K -annotated distribution in Equation (2),
which we also call the annotated degree distribution (ADD). These correlations
are present in the Internet. For example, large tier-1 ISPs typically have a
large number of customers, that is, large k2, no providers, that is, zero k1, and
a small number of peers, that is, small k3. On the other hand, medium-size
ISPs tend to have a small set of customers, several peers, and few providers.
Ignoring the ADD while generating synthetic graphs can lead to artifacts like
high-degree nodes with many providers—a property obviously absent in the real
Internet.

Joint degree distributions (JDDs). While the ADD contains the full informa-
tion about degree correlations “at nodes,” it does not tell us anything about
degree correlations “across links,” while the latter type of correlations is also
characteristic for the Internet. For example, large tier-1 ISPs typically have
p2p relationships with other tier-1 ISPs, not with much smaller ISPs, while
small ISPs have p2p links with other small ISPs. In other words, p2p links
usually connect ASs of similar degrees, that is, k ∼ k′. Similarly, c2p links tend
to connect low-degree customers to high-degree providers, that is, k � k′. If we
ignore these correlations, we can synthesize graphs with inaccuracies like p2p
links connecting ASs of drastically dissimilar degrees. To reproduce these cor-
relations, we work with the following summary statistics of the 2K -annotated
distribution in Equation (4):

nc2p(k, k′) =
∑

k,k′
∣∣ |k|1=k, |k′|1=k′

n(1, k; 2, k′), (7)

np2p(k, k′) =
∑

k,k′
∣∣ |k|1=k, |k′|1=k′

n(3, k; 3, k′), (8)

where the summation is over such vectors k and k′ that their L1-norms are
k and k′ respectively. The first expression gives the number of c2p links that
have their customer stub attached to a node of total degree k and provider stub
attached to a node of total degree k′. The second expression is the number of
p2p links between nodes of total degrees k and k′. In other words, these two
objects are the joint degree distributions (JDDs) for the c2p and p2p links.

In summary, we work with the four types of distributions, that is, DD, ADs,
ADD, and JDDs, that allow two types of classification:

(1) Univariate vs. multivariate distributions:
(a) Univariate. The ADs and DD are distribution of only one random vari-

able.
(b) Multivariate. The ADD and JDDs are joint distribution of three and two

random variables. The marginal distribution of these variables are the
ADs, cf. eq. (3), and DD, cf. eqs. (7,8), respectively.

(2) 1K - vs. 2K -summary statistics:
(a) 1K -derived. The DD, ADs, and ADD are fully defined by the 1K -

annotated distribution: that is, we do not need to know the 2K -
annotated distribution to calculate the distributions in this class.
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(b) 2K -derived. The JDDs are fully defined only by the 2K -annotated dis-
tribution. Note that it also defines the 1K -annotated distribution via
eqs. (5,6).

5. GENERATING ANNOTATED AS GRAPHS

In this section we describe how we generate synthetic annotated AS graphs of
arbitrary sizes. We want our synthetic graphs to reproduce as many important
properties of the original measured topology as possible. For this purpose we
decide to explicitly model and reproduce the summary statistics of the 2K -
annotated distribution from Section 4.2, because Mahadevan et al. [2006a]
showed that by reproducing 2K -distributions, one automatically captures a
long list of other important properties of AS topologies. In other words, the task
of generating synthetic annotated topologies becomes equivalent to the task of
generating random annotated graphs that reproduce the summary statistics of
the 2K -annotated distribution of the measured AS topology.

We wish to be able to generate synthetic topologies of different sizes, but
the 2K -summary statistics defined in Section 4.2 are all bound to a specific
graph size. Therefore, in order to generate arbitrarily sized graphs, we need
first to rescale the 2K -summary statistics from the original to target graph
sizes. We say that an empirical distribution is rescaled with respect to another
empirical distribution if the both distributions are defined by two different
finite collections of random numbers drawn from the same continuous distri-
bution. For example, the distributions of node scalar (or vector) degrees in two
different graphs are rescaled with respect to each other if these degrees are
drawn from the same continuous univariate (or multivariate) probability dis-
tribution. We say that a 2K -annotated graph is rescaled with respect to an-
other 2K -annotated graph if all the 2K -summary statistics of the first graphs
are rescaled with respect to the corresponding 2K -summary statistics of the
second graph. This definition of rescaling is equivalent to assuming that for
each summary statistic, the same distribution function describes the ensemble
of empirical distributions of the statistic in past, present, and future Internet
topologies. In other words, we assume that the 2K -annotated correlation profile
of the Internet AS topology is an invariant of its evolution. This assumption is
realistic, as discussed, for example, in Pastor-Satorras and Vespignani [2004],
where it is shown that the nonannotated 1K - and 2K -distributions of the In-
ternet AS topology have stayed approximately the same during all the years
(more than a decade) of the existing data time span.

