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Network motifs are small building blocks of complex networks, such as gene regulatory networks.
The frequent appearance of a motif may be an indication of some network-specific utility for that
motif, such as speeding up the response times of gene circuits. However, the precise nature of
the connection between motifs and the global structure and function of networks remains unclear.
Here we show that the global structure of some real networks is statistically determined by the
distributions of local motifs of size at most 3, once we augment motifs to include node degree
information. That is, remarkably, the global properties of these networks are fixed by the probability
of the presence of links between node triples, once this probability accounts for the degree of the
individual nodes. We consider a social web of trust, protein interactions, scientific collaborations,
air transportation, the Internet, and a power grid. In all cases except the power grid, random
networks that maintain the degree-enriched connectivity profiles for node triples in the original
network reproduce all its local and global properties. This finding provides an alternative statistical
explanation for motif significance. It also impacts research on network topology modeling and
generation. Such models and generators are guaranteed to reproduce essential local and global
network properties as soon as they reproduce their 3-node connectivity statistics.

I. INTRODUCTION

A promising direction in the studies of the structure
and function of complex networks is to identify their
building blocks, or motifs [1–3], which are small sub-
graphs in a real network. A great deal of research—in
particular, research on gene regulatory networks—shows
that specific motifs perform specific functions, such as
speeding up response times of regulatory networks [4, 5].
However, motifs have also raised many questions [6–13],
including continuing debates on whether and how mo-
tif statistical profiles are related to the global structure,
function, and evolution of certain networks.

Our recent work [14] introduces dK-series, see Sec-
tion II. The dK-series, with analogy to the Taylor or
Fourier series, is the first systematic and complete basis
for characterizing network structure. The dK-series is a
generalization of known degree-based statistical charac-
teristics of complex networks. The zero-th element of the
dK-series, the 0K-“distribution,” is the average degree in
a given network. The first element, the 1K-distribution,
is the network’s degree distribution, or the number of
nodes—subgraphs of size 1—of degree k. The second el-
ement, the 2K-distribution, is the joint degree distribu-
tion, the number of subgraphs of size 2—links—involving
nodes of degrees k1 and k2. For d = 3, the subgraphs
are triangles and wedges, composed of nodes of degrees
k1, k2, and k3. Generalizing, the dK-distribution is the
numbers of different subgraphs of size d involving nodes
of degrees k1, k2, . . . , kd.

The dK-series is systematic and complete because it
is inclusive and converging. Inclusiveness results from
the fact that the (d+1)K-distribution contains the same
information about the network as the dK-distribution,
plus some additional information. That is, by increasing
d, we provide increasingly more detail about the net-
work structure. As d increases toward the network size,
we fully specify the entire network structure, which ex-
plains the second convergence property of dK-series—it
converges to the given network in the limit of large d.

Does this convergence happen only at d equal to the
network size, or much sooner, at smaller d? In other
words, how much local information, i.e., information
about concentrations of degree-labeled subgraphs of what
size, is needed to fully capture global network structure?

To answer these questions, we must compare a real
network with typical random networks defined by its dK-
distribution. If there is no difference between such dK-
random networks and the real network, then the latter
is fixed by its dK-distribution. To obtain a dK-random
version of the real network, we dK-randomize it as illus-
trated in Fig. 1(a)—we randomly rewire (pairs of) links
preserving the dK-distribution in the network, general-
izing known network randomization techniques [17, 18]
used to compute motif statistical significance. The re-
sult of this dK-randomization procedure are random net-
works that have the same dK-distribution as the original
real network, but that are maximally random in all other
respects.

