
INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE 1

Internet-Scale IPv4 Alias Resolution with MIDAR:
System Architecture

CAIDA Tech Report, May 27, 2011

Ken Keys, Young Hyun, Matthew Luckie, and k claffy

Abstract—A critical step in creating accurate Internet topology
maps from traceroute data is mapping IP addresses to routers,
a process known as alias resolution. Recent work in alias
resolution inferred aliases based on similarities in IP ID time
series produced by different IP addresses. We design, implement,
and experiment with a new tool that builds on these insights
to scale to Internet-scale topologies, i.e., millions of addresses,
with greater precision and sensitivity. MIDAR, our Monotonic
ID-Based Alias Resolution tool, provides an extremely precise ID
comparison test based on monotonicity rather than proximity.
MIDAR integrates multiple probing methods, multiple vantage
points, and a novel sliding-window probe scheduling algorithm
to increase scalability to millions of IP addresses. Experiments
show that MIDAR’s approach is effective at minimizing the false
positive rate sufficiently to achieve a highpositive predictive value
at Internet scale. We provide sample statistics from running
MIDAR on over 2 million addresses, and validate these results
against available ground truth. Tools such as MIDAR can
help preserve longitudinal history of the Internet’s topological
evolution.

I. I NTRODUCTION

V ARIANTS of the traceroute tool [1] are widely used for
discovering Internet topology [2]–[5]. Traceroute shows

the sequence of router interfaces on the path from the source
to the destination, and executing traceroute from multiple
sources to multiple destinations reveals many router interfaces
and allows us to infer links between them. A router by
definition has at least two interfaces; Internet core routers often
have dozens. Alias resolution is the process of identifying
which interface IP addresses belong to the same routers and
is required to convert the IP-level topology discovered by
traceroute to a more useful router-level topology [6], [7].

There are many alias resolution techniques and implemen-
tations available [8]. The Mercator technique [6], [9], [10]
identifies aliases by sending a probe packet to one address and
getting a response from a different address. Ally [4] infers
that a pair of addresses are aliases if probe packets sent to
them produce responses with IP ID values in the correct order.
Spring [11] described techniques for drawing alias inferences
from similarities in reverse DNS lookups, and from simple
analysis of traceroute graphs. APAR [12], [13] and kapar [8]
use more sophisticated graph analysis techniques to infer
subnets linking routers, and from that, aliases. DisCarte [14]

K. Keys, Y. Hyun, and k claffy are with the Cooperative Association for
Internet Data Analysis (CAIDA), University of California,San Diego.

M. Luckie is with the University of Waikato.
This project is sponsored by the U.S. Department of Homeland Security

(DHS) Science and Technology (S&T) Directorate.

infers aliases from analysis of a graph created from combined
traceroute and Record Route data. RadarGun [15] looks for
similarities in IP ID time series collected from many addresses.
Sherry [16] describes the use of the IP prespecified timestamp
option to infer aliases.

In this paper, we introduce MIDAR, our Monotonic ID-
Based Alias Resolution tool, an IP ID-based alias resolution
technique inspired by Ally and RadarGun. AnIP ID value
is a 16-bit number stored in the IP ID field in the IP header,
which the sender of a packet sets to some unique value so that
the recipient can identify and reassemble fragmented packets.
For alias resolution purposes, we are concerned with the IP
ID values of packets originated by a router in the control
plane, rather than packets forwarded by a router in the data
plane. Routers themselves can send packets, for example, by
responding to ping or traceroute; by running BGP or NTP;
and by providing NetFlow, SNMP, or remote terminal access.
There is no standard method for generating IP ID values,
but many routers maintain a simple IP ID counter that is
incremented for packets it generates and whichwraps from
65 535 to 0. The key observation is that if a router uses
a shared IP ID counterfor generating IP ID values, then
the router will use consecutive IP ID values when sending
consecutive packets no matter which interface address it uses
as the source address. Thus, if two addresses share a counter,
then they are conclusively aliases, and theirIP ID time series,
a sequence of IP ID values collected over time, will have
similar values in a given measurement period and will form
a monotonically increasing IP ID sequence when merged
together, except during counter wraps. The latter expresses
the monotonicity requirement, a necessary condition for two
time series to be derived from a shared counter. IP ID-based
alias resolution techniques infer aliases by analyzing theIP
ID values in response packets and inferring which interface
addresses use a shared counter. RadarGun infers a shared
counter by looking for similar time series values, whereas
Ally and MIDAR infer a shared counter by checking for the
monotonicity requirement, though in different ways.