To illustrate what we mean by rescaling, consider the empirical distribution
of peer degrees, that is, the AD n(k3), in the measured AS topology annotated
with AS relationships in Figure 4(a). The figure shows the empirical comple-
mentary cumulative distribution function (CCDF) for peer-degrees of 19,036
nodes, that is, 19,036 numbers of peer stubs attached to a node, and the largest
such number is 448. The continuous probability distribution of Figure 4(b) ap-
proximates the empirical distribution in Figure 4(a). Figures 4(c), 4(d), and 4(e)
show the CCDFs of three collections of 5,000, 20,000, and 50,000 random num-
bers drawn from the probability distribution in Figure 4(b). According to our
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(a) Original distribution of 19,036

peer-degrees in the measured AS
topology.
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(c) Rescaled distribution of
5,000 samples.
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(d) Rescaled distribution of
20,000 samples.
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(e) Rescaled distribution of
50,000 samples.

Fig. 4. Rescaling an empirical distribution. The distributions in the three bottom figures are

rescaled with respect to the empirical distribution in the first figure. The distribution in the second

figure is a continuous approximation of the distribution in the first figure and is used to generate the

rescaled distributions in the bottom figures. For each discrete distribution, we show its maximum

in the top-right corners of the plots.

definition of rescaling, the distributions in Figures 4(c), 4(d), and 4(e) are
rescaled with respect to the distribution of Figure 4(a). We see that all the em-
pirical distributions have the same overall shape, but differ in the total number
of samples and in the maximum values within these sample collections. Distri-
butions with larger maximums correspond, as expected, to bigger collections of
samples.

5.1 Overview of the Approach

We now move to describing the details of our approach, which consists of the
following three major phases:

(1) Extraction. We first extract the empirical 2K -summary distributions from
available AS topology measurement data. We annotate links of the AS
topology extracted from this data using existing AS relationship inference
heuristics. This extraction step is conceptually simplest. On its output, we
obtain the extracted 2K -summary distributions that are all bound to the
size of the measured AS graph.

(2) Rescaling
(a) We use the extracted empirical distributions to find their continu-

ous approximations. Referring to our example in Figure 4, this step
corresponds to computing the continuous probability distribution in
Figure 4(b) based on the empirical distribution in Figure 4(a).
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(b) We then use the computed probability distributions to rescale the em-
pirical distributions obtained at the extraction step. We generate a de-
sired, target number of random scalar or vector degree samples drawn
from the corresponding probability distributions. The generated degree
samples have empirical distributions that are rescaled with respect to
the corresponding empirical distributions of the measured topology. Re-
ferring to our example in Figure 4, this step corresponds to generating
the rescaled empirical distributions in Figures 4(c), 4(d), and 4(e) based
on the probability distribution in Figure 4(b).

(3) Construction. Finally, we develop algorithms to generate synthetic graphs
that have their 2K -summary distributions equal to given distributions,
that is, to the corresponding distributions obtained at the previous step. The
generated graphs thus reproduce the rescaled replicas of the 2K -annotated
distribution of the original topology, but they are “maximally random” in
all other respects.

In the rest of this section, we describe each of these phases in detail.

5.2 Extraction

We extract the AS topology from the RouteViews4 data, performing some
standard data cleaning, such as ignoring private AS numbers, AS sets, etc.
[Mahadevan et al. 2006b] The resulting AS graph is initially nonannotated. To
annotate it, we infer c2p and p2p relationships for AS links using the heuris-
tics in Dimitropoulos et al. [2007]. We thus obtain the real Internet AS topology
annotated with c2p and p2p relationships. Given this annotated topology, we
straightforwardly calculate all the empirical 2K -summary distributions that
we have defined in Section 4.2.

While the extraction phase is conceptually and technically the simplest phase
of the overall approach, it is its basis. Therefore the quality of the input Inter-
net topology data is a natural concern. This data is known to exhibit a variety
of vagaries, for example, due to sampling biases [Lakhina et al. 2003; Clauset
and Moore 2005; Dall’Asta et al. 2006]. However, our approach is oblivious
with respect to data quality. It takes any available data, extracts the described
statistics from it, and reproduces them, properly rescaled, in random synthetic
graphs. A given input topology data set thus defines an ensemble of random
graphs generated by our method. By construction, all graphs in this ensem-
ble reproduce the described set of annotated distributions. In addition, in Sec-
tion 6, we perform sensitivity analysis in order to see the strength of fluctua-
tions of these and other basic graph metrics within an ensemble. The quality
of these graph ensembles, in terms of how veraciously they reflect reality, will
improve as the quality of available topology data improves in the future. In this
article, we simply illustrate our approach with the currently available topology
data. The RouteViews [routeviews.org] is just one of very few sources of such
data [Mahadevan et al. 2006b]. We select it because it appears to be the most
frequently cited Internet topology data source.