Our question thus becomes what is the minimum value
of d such that there is no difference between a real net-
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FIG. 1: The dK-randomization null models for d = 0, 1, 2, 3. a) Illustration of dK-randomizing rewiring. All nodes
are labeled by their degrees, and a dK-rewiring preserves the graph’s dK-distribution, and consequently its d′K-distributions
for all d′ < d, but randomizes the d′′K-distributions for d′′ > d. The 0K-randomization involves rewiring of a link to any pair
of disconnected nodes, which preserves the average degree only. The 1K-randomization preserves the degree distribution, too,
by rewiring a pair of links as shown. The 2K-distribution preserves the joint degree distribution as well, because at least two
nodes adjacent to the rewired links are of the same degree. The 3K-randomization preserves the number of degree-labeled
wedges and triangles. As d increases, the rewiring becomes increasingly more constrained since fewer links can be rewired
without altering the dK-distribution. To dK-randomize a network, we randomly select a pair of links, and rewire them if they
can be dK-rewired, or, if they cannot be rewired, select another random pair. This process is repeated for a sufficient number
of successful rewirings, i.e., until all network properties stop changing, at which point we say that the graph has converged to
its dK-randomization. b) Visualization of the social web of trust (PGP network [15]) and its dK-randomizations.
We use the LaNet-vi tool [16] for visualization, which encodes the node coreness in color, see the right legends. The coreness is
a measure of node centrality, i.e., how deeply in the network core the node lies [16]. Nodes with larger coreness are also placed
closer to the circle centers. The quick convergence of the dK-randomizations to the original PGP network, and the similarity
between it and its 3K-randomization are remarkable.

work and its dK-randomizations? It seems at first that
the answer to this question should strongly depend on
the specific networks we consider.

We consider a variety of social, biological, transporta-
tion, communication, and technological networks, see
Section III. Although the dK-series applies to directed
and even annotated networks [19], here we report results
for undirected networks. The dK-distributions for di-
rected or annotated networks contain more information
than for undirected networks. Therefore, dK-series con-
verges faster in the former case [19]. Below we show
the results for the well-studied social web of trust re-
lationships extracted from Pretty Good Privacy (PGP)
data [15]. The results for all other networks, except the
power grid, are similar, cf. Section IV, where we also dis-
cuss possible reasons for why the power grid appears as
an exception.

Fig. 1(b) visualizes the PGP network and its dK-
randomizations. We observe that the dK-series converges
at d = 3. While the 0K-random network has little in
common with the real network, the 1K-random one is
somewhat more similar, even more so for 2K, and there
is very little difference between the real PGP network
and its 3K-random counterpart.

To provide a more detailed and insightful comparison
between the real network and its dK-randomizations, we
compute a variety of metrics for each. Some popular met-
rics, such as degree distribution, average nearest neighbor
connectivity, clustering, etc., are functions, sometimes
peculiar, of dK-distributions, and therefore it is not sur-
prising that they are properly captured by dK-series, as
confirmed in Section IV A. We classify metrics that do
not explicitly depend on dK-distributions as microscopic,
mesoscopic, and macroscopic. We choose them to probe
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FIG. 2: Microscopic scale: motifs. There are six different
graphs of size 4 shown on the x-axes. The top plot shows the
distribution of the numbers of these subgraphs in the PGP
network and its dK-randomizations, d = 0, 1, 2, 3. Each blue
bar, for example, is the number of the corresponding subgraph
occurrences in the PGP network divided by the total number
of subgraphs of size 4 in it. For dK-randomizations, the val-
ues are averaged, for each d, over several realizations of the
dK-randomized network. In the case of 0K-randomization,
the last two motifs did not occur in any randomized sample
of the network. The bottom plot shows the Z-scores for the
six subgraphs in the four dK-randomization null models. The
Z-score [1] of a subgraph is a measure of its statistical signif-
icance in a real network, compared to a randomization null
model. Specifically, the Z-score Z is the difference between
the number N of the occurrences of a subgraph in the real
network and the average number N̄ of its occurrences in the
corresponding randomized networks, divided by the standard
deviation σ of its occurrences in the randomized networks,
Z = |N − N̄ |/σ.

the network structure at the local, medium, and global
scales.

The simplest microscopic, local-structure statistics,
which are not fixed by the dK-distributions with d 6 3,
are the frequencies of motifs of size 4 without degree in-
formation. We compute these frequencies in the real net-
work and its dK-randomizations, and show the results in
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FIG. 3: Mesoscopic scale: community structure. We
compute communities in the PGP network using the Extremal
Optimization algorithm [20]. We then sort the found commu-
nities in the order of decreasing size. The size of a community
is the number of nodes in it. The rank of a community is its
position number in the size-ordered list. We then show the
community size distribution by plotting the community sizes
vs. their ranks.

Fig. 2. We find that the (relative) statistical significance
of the motifs strongly depends on d. More importantly,
no motif is statistically significant for d = 3.