Most routers seem to use a single IP ID counter shared
across all interfaces and protocols, but any IP ID based alias
resolution technique must account for those that do not. A
small subset of routers sets the IP ID to zero or some other
constant value, a random value, or the value used in the probe
packet [15]. Such non-counter IP ID values can be detected
and excluded from IP ID-based alias resolution. Another small
subset of routers appears to use separate IP ID counters

2 INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE

for each interface. Use of such unshared IP ID counters is
undetectable from an analysis of IP ID values alone. Because
two addresses may be aliases but not share an IP ID counter,
IP ID-based techniques can not find all alias pairs, and cannot
definitively conclude that two addresses that do not share a
counter are not aliases. Thus, IP ID-based techniques can
produce three results: 1)positiveshared counter andpositive
aliases; 2)negativeshared counter andinconclusivealiases; 3)
inconclusiveshared counter andinconclusivealiases.

Because of the limited precision of IP ID values and the
limited variation in observed rates of change, orvelocities,
of IP ID counters (see Appendix A), it is inevitable that
any large collection of addresses will have many pairs of
addresses with similar or aligned IP ID time series out of
sheer coincidence, as predicted by the birthday paradox and
the pigeonhole principle. Suppose a given alias resolution
technique has afalse positive rateof α based on how much
similarity or alignment between two time series it accepts
as indicating a shared counter. Then forN addresses, we
can expectO(N) true positives (TP) andO(α × N2) false
positives (FP) (see Appendix C). WhenN > 106, as in the
case of Internet-scale alias resolution, true positives (aliases)
are extremely rare, approximately 1 in a million; that is, the
prevalenceof aliases is extremely low. Hence, unless the
false positive rate is extremely low,α ≪ 1/N = 10−6,
false positives can overwhelm true positives, and the alias
technique will not be useful for reliably identifying aliases.
We can quantify the degree of usefulness with thepositive
predictive value(PPV) metric, which specifies the fraction of
positive test results—“shared counter” and thus “alias”—that
are correct; that is, TP/(TP+FP). Another important metric for
evaluating IP ID-based techniques issensitivity, the fraction of
cases of counter sharing that produce a positive test result; that
is, TP/(TP + FN), where FN stands for false negatives. For
the purposes of comparing the effectiveness of IP ID-based
techniques, a false negative only means a technique failed to
detect counter sharing when sharing was present, which is
narrower in scope than a definition based on a failure to detect
aliases. (See Appendix B for further discussion of these and
related terminology.)

There are two main challenges for an alias resolution tech-
nique as the number of addressesN increases: 1) probing and
testing theO(N2) candidate alias pairs, and 2) minimizing the
false positives relative to true positives; that is, ensuring a high
PPV. The Ally technique requiresO(N2) probes to test all
possible pairs of addresses. RadarGun avoids Ally’s scalability
problems by probing an entire set of addresses as a whole
with O(N) probes, but scalability is still limited by a need
to obtain overlapping time series from all addresses. Neither
Ally nor RadarGun has a sufficiently low false positive rate to
handle the millions of addresses that appear in macroscopic-
scale Internet topology graphs such as that collected by Ark
[17]. Repeating the alias tests of Ally and RadarGun can lower
the overall false positive rate and thus increase the PPV, but
because these tests suffer from false negatives, repetition can
also decrease the sensitivity, causing aliases to be missed.

MIDAR is an attempt to overcome these and other limita-
tions of Ally and RadarGun and to scale to millions of IPv4

addresses, the order of topology graph sizes observed with
Ark. In a nutshell, MIDAR collects IP ID time series data
from many different vantage points, then mines the data using
our Monotonic Bounds Test (Section III-B) to discover which
IP addresses are likely aliases to the same router. The key
features of MIDAR are theMonotonic Bounds Test(MBT),
an ID comparison test with near perfect sensitivity based on
monotonicity rather than proximity, which allows MIDAR to
achieve an extremely low false positive rate and thus a high
PPV; the use of multiple probing methods to increase the
responsiveness of targets and thus extend the coverage of IP
ID-based techniques; and the use of multiple vantage points
and a novel sliding-window scheduling algorithm to achieve
probing scalability.

This paper is organized as follows. Sec. II provides back-
ground on the features and limitations of the two best known
IP-ID based approaches: Ally and RadarGun. Sec. III presents
the essential concepts and components of MIDAR. Sec. IV
reviews our implementation of MIDAR, including four stages
of probing: Estimation, Discovery, Elimination (of false pos-
itives), and Corroboration. Sec. V reports results from a pre-
liminary Internet-scale experiment with MIDAR, and Sec. VII
summarizes our contributions and plans to integrate MIDAR
into a larger system for alias resolution.