4http://routeviews.org/.
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5.3 Rescaling

Our rescaling approach differs for univariate and multivariate distributions.

5.3.1 Rescaling Univariate Distributions. We recall from the end of
Section 4.2 that we have the following two types of univariate distributions:
the ADs and the DD. Here we describe how we rescale ADs. We note that we
do not have to rescale the DD the same way. The reason is that our approach to
rescaling the ADD, which we discuss in Section 5.3.2, automatically takes care
of rescaling the DD, since the ADD is the distribution of degree vectors and the
DD is the distribution of the L1-norms of these vectors, cf. Equation (1).

The first problem we face trying to compute a continuous approximation
for a given finite empirical distribution is that we have to not only interpolate
between points of the empirical distribution, but also extrapolate above its max-
imum value. For example, if we want to construct a synthetic graph bigger than
the original, then we expect its maximum degree to be larger than the maxi-
mum degree in the original graph. Therefore we have to properly extrapolate
the observed degree distribution beyond the observed maximum degree.

We solve this problem by fitting the univariate empirical distributions with
smoothing splines. Spline smoothing is a nonparametric estimator of an un-
known function represented by a collection of empirical data points. Spline
smoothing produces a smooth curve passing through or near the data points.
For example, the curve in Figure 4(b) is a smooth spline of the empirical dis-
tribution of Figure 4(a). Spline smoothing can also extrapolate the shape of an
empirical function beyond the original data range.

Another reason to select spline smoothing is that it comes useful for fitting
distributions that do not closely follow regular shapes, for example, “clean”
power laws. The ADs of the Internet topology do not necessarily have such
regular shapes. For example, the distribution of the number of peers, that is,
the AD n(k3), has a complex shape that we found impossible to fit with any
single-parametric distribution.

Among available implementations of spline smoothing techniques, we select
the one in the smooth.spline method of the R project,5 a popular statistical
computing package. The specific details of this technique are in Chambers and
Hastie [1992].

We can approximate with splines either the CDFs or CCDFs6 of the ADs
obtained at the extraction step. We chose to fit the CCDFs rather than the
CDFs because the former better capture the shapes of high-degree tails of our
heavy-tailed ADs.

Another important detail is that we can define an empirical CCDF to be either
a left- or right-continuous step function [Hewitt 1975]. Usually an empirical
CCDF at some point x is defined as the fraction of samples with values strictly
larger than x, which means that the distribution is right-continuous and that
the probability of a value larger than the observed maximum value is zero,
whereas the probability of a value smaller than the observed minimum value

5http://www.r-project.org/.
6Recall that the CCDF of CDF F (x) is 1 − F (x).
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is unspecified. For degree distributions, we know that the probability of a degree
smaller than zero is zero,7 but we do not know the probability of a degree larger
than the maximum observed degree. For this reason, we decide to fit the left-
continuous variants of empirical CCDFs, that is, we define a CCDF at some
point x as the fraction of samples with values greater than or equal to x.

Having the original ADs fitted with splines and assuming that our target
graph size is N , we finally use the standard, inverse-CDF method to produce N
random numbers that follow the continuous distributions given by the splines.
Recall that the inverse-CDF method is based on the observation that if the
CDF of N random numbers x j , j = 1 . . . N , closely follows some function F (x),
then the distribution of numbers y j = F (x j ) is approximately uniform in the
interval [0, 1]. As its name suggests, the inverse-CDF inverts this observation
and operates as follows [Hörmann et al. 2004]: given a target CDF F (x) and a
target size N of a collection of random samples, the method first generates N
random numbers y j uniformly distributed in [0, 1] and then outputs numbers
x j = F −1( y j ), where F −1( y) is the inverse of CDF F (x), that is, F −1(F (x)) = x.
The CDF of numbers x j closely follows F (x). Figures 4(c), 4(d), and 4(e) show
random numbers generated this way. These numbers follow the distribution
in Figure 4(b). To compute values of inverse CDFs on N random numbers
uniformly distributed in [0, 1] in our case, we use the predict.smooth.spline
method of the R project. Since the random numbers produced in this way are
not, in general, integers, we convert them to integer degree values using the
floor function. We have to use the floor and not the ceiling function because
we work with left- rather than right-continuous distributions.

The outcome of the described process is three sets of N random numbers
that represent N customer degrees d j

1 , N provider degrees d j
2 , and N peer de-

grees d j
3 of nodes in the target graph, j = 1 . . . N . We denote the CDFs of these

random numbers by D1(d1), D2(d2), and D3(d3) respectively. By construction,
these distributions are properly rescaled versions of the customer-, provider-
and peer-annotation distributions (ADs) in the measured AS topology.