At the mesoscopic scale, we consider the community
structure of the PGP network. A community is a sub-
graph with many internal connections, and a relatively
small number of connections external to the subgraph.
Fig. 3 shows that the community structure is indeed a
“mesoscopic” metric because the community sizes range
from a few nodes to thousands of nodes for largest com-
munities. Fig. 3 shows that the community size distribu-
tions in the PGP network and its 3K-randomization are
very similar.

At the macroscopic scale, we consider the two most
popular and important statistics that depend on a net-
work’s global structure: the node betweenness central-
ity and the distribution of lengths of shortest paths in a
network. Fig. 4 once again shows that 3K is sufficient
to capture even global graph properties; the considered
metrics are approximately the same for the PGP network
and its 3K-randomization.

We call a given real network dK-random if all its
metrics, at all scales from local to global, are approxi-
mately the same as the corresponding metrics in its dK-
randomizations. We see in Section IV that in agreement
with the results of Vázquez et al. [12], almost all net-
works that we collected data for are 3K-random at most
(some networks are 2K- or even 1K-random). That is,
surprisingly, the global structure of these networks is cap-
tured entirely by the distribution of node triples and their
degrees.

It is an open question why many different real net-
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FIG. 4: Macroscopic scale: the distance and between-
ness distributions. The top plot shows the metrics re-
lated to the hop length of shortest paths, or distances, be-
tween nodes in the PGP network and its dK-randomizations.
These metrics are the average and maximum distance between
nodes, the latter called the network diameter, and the stan-
dard deviation of the distance distribution. The bottom plot
shows the average betweenness and the standard deviation of
the betweenness distribution of nodes in the PGP network
and its dK-randomizations. The betweenness of a node is a
measure of its communication centrality [21]. It is equal to the
number of shortest paths passing through the node, divided
by the total number of shortest paths between the same source
and destination, summed over all source-destinations pairs.
In both plots the values for dK-randomizations are averaged,
for each d, over several realizations of the dK-randomized
network.

works are 3K-random. A trivial answer would be that
d = 3 is just “constraining enough.” There may only be
a few possible rewirings preserving the 3K-distribution.
But why exactly is d = 3 sufficient for real networks?
There are many classes of synthetic graphs, such as lat-
ices, for which no d substantially smaller than the graph
size is “constraining enough.” Perhaps the answer can be
obtained by studying the hidden metric spaces underly-
ing real networks [22]. The distances in such spaces ab-
stract intrinsic similarities between nodes. If these spaces
are metric—and there is empirical evidence that they are
indeed such [23]—then the triangle inequality naturally
yields and explains network clustering, which the 3K-

distribution captures by definition.
Whatever the actual explanation, our results have di-

verse implications. First, our dK-randomization basis
makes it clear that there is no preferred null model for
network randomization. To tell how statistically impor-
tant a given motif is, it is necessary to compare its fre-
quency in the real network with the same frequency in a
network randomization, a null model. But one can dK-
randomize any network for any d. Therefore choosing
any specific value of d, or more generally, any specific
null model to compute motif significance requires some
non-trivial justification.

The second implication concerns the difference be-
tween motifs and dK-series. This difference is small but
crucial. Motifs are subgraphs whose nodes can have any
degree in the original network, while dK-series preserves
the information about these degrees. This difference is
crucial because a motif-based series cannot be inclusive.
Node degrees are necessary to make the series inclusive
and thus systematic, see Section V.

Our finding that many networks are 3K-random can
assist our understanding of how functions of an evolv-
ing network shape its structure. Indeed, one can po-
tentially simplify such explanations to how the observed
3K-distribution has emerged in the network. As soon
as one explains the emergence of the 3K-distribution, all
other network structural properties follow.

Finally, our work very practically impacts the design
of network topology models and generators. For simu-
lation experiments, hypothesis testing, etc., network re-
searches in many sciences, including biology [9, 24–26]
and computer science [27–30], must model real networks
in laboratory settings, and generate random graphs that
reproduce important properties of the real network. Our
results show that it is sufficient to generate 3K-random
graphs for such purposes. But even if these graphs do not
capture some important property not previously consid-
ered, the dK-series will remain applicable given its con-
vergence property and a sufficient increase in d.