II. EXISTING IP ID TECHNIQUES ANDL IMITATIONS

A. Ally

The Ally component of Rocketfuel was the first tool to
examine IP ID values for alias resolution. Several papers
describe the Ally alias resolution tool [4], [11], [15]. We
base our description on Bender et al. [15] and on the Ally
source code included in the latest distribution of Scriptroute
(v0.4.8) [18] (earlier standalone releases of Ally are now
deprecated). The Ally implementation can send probes using
UDP (default), TCP ACK, or ICMP. The user chooses the
single probing method to use with a command-line option.

One of the key steps of Ally is checking whether the IP
ID values of two candidate addresses arein order; that is, the
values form an increasing sequence consistent with the use
of a shared counter. Because IP ID counters can wrap from
65 535 to 0, Ally must use sequence space arithmetic, similar
to that defined in RFC 1982 [19]. We will use the notation
X ≺ Y to denote theless thanrelationship within sequence
space.

Ally uses the following procedure to test whether addresses
A and B are aliases. First, Ally sends a probe toA, waits
1 ms, then sends a probe toB. Suppose the IP ID values in
the responses areA1 and B1, respectively. Ally can match
responses to probes, so there is no ambiguity if the responses
arrive out of order in time. Ally first checks whetherA1 and
B1 are in order and close enough to each other; namely, that
A1 − 10 ≺ B1 ≺ A1 + 200. If so, then Ally waits 400 ms,
sends a probe toB, waits 1 ms, and sends a probe toA. Ally
then checks that the resulting IP ID valuesB2 and A2 meet
the conditionB2−10 ≺ A2 ≺ B2+200 and thatA1 ≺ A2 and
B1 ≺ B2. If all these conditions are met, then Ally declaresA

INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE 3

andB to be aliases; otherwise, they are declared to be “non-
aliases,” but like all IP ID-based techniques, Ally can only
infer that they do not share a counter.

Because Ally cannot know nor control the exact generation
time of each collected IP ID value, Ally uses a margin of error
when comparing IP ID values to accommodate uncertainties.
The A1 − 10 margin is to accommodate reordering of probe
packets along the forward path, which would cause IP ID
values to be generated in the order (B1, A1), with B1 ≺ A1.
The A1 + 200 margin is to accommodate the advancement
of the IP ID counter during the inter-arrival time of the probe
packets at their destinations. For the most accurate results, Ally
requires IP ID values to be sampled closely in time, but probe
packets will typically undergo a certain amount of dispersion
beyond the 1 ms separation they had when sent, due to cross
traffic, differences in routing (for example, ifA andB reside in
different prefixes), load-balanced paths with different lengths,
and other causes. The greater the packet dispersion, the greater
the potential counter advancement between collected IP ID
samples.

Ally has the following limitations. First, it is unclear
whether these empirically-derived margins of error (X−10 and
X+200) are universally applicable to typical packet dispersion
amounts and counter velocities. Second, using fixed margins
of error is a fragile balancing act between minimizing false
positives and false negatives. The wider these margins are,the
more they allow false positives from chance alignments of IP
ID values. However, if these margins are too narrow, then they
can lead to false negatives if counters advance at a high rate
or in bursts, or if probe packets undergo a significant amount
of dispersion. Third, Ally relies on only four IP ID samples to
infer aliases, which makes Ally susceptible to false positives
caused by chance alignments, independent of the margins of
error. Fourth, Ally cannot perform IP ID-based alias resolution
on a router that rate limits its responses, because Ally needs
the responses to be generated closely in time.

Finally, a significant drawback of the Ally technique is
that, givenN addresses, it requiresO(N2) probes to test all
possible pairs. To make Ally more practical, some heuristics
are needed to reduce the size of the search space. For example,
Rocketfuel considered a pair of addresses as candidates for
testing with Ally if both addresses are a similar hop distance
away from each of several vantage points (but the hop distance
can be different across vantage points). Although this heuristic
significantly reduces the amount of testing needed with Ally,
the reduction is not enough for practical use on the millionsof
addresses that appear in macroscopic-scale Internet topology
graphs. Also, any pruning heuristic carries the risk of ex-
cluding some candidate pairs that would otherwise have been
identified as aliases (for example, aliases that are in different
prefixes may be routed along paths of different lengths from
a vantage point).

Even if it were possible to apply Ally to one million
addresses, Ally’s false positive rate (α) would be too high
to produce a useful positive predictive value. The margins of
error in Ally’s test allows samples to be 210 ID values apart,
or 210/65536 = 0.32% of the ID space. The two halves of the
test are closely correlated because they are taken only 400 ms

apart and velocities are typically low (Fig. 7), suggestingα
is only slightly lower than 0.0032. But even if the two halves
of the test were completely independent,α would be at best
about 0.00001. Extrapolating these rates to one million target
addresses suggests there would be at least 5 million false
positives, and probably closer to 1.6 billion, which is orders
of magnitude more than the expected 1 to 10 million true
positives.