5.3.2 Rescaling Multivariate Distributions. Rescaling multivariate distri-
butions is not as simple as rescaling univariate distributions. Our approach
for rescaling univariate distributions is not practically applicable to rescaling
multivariate distributions because it is difficult to fit distributions that have
many variates and complex shapes. To rescale multivariate distributions, we
use copulas [Nelson 1999], which are a statistical tool for quantifying corre-
lations between several random variables. Compared to other well-known cor-
relation metrics, such as Pearson’s coefficient, copulas give not a single scalar
value but a function of several arguments that fully describes complex, fine-
grained details of the structure of correlations among the variables, that is,
their correlation profile.

According to Sklar’s theorem [Sklar 1959], any p-dimensional multivariate
CDF F of p random variables k = (k1, . . . , kp) can be written in the following

7For a given node, some but not all the degrees k1, k2, and k3 can be equal to zero.
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Fig. 5. Overview of rescaling univariate and multivariate distributions.

form:

F (k) = H(u), (9)

where u is the p-dimensional vector composed of the F ’s marginal CDFs Fm(km),
m = 1, . . . , p:

Fm(km) = F (∞, . . . , ∞, km, ∞, . . . , ∞), (10)

u = (F1(k1), . . . , Fp(kp)). (11)

The function H is called a copula and each of its marginal distributions is
uniform in [0, 1].

Copulas play a critical role at the following two steps in our approach for
rescaling multivariate distributions. First, they allow us to split a multivariate
distribution of the original, measured topology into two parts: the first part
consists of the marginal distributions Fm, while the second part is their corre-
lation profile, that is, copula H. These two parts are independent. Therefore, we
can independently rescale the marginal distributions and the correlation profile.
This property tremendously simplifies the rescaling process. The marginals are
univariate distributions that we rescale as in Section 5.3.1, while this section
contains the details of how we rescale the correlation profile. We use copulas the
second time to merge together rescaled marginals and their correlation profile
to yield a rescaled multivariate distribution in its final form.

In Figure 5 we present a high-level overview of our approaches for rescal-
ing univariate and multivariate distributions. To rescale an original empiri-
cal univariate distribution, we first approximate it with splines and then use
these splines to generate random numbers. We split the process of rescaling
an original empirical multivariate distribution into two independent rescaling
subprocesses, that is, rescaling the marginals and their copula. We rescale the
marginals as any other univariate distributions. To rescale the copula, we re-
sample measured correlation data as we describe further on in this section. At
the end of multivariate rescaling, we merge the rescaled marginals with the
rescaled copula to yield a rescaled multivariate distribution. One can see from
Figure 5 that multivariate rescaling is a “superset,” in terms of actions involved,
of univariate rescaling. The following three steps summarize the high-level de-
scription of our multivariate rescaling approach:
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(1) extract and rescale the univariate marginals of a multivariate distribution
as described in Section 5.3.1 (boxes (a), (b), and (c) in Figure 5);

(2) extract and rescale the copula of the multivariate distribution (boxes (d)
and (e) in Figure 5); and

(3) merge the rescaled marginals and copula yielding a rescaled multivariate
distribution (box (f) in Figure 5).

In the rest of this section, we provide the low-level details for the last two steps,
using the ADD multivariate distribution as an example.

At Step 2, we compute a rescaled ADD copula as follows. The collected AS
topology has n nodes, and for each node i, i = 1 . . . n, we record its degree vec-
tor ki = (ki

1, ki
2, ki

3) producing an n-sized set of degree triplets. We then perform
statistical simulation on this set to produce another set of a desired size that
has the same correlations as the measured data ki. Specifically, we resample,
uniformly at random and with replacement, N degree triplets from the set of
vectors ki, where N is the target size of our synthetic topology. We thus obtain
an N -sized set of random triplets k j , j = 1 . . . N , and we denote their joint CDF
by F (k). By construction, the empirical distribution of triplets k j has the same
correlation profile as original triplets ki. This procedure corresponds box (d) in
Figure 5.

Next, see box (e) in Figure 5, we compute the empirical copula of distribu-
tion F (k). By definition, the copula of F (k) is simply the joint distribution of
vectors u in Equations (9) and (11). Therefore, we first compute the marginal
CDFs F1(k1), F2(k2), and F3(k3) as CDFs of the first, second, and third compo-
nents of vectors k j :

u j
m = Fm

(
k j

m

) = r j
m/N , m = 1, 2, 3, (12)

where r j
m is the rank (position number) of value k j

m in the N -sized
list of values km sorted in the nondecreasing order. Random triplets
u j = (F1(k j

1 ), F2(k j
2 ), F3(k j

3 )) are uniformly distributed in the cube [0, 1]3, and
their joint CDF H(u), u = (F1(k1), F2(k2), F3(k3)), is the empirical copula for
distribution F (k), cf. Equation (9), that describes the correlations among k1,
k2, and k3.