We conclude this introduction with a reference to [19]
for a detailed discussion of various graph generation tech-
niques based on dK-series and extensions to generate ran-
dom graphs with rich semantic, structural, or functional
annotations of nodes and links.

II. THE dK-SERIES ILLUSTRATED

In Fig. 5(a) we illustrate dK-series for a graph of size
4. The 4K-distribution is the graph itself. The 3K-
distribution consists of its three subgraphs of size 3: one
triangle connecting nodes of degrees 2, 2, and 3, and two
wedges connecting nodes of degrees 2, 3, and 1. The
2K-distribution is the joint degree distribution in the
graph. It specifies the number of links (subgraphs of size
2) connecting nodes of different degrees: one link con-
nects nodes of degrees 2 and 2, two links connect nodes
of degrees 2 and 3, and one link connects nodes of degree
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FIG. 5: The dK-series illustrated: a) dK-distributions for a graph of size 4; b) convergence and inclusiveness of dK-series.

3 and 1. The 1K-distribution is the degree distribution in
the graph. It lists the number of nodes (subgraphs of size
1) of different degree: one node of degree 1, two nodes of
degree 2, and one node of degree 3. The 0K-distribution
is just the average degree in the graph, which is 2.

Fig. 5(b) illustrates the inclusiveness and convergence
of dK-series by showing the hierarchy of dK-graphs,
which are graphs that have the same dK-distribution as
some graph G of size n. The black circles schematically
shows the sets of dK-graphs.

The set of 0K-graphs is largest: the number of dif-
ferent graphs that have the same average degree as G
is enormous. These graphs may have a structure drasti-
cally different from G’s. The set of 1K-graphs is a subset
of 0K-graphs, because each graph with the same degree
distribution as in G has also the same average degree as
G, but not vice versa. As a consequence, typical (“max-
imally random”) 1K-graphs tend to be more similar to
G than 0K-graphs. The set of 2K-graphs is a subset of
1K-graphs, also containing G.

As d increases, the circles become smaller because the
number of different dK-graphs decreases. Since all the
dK-graph sets contain G, the circles “zoom-in” on it,
and while their number decreases, dK-graphs become in-

creasingly more similar to G. In the d = n limit, the set
of nK-graphs consists of only one element, G itself.

III. THE REAL NETWORKS CONSIDERED

We collected data for a number of real networks. We
wanted the set of considered networks to be representa-
tive, in the sense that it should contain networks of differ-
ent nature, coming from different domains, thus showing
the universality of our dK-basis. The considered net-
works include social, biological, transportation, and tech-
nological networks. Specifically, we report results for:

• The social web of trust relationships among people.
The trust relationships are inferred using the data
from the Pretty Good Privacy (PGP) encryption
algorithm [15]. We extract the strongly connected
component from this network. The nodes are peo-
ple, and there is a link between two people if they
trust each other.

• The social network of scientific collaborations
extracted from the arXiv condensed-matter
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TABLE I: The considered networks and their abbreviations.

Network Abbreviation

PGP Web of Trust [15] PGP

Scientific collaboration network [31] Collab.

Protein interaction network [32] Protein

US air transportation network [33] Air

Internet at the level of ASs [34] Internet

Power grid in the western US [35] Power

database [31]. The nodes are authors, and there is
a link between two authors if they co-authored a
paper.

• The biological network of protein interactions in the
yeast Saccharomyces cerevisiae collected from the
database of interacting proteins [32]. The nodes are
proteins, and there is a link between two proteins
if they interact.

• The US air transportation network [33]. The nodes
are airports, and there is a link between two air-
ports if there is a direct flight between them.

• The topology of the Internet at the level of Au-
tonomous Systems (ASs) [34]. The nodes are ASs,
i.e., organizations owing parts of the Internet in-
frastructure, and there is a link between two ASs if
they are physically connected.

• The electrical power grid in the western US [35].
The nodes are generators, transformers, or substa-
tions, two of which are linked if there is a high-
voltage transmission line between them.

Table I lists these networks and their abbreviations used
in the subsequent figures and tables.

IV. TOPOLOGIES OF REAL NETWORKS AND
THEIR dK-RANDOMIZATIONS

In this section we compare the real networks to their
dK-randomizations across a number of topological met-
rics.

