
Greedy Forwarding in Scale-Free Networks
Embedded in Hyperbolic Metric Spaces

Dmitri Krioukov Fragkiskos Papadopoulos
Cooperative Association for Internet Data Analysis

University of California, San Diego
{dima, frag}@caida.org

Marián Boguñá
Universitat de Barcelona

marian.boguna@ub.edu

Amin Vahdat
University of California,

San Diego
vahdat@cs.ucsd.edu

1. INTRODUCTION
Routing information is the most basic and, perhaps, the most

complicated function that networks perform. Conventional wisdom
states that to find paths to destinations through the complex network
maze, nodes must communicate and exchange information about
the status of their connections to other nodes. This communication
overhead is considered one of the most serious scaling limitations
of our primary communication technologies today, including the
Internet [6] and emerging wireless and sensor networks [7].

In many other networks in nature however, nodes can efficiently
communicate, even though they do not exchange any information
about the current global state of the network topology. Milgram’s
1969 experiments [9] showed a classic demonstration of this sur-
prising effect: humans can find paths to destinations through their
social acquaintance network, even though no human has global
knowledge of its structure. Much later, Jon Kleinberg offered the
first popular explanation [3]. In his model, each node, in addi-
tion to being a part of the graph representing the global network
topology, resides in a coordinate space—a grid embedded in the
Euclidean plane. The coordinates of a node in the plane, its ad-
dress, abstracts the information about the destination in Milgram’s
experiments. Each node knows: 1) its coordinates; 2) the coor-
dinates of its neighbors; and 3) the coordinates of the destination
written on the packet. Given these three pieces of information, the
node can route greedily by selecting its direct neighbor closest to
the destination in the plane.

Clearly, the described greedy forwarding strategy can be efficient
only if the network topology is in some way congruent with the un-
derlying space. Therefore, the Kleinberg model stands closer to the
beginning of an explanation for Milgram’s experiment than to its
end. The model does not (try to) reproduce the basic topological
properties of social networks through which messages were travel-
ing in Milgram’s experiments. For instance, the Kleinberg model
produces only k-regular graphs while social networks, the Internet,
and many other complex networks [8] are known to be scale-free,
meaning that: i) the distribution P (k) of node degrees k in a net-
work follows power laws P (k) ∼ k−γ with exponent γ often lying
between 2 and 3; and ii) the network has strong clustering, i.e., a
large number of triangular subgraphs [1].

Our work follows Kleinberg’s formalism. We assume that nodes
in the Internet and other complex networks exist in some spaces
that underlie the observed network topologies. We call these spaces
hidden metric spaces. The observed network topology is coupled
to the hidden space geometry in the following way: a link be-
tween two nodes in the topology exists with a certain probabil-
ity that depends on the distance between two nodes in the hidden
geometry. One possible and plausible explanation for the Klein-
berg model’s inability to naturally produce scale-free topologies is

that the spaces hidden beneath the Internet and other real networks
are not Euclidean planes. The main results of our work is that if
we model hidden spaces as non-Euclidean hyperbolic spaces, then
their negative curvature leads to: (i) natural emergence of scale-free
topologies constructed over such hidden spaces; and (ii) extremely
efficient greedy forwarding on these topologies, achieving almost
100% reachability and optimal (i.e., shortest) path lengths, even
under dynamic network conditions.

2. SCALE-FREE NETWORKS AND HYPER-
BOLIC METRIC SPACES

The main metric property of hyperbolic geometry is the expo-
nential expansion of space. For example, in the hyperbolic plane,
which is the two-dimensional hyperbolic space of negative curva-
ture −1, the length of a circle and the area of a disc of radius R
are 2π sinh R and 2π(cosh R − 1), both growing as ∼ eR. The
hyperbolic plane is thus metrically equivalent to an e-ary tree, i.e.,
a tree with the average branching factor equal to e. Indeed, in a b-
ary tree the surface of a sphere or the volume of a ball of radius R,
measured as the number of nodes lying at or within R hops from
the root, grow as bR. Informally, hyperbolic spaces can therefore
be thought of as “continuous versions" of trees.

To see why this exponential expansion of hidden space is in-
trinsic to complex networks, observe that their topology represents
the structure of connections or interactions among distinguishable,
heterogeneous elements abstracted as nodes. The heterogeneity im-
plies that nodes can be somehow classified, however broadly, into
a taxonomy, i.e., nodes can be split into large groups consisting
of smaller subgroups, which in turn consist of even smaller sub-
subgroups, etc. The relationships between such groups and sub-
groups can be approximated by tree-like structures, in which the
distance between two nodes estimates how similar they are [10].
The smaller their distance the more similar the two nodes are and
the more likely they are connected. Importantly, the node clas-
sification hierarchy need not be strictly a tree. Approximate “tree-
ness,” which can be formally expressed solely in terms of the metric
structure of a space [2], makes the space hyperbolic.