At Step 3, box (f) in Figure 5, we merge the rescaled marginals Dm(dm),
m = 1, 2, 3, from Section 5.3.1 and copula H(u) by computing the target graph
degree triplets q j = (q j

1 , q j
2 , q j

3 ), j = 1, . . . , N , as

q j
m = D−1

m

(
u j

m

)
, (13)

where D−1
m are inverse CDFs of Dm from Section 5.3.1. By construction, the

correlation profile of annotation-degree vectors q j is the same as of the ADD

in the original topology, while the distributions of their components q j
m are

rescaled ADs.
Algorithm 1 lists the described low-level details of our multivariate rescaling,

using the ADD as an example.
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Algorithm 1. Rescaling ADD

Input: Degree vectors ki = (ki
1, ki

2, ki
3), i = 1 . . . n, of the measured topology;

Input: Size N of the target synthetic topology.

// Step 1: AD rescaling
forall m = 1, 2, 3 do

Let km be the list of the mth component values of vectors ki ;
Approximate distribution km by a smoothing spline Sm;
Sample N numbers d j

m, j = 1 . . . N , with probability distribution given by Sm;
Let Dm(dm) be the CDF of dm.

end
// Step 2: copula rescaling
Re-sample N degree triplets k j from the set of ki ;
forall m = 1, 2, 3 do

Let km be the list of the mth component values of vectors k j ;
Sort list km in the non-degreasing order of values;
forall j = 1 . . . N do

Let r j
m be the position number of value k j

m in the sorted list;
uj

m = r j
m/N .

end
end

// Step 3: merge rescaled ADs and the ADD copula

forall m = 1, 2, 3 do
forall j = 1 . . . N do

q j
m = D−1

m (uj
m).

end
end

Output: Degree vectors q j = (q j
1 , q j

2 , q j
3 ), j = 1 . . . N , of the synthetic topology.

We conclude our discussion of rescaling with the following remark. Recall
from the end of Section 4.2 that we have the following two types of multivariate
statistics: the ADD and the JDDs. As illustrated in Figure 5, we rescale the
ADD using all the three steps described in this section. For rescaling a JDD, it
is not necessary to separately rescale its marginals, that is, to use the first step
of the described rescaling process, since the marginals of JDDs are distribu-
tions of scalar degrees that we automatically rescale during the ADD rescaling.
To rescale a JDD, we execute only the second step of the described rescaling
process to obtain the rescaled empirical JDD copula. We then use this copula
to determine proper placement of edges in the final synthetic graph that we
construct. In other words, the last, third step of our multivariate rescaling pro-
cess applied to JDDs takes place during the graph construction phase, which
we describe next.

5.4 Construction

We describe the 1K - and 2K -annotated random graph constructors that are
both generalizations of the well-known configuration or pseudograph approach
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in the terminology of Mahadevan et al. [2006a]. The 1K -constructor requires
only the rescaled ADD, while the 2K -constructor needs also the rescaled JDD
copulas.

5.4.1 Constructing 1K -Annotated Random Graphs. Using the rescaled de-
gree vectors q j , j = 1 . . . N , we construct 1K -annotated random graphs using
the following algorithm:

(1) for each vector q j = (q j
1 , q j

2 , q j
3 ), prepare a node with q j

1 customer stubs, q j
2

provider stubs, and q j
3 peer stubs;

(2) randomly select pairs of either customer-and-provider or peer-and-peer
stubs, and connect (match) them together to form c2p or p2p links;

(3) remove unmatched stubs, multiple edges between the same pair of nodes
(loops), and links with both ends connected to the same node (self-loops),
and extract the largest connected component.

The last step deals with the known problem of the pseudograph approach.
As its name suggests, it does not necessarily produce simple connected graphs.
In general, it generates pseudographs, that is, graphs with (self-)loops, consist-
ing of several connected components. The size of the largest connected compo-
nent is usually comparable with the total pseudograph size, while all others
are small. Extraction of this largest connected component and removal of all
(self-)loops8 alters the target degree distributions. Therefore, the resulting sim-
ple connected graph has a slightly different ADD than the one on the algorithm
input.

Annotations alleviate this problem since they introduce a series of additional
constraints. For example, in the non-annotated case, loops tend to form between
high-degree ASs, simply because these ASs have a lot of stubs attached to them
after step 1 of the algorithm. In the annotated case, the number of such loops
is smaller because most stubs attached to high-degree ASs are annotated as
provider stubs that can be matched only with customer stubs attached mostly
to low-degree ASs.

Still, the 1K -annotated random graphs are not perfect as, for example, p2p
links might end up connecting nodes with drastically dissimilar degree, cf. the
JDD discussion in Section 4.2. The 2K -annotated random graphs do not have
this problem.