A. Metrics defined by dK-distributions

We first consider the most basic metrics, which are de-
fined by the appropriate dK-distributions. Therefore it
is not surprising that dK-random graphs with appropri-
ate d have the values of these metrics equal exactly to
those in the real networks. Nevertheless, we report these
results for consistency and illustration purposes.

1. 1K: degree distribution

Fig. 6 shows the distributions P (k) of node degrees k:

P (k) =
N(k)
N

, (1)

where N(k) is the number of nodes of degree k in the
network, and N is the total number of nodes in it, so
that P (k) is normalized,

∑
k P (k) = 1 (we do not con-

sider nodes of degree k = 0). The 1K-distribution fully
defines the 0K-distribution, i.e., the average degree k̄ in
the network, by

k̄ =
∑

k

kP (k), (2)

but not vice versa.
We observe in Fig. 6 that while 0K-randomizations are

off, the 1K-random graphs reproduce the degree distribu-
tions in the real networks exactly, which is by dentition:
the 1K-distribution is the degree distribution, and 1K-
randomization does not alter it. The dK-randomizations
with d > 1 do not alter the 1K-distribution either, there-
fore they also match the degree distributions in the real
networks exactly (not shown).

2. 2K: average neighbor degree

Fig. 7 shows the average degree k̄nn(k) of neighbors
of nodes of degree k. This function is a commonly used
projection of the joint degree distribution (JDD) P (k, k′),
i.e., the 2K-distribution. The JDD is defined as

P (k, k′) = µ(k, k′)
N(k, k′)

2M
, (3)

where N(k, k′) = N(k′, k) is the number of links between
nodes of degrees k and k′ in the network, M is the total
number of links in it, and

µ(k, k′) =

{
2 if k = k′,
1 otherwise,

(4)

so that P (k, k′) is normalized,
∑

k,k′ P (k, k′) = 1. The
2K-distribution fully defines the 1K-distribution by

P (k) =
k̄

k

∑
k′

P (k, k′), (5)

but not vice versa. The average neighbor degree k̄nn(k)
is a projection of the 2K-distribution P (k, k′) via

k̄nn(k) =
k̄

kP (k)

∑
k′

k′P (k, k′) =
∑

k′ k′P (k, k′)∑
k′ P (k, k′)

. (6)

We observe in Fig. 7 that while 0K-randomizations are
way off, the 1K-randomization are much closer to the
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FIG. 6: The degree distribution in the real networks and their dK-randomizations.
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FIG. 8: The degree-dependent clustering in the real networks and their dK-randomizations.
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real networks, whereas the 2K-randomizations have ex-
actly the same average neighbor degrees as the real net-
works, which is again by definition: 2K-randomization
does not change P (k, k′). In the Internet case, even 1K-
randomization does not noticeably affect k̄nn(k). The
dK-randomizations with d > 2 do not alter P (k, k′) and
consequently k̄nn(k) at all, therefore they reproduce the
latter exactly as well for all the networks (not shown).

3. 3K: clustering

Fig. 8 shows degree-dependent clustering c̄(k). Clus-
tering of node i is the number of triangles 4i it forms, or
equivalently the number of links among its neighbors, di-
vided by the maximum such number, which is k(k−1)/2,
where k is i’s degree, deg(i) = k. Averaging over all
nodes of degree k, the degree-dependent clustering is

c̄(k) =
24(k)

k(k − 1)N(k)
, where 4(k) =

∑
i: deg(i)=k

4i. (7)

The degree-dependent clustering is a commonly
used projection of the 3K-distribution [38]. The 3K-
distribution is actually two distributions characterizing
the concentrations of the two non-isomorphic degree-
labeled subgraphs of size 3, wedges and triangles:

k' k''

k

k' k''

k

.
Let N∧(k′, k, k′′) = N∧(k′′, k, k′) be the number wedges
involving nodes of degrees k, k′, and k′′, where k is the
central node degree, and let N4(k, k′, k′′) be the number
of triangles consisting of nodes of degrees k, k′, and k′′,
where N4(k, k′, k′′) is assumed to be symmetric with
respect to all permutations of its arguments. Then the
two components of the 3K-distribution are

P∧(k′, k, k′′) = µ(k′, k′′)
N∧(k′, k, k′′)

2W
, (8)

P4(k, k′, k′′) = ν(k, k′, k′′)
N4(k, k′, k′′)

6T
, (9)

where T and W are the total numbers of triangles and
wedges in the network, and

ν(k, k′, k′′) =


6 if k = k′ = k′′,

1 if k 6= k′ 6= k′′,

2 otherwise,
(10)

so that both P∧(k′, k, k′′) and P4(k, k′, k′′) are normal-
ized,

∑
k,k′,k′′ P∧(k′, k, k′′) =

∑
k,k′,k′′ P4(k, k′, k′′) = 1.