We now put these intuitive considerations to qualitative grounds.
We want to see what network topologies emerge in the simplest
possible settings involving hidden hyperbolic metric spaces. Specif-
ically, we use the following simple strategy to formulate a network
model. We specify: 1) the hyperbolic space; 2) the distribution of
nodes in it, i.e., the node density; and 3) the connection probabil-
ity as a function of the hyperbolic distance between nodes, i.e., we
connect a pair of nodes located at hyperbolic distance x with some
probability p(x).

The simplest hyperbolic space is the two-dimensional hyperbolic
plane of constant negative curvature −1. The simplest way to place
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N nodes on the hyperbolic plane is to distribute them uniformly
over a disc of radius R. It turns out that selecting N = κeR/2

gives us control over the average node degree k̄, which we can
tune using parameter κ. The hyperbolically uniform node den-
sity implies that we assign the angular coordinates θ ∈ [0, 2π] to
nodes with the uniform density ρ(θ) = 1/(2π), while the den-
sity for the radial coordinate r ∈ [0, R] is exponential ρ(r) =
sinh r/(cosh R− 1) ≈ er−R ∼ er (vs. ρ(r) ∼ r in the Euclidean
plane). The simplest connection probability we could think of is
the step function p(x) = Θ(R − x), meaning that we connect a
pair of nodes with polar coordinates (r, θ) and (r′, θ′) by a link
only if the hyperbolic distance between them is x ≤ R, where x is
given by the hyperbolic law of cosines: cosh x = cosh r cosh r′ −
sinh r sinh r′ cos∆θ, with ∆θ = min (|θ − θ′|, 2π − |θ − θ′|).
The described model produces graphs with the power-law node de-
gree distribution P (k) ≈ n(k)/N ∼ k−3.

We emphasize that we have done nothing to enforce this power
law. It appears as a consequence of the negative curvature of the
underlying space. To understand why, we have to calculate the
average degree k(r) of nodes located at distance r from the disc
center. These analytic calculations are complicated, and the exact
expression is rather long, so that we omit it here for brevity. What
matters is that k(r) decreases exponentially, k(r) ∼ e−r/2. There-
fore, the inverse function is logarithmic, r(k) ∼ −2 ln k, and the
node degree distribution in the network is approximately a power
law, P (k) ≈ ρ[r(k)] |r′(k)| ∼ k−3.

We can generalize the described model. For example, we can
distribute nodes non-uniformly on the disc, ρ(r) ≈ αeα(r−R) ∼
eαr , with α = 1 corresponding to the hyperbolically uniform node
distribution. It turns out—we omit the calculations—that the av-
erage node degree k(r) decreases as ∼ e−r/2 if α ≥ 1/2, and as
∼ e−αr otherwise. As above, the node degree distribution P (k)
is a power law: P (k) ∼ k−γ , with γ = 2α + 1 if α ≥ 1

2
, and

γ = 2 if α ≤ 1
2
. We thus see that by changing α, which according

to our tree analogy regulates the average branching factor of the
hidden tree-like hierarchy, we can construct power-law graphs with
any exponent γ ≥ 2, as observed in a majority of known complex
networks, including the Internet.

Our modeled networks also possess strong clustering. Strong
clustering, or large numbers of triangles in generated networks, is
a simple consequence of the triangle inequality in the hyperbolic
plane. Indeed, if node a is close to node b in the plane, and b is
close to a third node c, then a is also close to c because of the tri-
angle inequality. Since all three nodes are close to each other, links
between all of them forming triangle abc exist in our model. How-
ever, the step function connection probability does not allow us to
tune clustering. To solve this problem we introduce the following
modified connection probability p(x) = 1/(1+eβ(x−R)/2), where
x is the hyperbolic distance between nodes and β > 1 is a param-
eter. If β → ∞, p(x) becomes the step function, and clustering is
maximized, while for finite values of β, the step function “smooths
out” reducing the clustering strength. At β → 1 clustering goes to
zero.

As an example, in [5] we demonstrate that we can create net-
works whose topological properties closely match those of the AS-
level Internet.

3. GREEDY FORWARDING
We now evaluate the performance of greedy forwarding (GF) on

our modeled networks. A node’s address is its hyperbolic coordi-
nates, and each node knows only its own address, the addresses of
its neighbors, and the destination address written in the packet. GF
forwards a packet at each hop to the neighbor closest to the desti-

nation in the hyperbolic space. We present simulation results for
two forms of GF, original (OGF) and modified (MGF). The OGF
algorithm drops the packet if the current hop is a local minimum,
meaning that it does not have any neighbor closer to the destination
than itself. The MGF algorithm excludes the current hop from any
distance comparisons, and finds the neighbor closest to the desti-
nation. The packet is dropped only if this neighbor is the same as
the packet’s previous hop. We report the following metrics: (i) the
percentage of successful paths, ps, which is the proportion of paths
that reach their destinations; and (ii) the average and maximum
stretch of successful paths, denoted by s̄ and max(s) respectively.
The stretch is defined as the ratio between the hop-lengths of greedy
paths and the corresponding shortest paths in the graph.