B. RadarGun

We base our discussion of RadarGun on the RadarGun v0.3
source code [20] in addition to the RadarGun paper [15]. The
RadarGun implementation can send probes using TCP ACK
(default), UDP, or both. When both protocols are used, Radar-
Gun sends the TCP ACK and UDP probes consecutively for
the same address and analyzes the resulting data independently
without regard for their common destination address.

RadarGun avoids Ally’s scalability problems by probing an
entire set of addresses as a whole,O(N) probes, rather than as
individual pairs,O(N2) probes. RadarGun makes 30 probing
passes through the address list to obtain 30 IP ID samples from
each address, with samples from different addresses inter-
leaved with each other; for example, given addressesA,B,C,
RadarGun takes the samplesA1, B1, C1, A2, B2, C2, This
probing scheme produces an IP ID time series for each
address. An IP ID time seriesA (for addressA) consists of a
sequence of samples{Ai}, where eachAi specifies the sample
time and the IP ID,(ti, ID i). RadarGun uses the measured
receive time of a response packet as an approximation of the
sample time, since it does not know exactly when a router
generated a given IP ID sample. RadarGun discards a time
series as unusable if (1) fewer than 25% of the 30 probes
elicited responses (that is, RadarGun has fewer than 7 IP ID
samples), (2) all collected samples have an IP ID of zero or
all have the IP ID used by probes, or (3) the time series is
nonlinear—that is, either the IP ID counter is advancing too
quickly to measure, or IP ID values are randomly generated.

RadarGun considers a time series to be nonlinear if either
of two conditions is met. The first condition is based on the
frequency ofnegative deltasin a time series. Adelta is the
difference in value of adjacent IP ID samples in a time series;
that is, ∆ID i = ID i+1 − ID i. A negative deltais when
∆ID i < 0. Negative deltas occur naturally as an IP ID counter
wraps from 65 535 to 0. For any given sampling interval,
the faster an IP ID counter advances, the more frequently a
negative delta will appear in a time series, since the counter
can wrap more often within the time period sampled by
RadarGun. Negative deltas can also occur when IP ID values
are generated randomly, since the average probability of an
individualdelta being negative is 50% in a sequence of random
values. Regardless of the exact cause, whether too fast a
counter or random IP ID values, RadarGun discards a time
series as nonlinear if greater than 30% of the deltas are
negative.

The second condition for nonlinear time series is based on
the apparent rate of advancement, or velocity, of an IP ID
counter. RadarGun computes the velocity from anunwrapped

4 INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE

IP ID time series. A time series is typically unwrapped by
adding 65 536 (the full IP ID space) whenever a negative
delta occurs. RadarGun also tries to account for one or more
counter wraps that may have occurred in large gaps in time
between samples, even when the delta is positive. RadarGun
infers the number of possible wraps in each gap from an
estimate of the time between wraps,∆twrap, derived from a
simplistic calculation on the positive deltas in a time series.
For a gap of duration∆tgap, there are⌊∆tgap/∆twrap⌋ inferred
wraps, and RadarGun adds this many multiples of the IP ID
space when unwrapping the time series. Once a time series has
been unwrapped, RadarGun computes the velocity by finding
the linear least squares line that best fits the unwrapped IP
ID values; the slope of the line is the velocity in ID/s. The
more negative deltas there are in a time series, the higher the
apparent velocity of the unwrapped samples. Therefore, both
true high velocity counters and random IP ID values will lead
to high apparent velocities. RadarGun discards a time series
as nonlinear if the velocity is greater than 800 ID/s, regardless
of the cause.

The key insight of RadarGun is that if two addresses share
an IP ID counter, then their time series should have nearby
IP ID values when overlapping in time. RadarGun infers
whether two addresses are aliases by employing adistance
testto measure how closely their time series describe the same
underlying counter. The key building block of the distance test
is the calculation of thesample distance, the distance between
an individual sample point in one time series and the expected
value of the IP ID counter in the other time series at the same
moment in time. There are two cases to computing the sample
distance, with all calculations performed on the unwrapped
time seriesA and B of the two addresses being tested. Let
Bj = (tB,j , IDB,j) be a sample ofB. In the first (and more
common) case,Bj lies between adjacent samples ofA in
time, that is, there is somei for which tA,i ≤ tB,j < tA,i+1.
RadarGun then uses linear interpolation betweenAi andAi+1

to estimateIDA,est, the expected IP ID value ofA at tB,j . In
the second case,Bj does not lie between any two samples
of A, and RadarGun extrapolates the best fit line through
A (the same line used to calculate the velocity) to estimate
IDA,est. In either case, RadarGun then computes the sample
distanceδB,j = |IDA,est−IDB,j |. After computing all sample
distancesδB,j betweenB andA, and similarly computing the
sample distancesδA,i betweenA andB, RadarGun calculates
the average sample distance:

∆A,B =

∑

i δA,i +
∑

j δB,j

|A| + |B|

If ∆A,B < 200, then RadarGun concludesA andB are aliases;
if ∆A,B > 1000, then they are not aliases. Otherwise, the
distance test is inconclusive.