The 3K-distribution defines the 2K-distribution (but not
vice versa), by

P (k, k′) =
1

k + k′ − 2

∑
k′′

{
6T
M
P4(k, k′, k′′)

+
W

M
[P∧(k′, k, k′′) + P∧(k, k′, k′′)]

}
. (11)

The normalization of 2K- and 3K-distributions implies
the following identity between the numbers of triangles,
wedges, edges, nodes, and the second moment of the de-
gree distribution k̄2 =

∑
k k

2P (k):

2
3T +W +M

N
= k̄2. (12)

The degree-dependent clustering coefficient c̄(k) is the
following projection of the 3K-distribution

c̄(k) =
6T
N

∑
k′,k′′ P4(k, k′, k′′)
k(k − 1)P (k)

. (13)

We observe in Fig. 8 that clustering in the real net-
works and their dK-randomizations with d = 3 is exactly
the same, which is again by definition. For d < 3, clus-
tering differs drastically in many cases, except for the
air transportation network and especially the Internet.
Therefore we can say that the Internet is very close to
being 1K-random, i.e., fully defined by its degree dis-
tribution, as far as the dK-based metrics are concerned.
Neither 3K-, 2K-, nor even 1K-randomization alter its
dK-based (projection) metrics noticeably.

B. Motifs and their Z-scores

There are six non-isomorphic motifs of size 4, shown
as the x-axes in Figs. 9,10. For each network and for
each d = 0, 1, 2, 3, we obtain several dK-randomized sam-
ples of the network, and then for each motif we compute
its distribution (normalized to the total number of sub-
graphs of size 4) in the real network, and its average
distribution in the dK-randomized samples of the net-
work. The results are in Fig. 9. Fig. 10 reports the
corresponding Z-scores. In certain cases, often for 0K-
randomizations, some motifs do not occur at all in any
randomized samples, which explains the absence of some
bars in the figures.

The key observation is that when the randomization
null model is 3K, the distributions of all motifs in the
randomizations of all the networks except the power grid,
are close to those in the real networks. The corresponding
Z-scores are either low or zero. In other words, all motifs
are statistically non-significant.

C. Distance and betweenness distributions

Fig. 11 shows the distance distribution in the real net-
works and in their dK-randomizations. The distance dis-
tribution is the distribution of hop-lengths of shortest
paths between nodes in a network. Formally, if N(h) is
the number of node pairs located at hop distance h from
each other, then the distance distribution δ(h) is

δ(h) =
2N(h)

N(N − 1)
, (14)
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FIG. 9: The motif distributions in the real networks and their dK-randomizations.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Z-
sc

or
e 

fo
r P

G
P

 W
eb

 o
f T

ru
st

3K - randomization
2K - randomization
1K - randomization
0K - randomization

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Z-
sc

or
e 

fo
r P

ro
te

in
 In

te
ra

ct
io

ns
 

3K - randomization
2K - randomization
1K - randomization
0K - randomization

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Z-
sc

or
e 

fo
r S

ci
en

tif
ic

 C
ol

la
bo

ra
tio

ns
 

3K - randomizations
2K - randomization
1K - randomization
0K - randomization

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

Z-
sc

or
e 

fo
r I

nt
er

ne
t A

S
-le

ve
l 

3K - randomization
2K - randomization
1K - randomization
0K - randomization

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Z-
sc

or
e 

fo
r A

ir 
Tr

an
sp

or
ta

tio
n

3K - randomization
2K - randomization
1K - randomization
0K - randomization

1.E+00

1.E+01

1.E+02

1.E+03

Z-
sc

or
e 

fo
r P

ow
er

 G
rid

3K - randomization
2K - randomization
1K - randomization
0K - randomization

FIG. 10: The motif Z-scores in the real networks and their dK-randomizations.

where N(N − 1)/2 is the total number of nodes pairs in
the network.