5.4.2 Constructing 2K -Annotated Random Graphs. Earlier work
[Mahadevan et al. 2006a] extends the pseudograph approach to nonan-
notated 2K -distributions. We extend it even further for the 2K -annotated case
in the following algorithm:

(1) for each vector q j = (q j
1 , q j

2 , q j
3 ), prepare a node with q j

1 customer stubs, q j
2

provider stubs, q j
3 peer stubs, and total degree q j = |q j |1;

8Self-loops are removed, while multiple edges between the same pair of nodes are mapped to a

single edge between the two nodes.
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(2) determine the total numbers nc2p and np2p of c2p and p2p edges in the
target graph as the maximum possible number of customer-and-provider
and peer-and-peer stubs that can be matched within the stub collection q j ;

(3) rescale the c2p and p2p JDD copulas9 to target sizes of nc2p and np2p degree
pairs (q, q′) corresponding to c2p and p2p edges between nodes of total
degrees q and q′ in the target graph;

(4) for each c2p (or p2p) degree pair (q, q′) select randomly a customer (or peer)
stub attached to a node of degree q and a provider (or peer) stub attached
to a node of degree q′ and form a c2p (or p2p) edge;

(5) use the procedure described below to rewire (self-)loops;

(6) remove unmatched stubs, remaining (self-)loops, and extract the largest
connected component.

The following rewiring procedure reduces the number of edges removed from
the final graph. For each edge involved in a (self-)loop between nodes of de-
grees q1 and q2, we randomly select two nonadjacent nodes of degrees q1 and q2

and move the edge to these nodes. This procedure retains a large number of
edges that would, otherwise, be removed from the graph. In theory, this pro-
cedure may skew the original 2K -summary statistics. In practice, however, it
alters these statistics negligibly.

The resulting graph has both the ADD and JDDs approximately the same
as those obtained after rescaling. Minor discrepancies are due to the last step
of the algorithm, but the number of (self-)loops and small connected compo-
nents are even smaller than in the 1K -annotated case. The reason for these
improvements is yet additional structural constraints, compared with the 1K -
annotated case. For example, the JDD-induced constraints force the algorithm
to create only one link between a pair of high-degree nodes, or no links between
a pair of nodes of degree 1, thus avoiding creation of many connected compo-
nents composed of such node pairs. The original graph does not have such links,
and the rescaled JDDs preserve these structural properties, thus improving the
resulting graph quality.

6. EVALUATION

In this section, we present results of evaluation of our 2K -annotated graph gen-
eration method. We also evaluated the 1K -annotated generator and found that,
as expected, it produced less accurate graphs with defects such as those men-
tioned in Section 4.2, for example, with p2p links connecting ASs of dissimilar
degrees, etc.

Experiments. To evaluate the accuracy of our 2K -annotated generator, we
want to compare graphs it produces with the measured annotated Internet
AS graph from Section 5.2. To simplify comparisons, we select one, most rep-
resentative graph from a set of 50 random synthetic graphs. We select this
most representative graph as follows. We first look for a simple graph metric
that exhibits high variability across the generated graphs. One such metric is

9See the remark at the end of Section 5.3.2.
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the maximum degree. The expected maximum degree in an n-node graph with
a power-law degree distribution P (k) ∼ k−γ is kmax ≈ n1/(γ−1) [Boguñá et al.
2004]. Exponent γ is approximately 2.1 for the Internet AS topology. This value
of γ stays constant as the Internet grows, and it implies almost linear scaling
of the maximum degree since 1/(γ − 1) ≈ 0.9, which is consistent with scal-
ing of maximum degree in historical Internet topologies [Pastor-Satorras and
Vespignani 2004]. For these reasons, our most representative graph is the one
with its maximum degree closest to its expected value, across all the generated
graphs.

In addition, we evaluate the variance of important graph metrics described in
the following, across ensembles of random graphs that we generate. Studying
the variance properties of a graph generation technique is essential for esti-
mating structural differences between equal-sized random graphs generated
by the model, and for gaining insight on how such differences affect perfor-
mance evaluation experiments. The variance properties of a graph generation
technique is associated with the following trade-off. On the one hand, variance
should be small so that generated graphs closely match the observed topol-
ogy. On the other hand, though, random graphs should not all be identical or
almost identical, because if they do not exhibit sufficient structural diversity,
then they have little value for performance evaluation studies. In our experi-
ments, we compute and report the variance of important graph metrics in sets
of 50 equal-sized random graphs.

Metrics. Since it is practically impossible to compare graphs over every ex-
isting graph metric, we select a set of metrics that were found particularly
important in the Internet topology literature. These metrics include the degree
distributions that we deal with in previous sections, assortativity coefficient,
distance distribution, and spectrum. The assortativity coefficient is essentially
the Pearson correlation coefficient of the joint degree distribution (JDD). Its pos-
itive (negative) values indicate that degrees of connected nodes are positively
(negatively) correlated, meaning that nodes with similar (dissimilar) degrees
interconnect with higher probabilities. The distance distribution is the distribu-
tion of lengths of the shortest paths in a graph, which we compute both with and
without constraints imposed by annotations (routing policies). The spectrum of
a graph is the set of the eigenvalues of its Laplacian L. The Laplacian’s matrix
elements Lij are −1/(kik j )

1/2 if there is an edge between node i of degree ki and
node j of degree k j ; 1 if i = j ; and 0 otherwise. Among the n eigenvalues of L,
the smallest nonzero and largest eigenvalues are most interesting, since they
provide tight bounds to a number of important network properties. For more
details on these and other metrics, and why they are important, see Mahadevan
et al. [2006b].