By employing the distance test on time series, RadarGun
is more tolerant than Ally of ICMP rate limiting and less
susceptible to false positives caused by chance alignments.
However, RadarGun’s distance test has several weaknesses.
First, the distance thresholds for aliases and non-aliasesare
derived empirically and subjectively from a particular dataset
and may not apply to other datasets. Second, even for a partic-

 1000

 1020

 1040

 1060

 1080

 1100

 1120

 1140

 0 20 40 60 80 100

IP
 ID

time

addr A
addr B

Fig. 1. There can always be a false positive under the RadarGun distance
test regardless of the threshold used. For example, the average IP ID distance
between these addresses is only 40, which is below the 200 threshold for being
aliases, but these addresses cannot share a counter becausethe merged sample
points do not form a monotonic sequence over time. A similar construction
exists for any threshold.

ular dataset, there is no inherently right choice for the distance
thresholds, since the thresholds must be low to minimize false
positives with lower velocity addresses, and high to minimize
false negatives with higher velocity addresses. Even if the
thresholds were chosen adaptively to velocities, the thresholds
must still have margins of error to allow for bursty IP ID
counter advancement and other uncertainties, which prevents
exact separation of aliases from non-aliases. As a result,
adjusting the distance thresholds never fully eliminates false
positives, false negatives, or inconclusive results, but merely
shifts the balance between them. Third, there can always be a
false positive under the distance test regardless of the threshold
used, as Fig. 1 shows, because the distance test does not check
for the monotonicity requirement.

As a consequence of the above weaknesses, the distance
test produces too many false positives for RadarGun to scale
to millions of addresses. For example, extrapolating the false
positive rate (0.0005) implied in Bender et al. [15] to one
million target addresses suggests there will be an order of
magnitude more false positives (264 million pairs) than true
positives, giving a very poor PPV.

Furthermore, because RadarGun needs to obtain overlap-
ping samples from all addresses in order to apply the distance
test, there is a practical limit to the number of addresses Radar-
Gun can handle before requiring network-unfriendly levelsof
probing bandwidth. For example, handling one million targets
with 10 s probe spacing would require 100 000 packets per
second, or 35 Mb/s.

III. MIDAR D ESIGN

To find aliases among a large numberN of router addresses,
MIDAR collects an IP ID time series from each of the
addresses and tests for a shared IP ID counter in each of
the O(N2) address pairs. We take a bottom-up approach to
describing MIDAR. In this section, we describe the essential
concepts and key features of MIDAR, and discuss our ap-
proach to mitigating false positives. In the following section
we will describe how we integrate these components into the
complete MIDAR system.

INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE 5

A. Time series in MIDAR

MIDAR takes a sampling of IP ID values to construct the
time series used for alias resolution. MIDAR considers a time
seriesunusablefor alias resolution if (1) fewer than 75% of
the probes to the target elicited responses, (2) 25% or more
of the collected samples have a constant IP ID value (such as
zero) or echo the IP ID used by probes, or (3) the time series
cannot be modeled as a monotonically increasing sequence;
that is, the observed frequency of negative deltas is so high
that we are not confident we are detecting all wraps of the
IP ID counter, or we suspect the IP ID values are randomly
generated.

To reliably detect all counter wraps, we must use a sampling
interval that is shorter than the time between wraps, so thatwe
obtain exactly one negative delta whenever the counter wraps
and positive deltas at all other times. Sampling even more
frequently will yield more positive deltas during the time the
counter is increasing monotonically but still only one negative
delta at each counter wrap, so the overall fraction of deltas
that are negative will decrease. We adopt RadarGun’s 30%
threshold on the maximum allowed fraction of negative deltas
before we consider a time series unusable. This 30% threshold
is intentionally more conservative than the 50% threshold
suggested by the Nyquist-Shannon sampling theorem when a
counter wrap is thought of as a “signal” occurring at a certain
frequency. The 30% limit on negative deltas also has the
advantage of excluding 98.8% of random time series, which
cannot be used for alias resolution (see Appendix G).