To provide a clearer view of how close the distance dis-
tributions in dK-randomizations are to the real networks,
we show in Fig. 12 some scalar summary statistics of the
distance distribution as functions of d. These summary

statistics are the average distance

h̄ =
∑

h

hδ(h), (15)

and the standard deviation of the distance distribution
δ(h). In addition we show in Fig. 12 the network diame-
ter, i.e., the maximum hop-wise distance between nodes
in the network, which is an extremal statistics of the dis-
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FIG. 11: The distance distribution in the real networks and their dK-randomizations.
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FIG. 13: The average betweenness of nodes of a given degree in the real networks and their dK-randomizations.
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FIG. 14: The average betweenness and the standard deviation of the betweenness distribution as functions of d for dK-
randomisations of the real networks. The corresponding values for the real networks are shown by dashed lines.
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TABLE II: The scalar topological metrics of the real networks
and the minimum value of d such that the network’s dK-
randomizations approximately preserve all the metrics.

Metrics PGP Collab. Protein Air Internet Power

k̄ 4.6 6.4 6.4 11.9 6.3 4.7

r 0.238 0.157 -0.137 -0.268 -0.236 -0.273

c̄ 0.27 0.65 0.09 0.62 0.46 0.68

h̄ 7.5 6.6 4.2 3.0 3.1 2.0

b̄ 6 · 10−4 4 · 10−4 7 · 10−4 4 · 10−3 2 · 10−4 2 · 10−4

dK 3K 3K 3K 2K 1K ?

tance distribution.
Fig. 13 shows degree-dependent betweenness centrality

b̄(k) in the real networks and their dK-randomizations.
Betweenness b(i) of node i is a measure of how “impor-
tant” i is in terms of the number of shortest paths passing
through it. Formally, if σst(i) is the number of shortest
paths between nodes s 6= i and t 6= i that pass through
i, and σst is the total number of shortest paths between
the two nodes s 6= t, then betweenness of i is

b(i) =
∑
s,t

σs,t(i)
σs,t

. (16)

Averaging over all nodes of degree k, degree-dependent
betweenness b̄(k) is

b̄(k) =
∑

i: deg(i)=k

b(i)
N(k)

. (17)

We also compute the betweenness distribution, and
show its average and standard deviation in Fig. 14.

We observer similar trends with respect to both dis-
tance and betweenness metrics. The power grid cannot
be approximated even by its 3K-randomization. The In-
ternet lies at the other extreme: even 1K-randomization
does not disturb its global metrics too much. The air
transportation network appears to come next, as its 2K-
randomizations resemble it closely. But all the networks
other than the power grid are very similar to their 3K-
randomizations.

D. Scalar topological metrics and dK-randomness
of real networks

To conclude this section we show in Table II the most
important scalar topological metrics for the real net-
works. These metrics are coarse summary statistics of
the more informative and detailed metrics that we have
considered in this section. Specifically, these coarse sum-
maries are:

• k̄ is the average degree in the network, Eq. (2),
which is both the 0K-distribution and a summary
statistics of the 1K-distribution in the dK-series
terminology;

• r is the assortativity coefficient,

r =

〈k〉2
∑
kk′

kk′P (k, k′)− 〈k2〉2

〈k3〉〈k〉 − 〈k2〉2
(18)

which is nothing but the Pearson correlation coef-
ficient of the 2K-distribution P (k, k′);

• c̄ is the average clustering

c̄ =
∑

k

c̄(k)P (k), (19)

which is a coarse summary statistics of the 3K-
distribution;

• h̄ is the average distance, Eq. (15), which is unre-
lated to dK-distributions;

• b̄ is the average betweenness,

b̄ =
∑

k

b̄(k)P (k), (20)

unrelated to dK-distributions as well.

In Table II we also show the minimum value of d such the
dK-randomization null model approximately reproduces
the real network with respect to all the metrics above.