We first focus on static networks, where the network topology
does not change, and then emulate the network topology dynamics
by randomly removing one or more links from the topology. We
fix the target number of nodes in the network to N = 104 and
its average degree to k̄ = 6.5, which roughly matches the Inter-
net’s AS topology. We use the step function connection probabil-
ity. For each generated network, we extract the Giant Connected
Component (GCC), and perform GF between 104 random source-
destination pairs.

Static networks. Figures 1(a) and 1(b) show the results for static
networks of different degree exponent γ. We see that the success
ratio ps increases and the stretch decreases as we decrease γ to 2.
Remarkably, for γ = 2.1, i.e., equal to γ observed in the AS Inter-
net, OGF and MGF yield ps = 0.99920 and ps = 0.99986, with
the OGF’s maximum stretch of 1, meaning that all greedy paths are
shortest paths. In summary, GF is exceptionally efficient in static
networks, especially for the small γ’s observed in the vast majority
of complex networks. The two GF algorithms yield high success
ratios close to 1 and optimal (or almost optimal) path lengths, i.e.
stretch close to 1. The reason for this remarkable GF performance
is the congruency between the network topology and the underly-
ing hyperbolic geometry, as visually demonstrated in Figure 2.

Dynamic networks. We next study the GF performance in dy-
namic networks with link failures. We consider the following two
link-failure scenarios. In Scenario 1 we remove a percentage pr ,
ranging from 0% to 30%, of all links in the network, recompute the
GCC, and compute the new success ratio pnew

s . In Scenario 2 we
provide a finer-grain view focusing on paths that used a removed
link. We remove one link from the network, recompute and GCC,
and find the percentage pl

s of successful paths, only among those
previously successful paths that traversed the removed link and be-
long in the GCC. We repeat the procedure for 1000 random links,
and report the average value for pl

s. Figures 1(c) and 1(d) present
the results. We see that for small γ’s, the success ratio pnew

s re-
mains remarkably high, for all meaningful values of pr . For ex-
ample, MGF on networks with γ = 2.1 and pr ≤ 0.1, yields
pnew

s > 0.99. Note that the simultaneous failure of 10% of the
links in networks like the Internet is a rare catastrophe, but even in
this case GF is still efficient. The percentage pl

s of MGF paths that
used a removed link and that found a by-pass after its removal is
also remarkably high, close to 100% for small γ’s. Due to space
limitations we do not present stretch results. In both scenarios and
for all γ, the average stretch remains remarkably low, below 1.1.
In summary, GF is not only efficient in static networks, but its effi-
ciency can be also very robust in the presence of network topology
dynamics. Thanks to high path diversity, there are many shortest
paths, disjoint over some links or nodes, between the same source
and destination, which all closely follow their geodesics. Link re-
movals affect some shortest paths, but others remain, and greedy
forwarding can use the underlying hyperbolic “guidance system”
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Figure 1: Performance of greedy forwarding (GF) in static and dynamic networks.

Figure 2: Visualization of a modeled network embedded in
the hyperbolic plane, and greedy forwarding in it. The fig-
ure shows two hyperbolically straight lines, i.e., geodesics, the
dashed curves, vs. the greedy paths, the solid curves, between
the same source-destination nodes (the source is the top circled
node). The geodesics and greedy paths follow the same pattern,
i.e., they are approximately congruent.

to find them.
As a final note, although the success ratios in scale-free networks

with small γ’s are extremely close to 1, they are not exactly 1,
thanks to randomness of graph construction in our models. How-
ever, we do have simple techniques that can boost the success to 1,
discussed in [5].

4. FUTURE WORK
We can classify potential applications of our findings in two

categories. The first category concerns synthetic networks, such
as P2P overlays that provide a large flexibility for tasks, such as
application-level routing, information sharing, and so on. In this
case, we can freely design a hidden hyperbolic space and build
a congruent network topology over it. Future work in this direc-
tion includes constructing and maintaining networks that grow and
shrink over hyperbolic spaces. The network model considered in
this paper generates a whole network at once, and therefore it is not

immediately applicable for overlay-like applications.
More challenging are the applications for real networks–the In-

ternet in the first place. Can we embed the real Internet topology
into a hyperbolic space and greedily forward through this embed-
ding with similar efficiency? This task is quite challenging as we
no longer have freedom to build a graph to be congruent with the
underlying space by construction; the graph is given to us. How can
each node in this graph compute its coordinates in the space having
no global knowledge of the graph topology, so that the resulting
embedding is congruent with the space? The most related to this
earlier work is the one by R. Kleinberg who shows in [4] how any
graph can be embedded in the hyperbolic plane such that greedy
forwarding’s success ratio is 100%. However, the embedding re-
quires full global knowledge of the graph topology and may need
to be recomputed on link/node failures, things we want to avoid.
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