We define themaximum sampling intervalImax to be the
largest sampling interval that still ensures the fraction of
negative deltas is no more than 30%. MIDAR collects an
initial time series from each target address using a small fixed
sampling interval and then calculatesImax individually for each
target based on the target’s observed velocity. MIDAR uses the
computedImax to customize the sampling interval individually
for each target when collecting additional time series actually
used for alias resolution (Sec. III-E).

Observe that limiting the fraction of negative deltas to 30%
is equivalent to limiting the average counter advancement per
sample to 30% of the ID space, because the counter advances
through 100% of the ID space between each counter wrap.
Hence, the maximum sampling interval for a time series with
velocity v̄ is

Imax = (0.3 × 216)/v̄ (1)

We define the velocitȳv of a time series to be the average
slope of the segments weighted by segment duration; that is,

v̄ =

∑

∆ID i
∑

∆ti
(2)

where ∆ID i and ∆ti are the change in ID and time, re-
spectively, between samplesi and i + 1. If there is a neg-
ative delta between samplesi and i + 1, then we define
∆ID i = ID i+1 + 216 − ID i; that is, the distance between the
unwrappedID samples at negative deltas. To avoid distortions
due to sampling gaps or atypical counter behavior, we exclude
discontinuities (Appendix H) when calculating velocity.

A1

A2

A3

A4

A5

A4

A5

A6

A7

0

216

IP
 ID

time

B1

B2

B3

B4

B5

B6

B7

B8

B9

series A
passing point in B
failing point in B

Fig. 2. Illustration of the sample-wise execution of the Monotonic Bounds
Test (MBT). MBT checks an IP ID sample of one time series (e.g.,B2) against
the closest surrounding samples (in time) of the other time series (e.g.,A1

andA2). The tested sample must lie within the monotonic bounds set by the
surrounding samples (e.g.,B2 must fall within the bounding box with corners
atA1 andA2). When there is a counter wrap between the surrounding samples
(e.g., betweenA4 and A5 when checkingB5), the monotonic bounds split
into two parts. (Velocity is exaggerated for clarity.)

B. Monotonic Bounds Test

The Monotonic Bounds Test (MBT) checks whether the
IP ID times series of two addresses meet the monotonicity
requirement, a necessary condition for sharing an IP ID
counter; that is, whether the time series form a monotonically
increasing IP ID sequence when considered as a single merged
time series. The MBT is a rigorous test that does not employ
ad hoc thresholds to accommodate uncertainties.

MBT checks that two time seriesA and B meet the
monotonicity requirement by individually checking that each
sample ofB meets the monotonicity requirement with respect
to the samples ofA, and that each sample ofA meets the
requirement with respect to the samples ofB. If all sample
tests pass, thenA and B as a whole meet the monotonicity
requirement. We first describe the sample-wise execution of
MBT in a slightly simplified form and then provide the full
details. LetBj = (tB,j , IDB,j) be a sample ofB. Suppose
we are checking thatBj meets the monotonicity requirement
with respect to the samples ofA. Let Ai = (tA,i, IDA,i)
and Ai+1 = (tA,i+1, IDA,i+1) be adjacent samples inA
such thattA,i < tB,j < tA,i+1; that is, Ai and Ai+1 are
the nearest adjacent samples ofA in time to Bj . Fig. 2
illustrates the two different MBT cases. In the first case, the
counter has not wrapped between the samplesAi and Ai+1

(that is, ∆IDA,i > 0), and so we can simply check that
IDA,i < IDB,j < IDA,i+1. We can imagine this constraint
on the ID values as a bounding box whose corners are
defined byAi and Ai+1, and Bj must fall within this box
to pass MBT. For example, in Fig. 2,B2 lies betweenA1

and A2 in time and falls within the bounding box of these
samples, and thusB2 meets the monotonicity requirement. In
contrast,B3 is betweenA2 andA3 in time but does not fall
within the bounding box (becauseIDB,3 6< IDA,3) and thus
violates the monotonicity requirement. In the second MBT
case, the counter has wrapped betweenAi and Ai+1 (that
is, ∆IDA,i < 0). Therefore, the bounding box betweenAi

and Ai+1 is split into two pieces, and we must have either

6 INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE

IP
 ID

time

s-ε r+ε

B C

D

A1

A2

A3

Fig. 3. Monotonic Bounds Test with imperfect time data.Sample time ranges
are shown as horizontal bars (with exaggerated size for clarity). Samples B
and C lie at least partially within the bounding boxes, makingit possible to
draw a monotonic curve (dotted lines) through them connecting neighboring
samples from interface A, showing that samples B and C may come from a
counter shared with A. Sample D lies completely outside the bounding boxes,
so no monotonic curve can connect samples in A and still pass through D,
so D cannot come from a counter shared with A.