Results. In Figure 6 we plot the ADs of the measured AS topology and of
the most representative synthetic graph of the equal size. We observe that the
distributions of the customer, provider, and peer degrees in the synthetic graph
are very close to the corresponding distributions in the measured topology. The
close match demonstrates that: (1) spline-smoothing accurately models complex
ADs of real Internet topologies, (2) random number generation yields empirical
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Fig. 7. Distance distributions in synthetic and measured AS topologies.

distributions that follow the modeled distributions, and (3) rewiring and
removal of (self-)loops do not introduce any significant artifacts. It is, of course,
expected that our generator accurately reproduces ADs, as they are part of
the 2K -summary statistics we explicitly model. We also confirm that synthetic
graphs, also as expected, closely reproduce all the other summary statistics
that we explicitly model: the DD, ADD, and JDDs of the synthetic graph are
very close to the originals. We do not show the corresponding plots for brevity.

In Figures 7(a) and 7(b) we compare the distance distributions of the
measured and equal-sized synthetic topology ignoring and accounting for
annotation-induced, that is, routing policy, constraints. In the former case, we
calculate lengths of the standard shortest paths between nodes in a graph as
if the graph was nonannotated. In the latter case, we find lengths of shortest
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Table III.

Scalar metrics of synthetic and collected graphs. Note that smallest eigenvalues are positive,

but some may round to zero

Number of Nodes

19036 5000 10000 19036 30000

Metric (measured) (synthetic) (synthetic) (synthetic) (synthetic)

Number of edges 40115 10179 20730 39595 62853

Number of c2p edges 36188 9409 18917 36146 56870

Number of p2p edges 3927 770 1813 3448 5983

Maximum degree 2384 1014 1492 2385 3461

Average degree 4.21 4.07 4.15 4.16 4.19

Assortativity coefficient −0.20 −0.30 −0.24 −0.25 −0.18

Largest eigenvalue of Laplacian 1.97 1.85 1.88 1.91 1.92

Smallest eigenvalue of Laplacian 0.03 0.00 0.12 0.09 0.00

Average distance 3.76 3.26 3.52 3.57 3.75

valid, that is, valley-free, paths defined in Section 3. In both the nonannotated
and annotated cases, we observe that the distance distribution in the synthetic
graph closely matches the distance distribution in the measured topology, even
though we have not explicitly modeled or tried to reproduce the distance distri-
butions. We also observe that the distance distributions in the nonannotated
and annotated cases are different, meaning that annotations in the synthetic
graph properly filter realistic, policy-constrained paths from the set of all pos-
sible path in the nonannotated case.

In Table III we compare the measured topology with synthetic graphs of dif-
ferent sizes over a set of important scalar metrics, including those we do not
explicitly model or try to reproduce, for example, the eigenvalues of the Lapla-
cian, etc. We compute these metrics for five synthetic graphs of sizes 5,000,
10,000, 30,000, and 19,036 nodes, the last size being equal to the size of the
original topology. The first three metrics are the number of (c2p or p2p) edges
in a graph. We observe that the number of such edges grows almost linearly
with the number of nodes. This observation is consistent with that the average
degree in historical Internet topologies stays almost constant [Pastor-Satorras
and Vespignani 2004]. The fourth metric is the maximum degree. As expected,
the maximum degree grows with the size of the graph slightly slower than lin-
early. The next five metrics in the table describe properties that have stayed rel-
atively constant in historical Internet topologies. These properties have small
variations in the synthetic graphs as well.

Next we investigate the benefit of modeling the ADs and ADD in addition to
the DD and JDDs. Previous work [Mahadevan et al. 2006a] shows that mod-
eling DD and JDD is sufficient for capturing and reliably reproducing most
important nonannotated graph metrics. The main value of modeling ADs and
ADD is that our generated synthetic graphs are properly annotated. We saw in
Section 3 that the Internet topology annotations are important. Here we pro-
vide another evidence that they are nontrivial. Specifically, in Figures 8(a), 8(b),
and 8(c) we plot the total degrees of ASs in the measured AS topology ver-
sus their annotation degrees: the number of customers k1, providers k2, and
peers k3, respectively. We observe that a given total degree can correspond to a
wide range of different values of k1, k2, and k3. The JDD provides information
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Fig. 8. Scatterplots demonstrating the diversity of annotation degrees and that total node degrees

are agnostic with respect to annotations.