The observation that the power grid cannot be ap-
proximated even by its 3K-randomization is instructive.
It shows that there are networks for which there is no
sufficiently small d capable of preserving the network
structure upon dK-randomizing. In case of the power
grid, the explanation why this network is not even 3K-
random may be related to the fact that it is carefully
designed and fully controlled by human engineers. In-
formally, we can think of it as rather “non-random,” de-
signed, and thus bearing a number of constraints that
the dK-distributions with low d cannot capture. Infor-
mally, the higher d required to approximately preserve
the network structure upon dK-randomization, the less
“random” the network is. The commonly referred ex-
planation that the power grid is an “outlier” because it
is spatially embedded, may be less relevant here because
two other networks that we have considered (the Internet
and air transportation) are also spatially embedded.

What is different between the power grid and the other
considered networks is that the latter are self-evolving.
They may be engineered to a certain degree, such as the
Internet, but their global structure and evolution are not
fully controlled by any single human or organization. In
the Internet case, for example, the global network topol-
ogy is a cumulative effect of independent decisions made
by tens of thousands of separate organizations, roughly
corresponding to Autonomous Systems, i.e., nodes of the
Internet graph.

In that sense, self-evolving complex networks are
“more random.” However, why the level of their “ran-
domness” is at d 6 3 remains an open question.
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TABLE III: dK-series vs. d-series

d dK-statistics d-statistics

0 k̄ -

1 N(k) N

2 N(k, k′) M

3
N∧(k, k′, k′′) W

N4(k, k′, k′′) T

V. MOTIF-BASED SERIES VS. dK-SERIES

In this section we compare dK-series with the series
based on motifs, and show that the latter cannot form a
systematic basis for topology analysis.

The difference between dK-series and motif-series,
which we can call d-series, is that the former is the series
of distributions of d-sized subgraphs labeled with node
degrees in a given network, while the d-series is the dis-
tributions of such subgraphs in which this degree infor-
mation is ignored. This difference explains the mnemonic
names for these two series: ‘d’ in ‘dK’ refers to the sub-
graph size, while ‘K’ signifies that they are labeled by
node degrees—‘K’ is a standard notation for node de-
grees.

This difference between the dK-series and d-series is
crucial. The dK-series are inclusive, in the sense that the
(d+1)K-distribution contains the full information about
the dK-distribution, plus some additional information,
which is not true for d-series.

To see this, let us consider the first few elements of both
series in Table III. In Section IV A we show explicitly how
the (d+ 1)K-distributions define the dK-distribution for
d = 0, 1, 2. The key observation is that the d-series does
not have this property. The 0’th element of d-series is
undefined. For d = 1 we have the number of subgraphs
of size 1, which is just N , the number of nodes in the
network. For d = 2, the corresponding statistics is M ,
the number of links, subgraphs of size 2. Clearly, M and
N are independent statistics, and the former does not
define the latter. For d = 3, the statistics are W and T ,
the total number of wedges and triangles, subgraphs of
size 3, in the network. These do not define the previous

element M either. Indeed, consider the following two
networks of size N—the chain and the star:

1
N-1

2 2 2 2 1

1
1

1

1
1

There are no triangles in either network, T = 0. In the
chain network, the number of wedges is W = N − 2, and
in the star W = (N − 1)(N − 2)/2. We see that even
though W (d = 3) scales completely differently with N
in the two networks, the number of edges M = N − 1
(d = 2) is the same.

In summary, d-series is not inclusive. For each d,
the corresponding element of the series reflects a dif-
feren kind of statistical information about the network
topology, unrelated or only loosely related to the in-
formation conveyed by the preceding elements. At the
same time, similar to dK-series, the d-series is also con-
verging since at d = N it specifies the whole network
topology. However, this convergence is much slower
that in the dK-series case. In the two networks con-
sidered above, for example, neither W = N − 2, T = 0
nor W = (N − 1)(N − 2)/2, T = 0, fix the network
topology as there are many non-isomorphic graphs with
the same (W,T ) counts, whereas the 3K-distributions
N∧(1, 2, 2) = 2, N∧(2, 2, 2) = N−4 andN∧(1, N−1, 1) =
(N−1)(N−2)/2 define the chain and star topologies ex-
actly.

The node degrees thus provide necessary information
about subgraph locations in the original network, which
improves convergence, and makes the dK-series basis in-
clusive and systematic.
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