IDA,i < IDB,j or IDB,j < IDA,i+1. For example,B5 lies
betweenA4 and A5 and passes, sinceIDA,4 < IDB,5. B6

also lies between these samples but violates the monotonicity
requirement by lying outside both pieces of the bounding box.
If all samples ofB pass, then MBT swaps the roles ofA
and B and individually checks the samples ofA againstB
with the same procedure. If any sample-wise test fails, we
can immediately conclude that thatA and B do not share a
counter without performing the remaining sample-wise tests.

So far, we have described a time series as being{(ti, ID i)}
with ti being the sample time. In order for MBT to maintain a
virtually zero false negative rate (a crucial property relied on
in MIDAR), MBT needs accurate sample times to determine
which samples define the monotonic bounds for each sample-
wise test. Thetrue sample time, τi, is the exact moment in time
that a router generated a response with the given IP ID value.
We cannot determineτi with active measurement, but we can
calculate accurate bounds onτi. We know the measured time
si when we sent our probe and the measured timeri when
we received the response, and that the true send and receive
times are within±ǫ of the measured times, whereǫ is the
maximum clock error of all monitors during a MIDAR run
(see Sec. III-D). Since the response must have been generated
between sending and receiving, we know that the true sample
time must be within thesample time range(si − ǫ, ri + ǫ),
which we will substitute forτi in MBT execution.

MIDAR obtains the samples of a single time series se-
quentially by sending the next probe only after receiving
the response to a prior probe or after a timeout, so there
is never any uncertainty about the ordering of the samples
within a single time series. However, since MIDAR probes
multiple interfaces in parallel (Sec. III-E), two samples from
two separate time series can have overlapping time ranges,
and consequently the true relative ordering of these samples
is uncertain. When the time range of one of the bounding
samples overlaps with the time range of the test sample, the
MBT widens its bounds to the next closest sample whose time
range does not overlap with the test sample. This makes the
monotonic bounds larger than they could have been if the exact

IP
 ID

time

IP
 ID

time

IP
 ID

time

IP
 ID

time

(a)

IP
 ID

time

IP
 ID

time

IP
 ID

time

IP
 ID

time

(b)

IP
 ID

time

IP
 ID

time

IP
 ID

time

IP
 ID

time

(c)

Fig. 4. With all other things being equal, monotonic bounds (that is, the
range of IP ID values allowed by the MBT) become tighter when a time series
has a lower velocity (subfigure (a) compared to (b)) or when IP ID values are
sampled on shorter intervals ((c) vs. (b)).

relative ordering of samples were known, but the sensitivity of
the test is preserved despite these uncertainties—a test failure
against the larger bounds conclusively means that there is no
shared counter. We can thus accommodate uncertainties in
both the response time and clock error without compromising
the rigor of MBT.

Fig. 3 illustrates the execution of MBT using sample time
ranges. We wish to individually test the samplesB, C, and
D against the surrounding samples of{Ai}. The time ranges
of B and D (shown as horizontal bars) do not overlap with
the time ranges ofAi, so we know the true relative ordering
of these samples, and MBT execution is straightforward. For
B, the monotonic bounds are defined byA1 and A2, the
nearest adjacent samples ofAi that do not have overlapping
time ranges withB, and B passes. ForD, the monotonic
bounds are defined byA2 and A3, and D fails since it lies
outside the bounding box. SampleC is the interesting new
case, since the time ranges ofC and its nearest surrounding
sampleA2 overlap. Because of the overlap, we cannot know
whetherC precedesA2 and therefore should be bounded by
A1 andA2 (the left bounding box), or whetherC follows A2

and should be bounded byA2 and A3 (the right bounding
box). MIDAR simply avoids relying on the indeterminateA2

and looks outward towardA1 and A3, which are the next
nearest samples that do not overlap withC, to find the suitable
monotonic bounds to use.C falls within this larger bounding
box (that is,IDA,1 < IDC < IDA,3) and therefore passes.
The dashed line passing throughA1, C, and A2 illustrates
a possible monotonic counter consistent with these sample
values and time ranges.

Because the MBT is based strictly on the definition of
monotonicity, we must detect and account for discontinuities
(Appendix H) and other anomalies (Appendix I) that occur oc-
casionally in time series that otherwise adhere to the definition.
Whenever a sample-wise MBT test involves an ID value that
is questionable due to a discontinuity or anomaly, the test may
generate a false negative. Rather than risk this rare error,we
do not apply the MBT in that case, and rely on the remaining
sample-wise tests for the most accurate result.