Table IV.

Variance of graph metrics across sets of equal-sized random graphs

std. Deviation/Mean

5000 10000 19036 30000

graph metric nodes nodes nodes nodes

c2p edges 399/17,905 267/36,876 349/71,055 410/112,549

p2p edges 100/1,238 203/2,980 396/6,412 541/12,863

max degree 387/1,618 417/2,090 471/2,335 376/2,599

av. degree 0.08/3.83 0.03/3.99 0.02/4.07 0.02/4.11

av. distance 0.13/3.16 0.09/3.40 0.10/3.61 0.06/3.77

only on total node degrees and on their correlations, whereas it is completely
agnostic to annotation degrees. On the other hand, the ADs and ADD capture
the distribution of annotation degrees and the correlations between annotation
degrees, respectively. Therefore, the JDD alone is in principle incapable of cap-
turing topology annotations, while the benefit of modeling ADs and ADD lies
in reproducing realistic annotations in generated graphs.

To quantify the variance properties of randomly generated graphs, we com-
pute the standard deviation of our metrics across sets of 50 random graphs. We
construct 4 sets with topologies of 5,000, 10,000, 19,036, and 30,000 nodes, a to-
tal of 200 random graphs. Among our evaluation metrics, we do not compute the
eigenvalues of the Laplacian and the assortativity coefficient, since they require
prohibitively long computation times for 200 graphs. In Table IV, we show the
standard deviation and mean value of the remaining metrics. The maximum de-
gree exhibits the highest standard deviation (with respect to the mean) taking
values between 376 and 471 for graphs of different size. The high variance of the
maximum degree is expected, since the degree distribution of Internet topolo-
gies is highly skewed. On the other hand, the remaining metrics in Table IV
exhibit low variance. These metrics reflect aggregate graph properties and can
be modeled as a sum of many i.i.d. random variables. Therefore, according to
the central limit theorem, their distribution is approximately normal and their
variance is consequently smaller than the variance of the maximum degree.

An important difference between the graph generation method described
in this study and the graph generation methods described in our previous
work [Mahadevan et al. 2006a] is that the former exhibits higher variance.
The two methods are conceptually similar in generating synthetic graphs that
reproduce the correlation profile of an observed topology—albeit Mahadevan
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et al. [2006a] does not consider annotations. They differ in that our previous
techniques directly use the degree distribution or correlations of an observed
topology to generate new similar topologies. On the other hand, the present
work first models the degree correlations of a topology and then uses ran-
dom number generators to produce synthetic degree distributions fed into final
graph constructors. In simpler words, our present technique induces more ran-
domness by means of the synthetic generation of degree correlations based on
the correlation profile extracted from the real topology. The two approaches are
complementary and together provide a wider range of options for generating
synthetic topologies with desired variance characteristics.

Overall, our evaluation results show that:

—2K -annotated random graphs generated with our approach faithfully repro-
duce a number of important properties of Internet topologies;

—rescaled graphs exhibit the expected behavior according to a number of defini-
tive graph metrics, that is, these metrics are either properly-rescaled or stay
relatively stable as the size of synthetic graphs varies;

—the profile of correlations between annotation and total degrees is diverse;
and

—random graphs generated with our method exhibit small variance, although
higher than in our previous work [Mahadevan et al. 2006a].

7. CONCLUSIONS

In this work, we have focused on the problem of generating synthetic anno-
tated graphs that model real complex networks. Our techniques are likely to
have many applications not only in networking, but also in other disciplines
where annotated graphs are used to abstract and represent network structure.
For example, two groups have recently contacted us to discuss our techniques
as they were searching for tools to generate synthetic, semantic-rich, that is,
annotated, networks for their simulation studies. The first group works on mod-
eling the European powerline networks, while the second is in brain and neural
network research. Other networks to which our techniques are immediately ap-
plicable include the router-level Internet, WWW, networks of critical resources
dependencies, as well as many types of social and biological networks, such as
regulatory pathways [Pandey et al. 2007].

A number of open problems remain. In particular, our techniques construct
synthetic versions of real topologies available from measurement projects. How-
ever, it is well-known that in many cases, the outcome of measurements does
not accurately represent a real complete topology. In fact, there might exist
inherent limitations in measuring certain network topologies with 100% accu-
racy. A venue for further research is the development of prediction techniques
that extrapolate what we can presently measure in order to predict what we
can not measure.

Another substantial problem is the difficulties in validating results of topol-
ogy inference studies. For example, in the specific context of Internet topologies,
validation is hard because of the unwillingness of service providers to release
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data on their infrastructure, network design, configuration, and performance.
On the other hand, validation of any research result is a cornerstone to its
reliability and utility. Therefore we believe it is imperative to focus on new val-
idation techniques that would combine the limited ground truth data available
today with convincing testbed or simulation experiments.
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