In general, the more ID samples we have available to test
with MBT, and the tighter the monotonic bounds, the more
confident we can be that a positive test result means a shared

INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE 7

TABLE I
SUMMARY OF PROBING METHODS.

Method Probe Packet Expected Response
TCP TCP ACK to port 80 on tar-

get
TCP RST or (rarely) ICMP
port unreachablefrom target

UDP UDP packet to port 33435 on
target

ICMP port unreachablefrom
target

ICMP ICMP echo requestto target ICMP echo replyfrom target
Indirect TTL-limited ICMP echo re-

questto a hostpastthe target
ICMP time exceededfrom
target

counter. Although monotonic bounds can be large in theory,
they are typically small in practice for two reasons. First,
monotonic bounds are defined separately by each pair of
samples and are by construction as tight as possible. Thus, the
lower velocity time series in Fig. 4a has tighter bounds than
the higher velocity time series in Fig. 4b. Low velocity time
series make up the majority of the cases observed in our data,
and the monotonic bounds can be quite small; for example,
adjacent samples with ID values 5 and 7 define monotonic
bounds that can be satisfied by only a single ID value, 6.
Second, we can use a shorter sampling interval to tighten the
bounds independently of the target velocity, as illustrated by
Fig. 4b and 4c, which have identical counters but different
probe spacing. To the extent possible, MIDAR tries to keep
monotonic bounds small by adapting probe spacing to the
actual measured velocity of each target interface (Sec. III-E).

C. Multiple probing methods

Recent implementations of Ally and RadarGun offer a
choice of several probing methods selectable by the user (typ-
ically only one method per run). Bender et al. [15] mentioned
the possibility of combining multiple methods (they suggest
TCP and UDP) in order to increase the number of targets
with usable IP ID samples. They did not offer any procedure,
nor investigate the usefulness or effectiveness of combining
methods. In this section, we describe the procedure used by
MIDAR to fully exploit four probing methods—TCP, UDP,
ICMP, and a method we callTTL-limited indirect probing, or
Indirect for short.

Table I summarizes the methods supported by MIDAR. The
TCP, UDP, and ICMP methods are straightforward: send a
probe packet to the target, and if the response is of the expected
type, collect the IP ID value. Although UDP responses from
a different address are often from a different interface on the
same router, there is a risk that such responses are from a
different router altogether, so we do not use them in MIDAR;
interpreting these responses is more in the domain of the
Mercator technique. TheIndirect method imitates a traceroute
measurement. Every intermediate address in a traceroute path
responded with an ICMPtime exceededresponse, so in theory,
we can elicit atime exceededresponse again by reproducing
the exact conditions of a traceroute measurement. For an
address observed at hoph in a traceroute path, theIndirect
method sends a probe with a TTL ofh from the original
vantage point to the original destination and obtains an IP
ID sample from thetime exceededresponse. To maximize
the chances of the probe taking the same route as the orig-
inal traceroute packet and expiring at the target address, we

maintain the same Paris-traceroute flow label (TOS, protocol,
source and destination addresses, ICMP type and code, and
ICMP checksum [21]) as the original traceroute measurement.
Nevertheless, the route can still change, and we may face either
(1) a new route to the destination that entirely bypasses the
target address, or (2) a new route that still passes through
the target address but at a different hop distance. MIDAR
does not currently handle the first case—this is the greatest
weakness ofIndirect probing. MIDAR handles the second case
by hunting for the target at nearby TTLs. If anIndirect probe
with TTL = T does not elicit the expected response, we send
additional probes with TTL= T ± 1. If we find the target at
one of these TTLs, we use that new TTL as the expected TTL
for subsequent probes. MIDAR performs thisTTL expansion
process only in the Estimation stage (see Sec. IV-A). In our
experiments, TTL expansion increased the response rate to
Indirect probing from 76.5% to 80.8%. Expanding further to
T ± 2 provided only a negligible increase in the response rate
while significantly increasing the probing cost.

Appendix E describes the extent to which employing mul-
tiple probing methods increases usable time series for our
dataset described in Sec. V. Using TCP alone resulted in
only 34.6% of the addresses having usable time series, leaving
nearly two-thirds completely unresolvable to IP ID based alias
resolution. If we employ all four methods, 80.6% of addresses
yield usable time series to at least one method.

The main concern with employing multiple probing meth-
ods is how consistently the interfaces on the same router
behave. In the simplest case, either all or none of the interfaces
of a single router respond with usable IP ID values to a
given method. In this case, we can collect all IP ID samples
with the same method, presenting no additional difficulty for
alias inference. However, interfaces on a single router do not
always behave consistently, perhaps due to different filtering
on different routes to the various interfaces. In such cases,
we can infer aliases only if we can meaningfully compare IP
ID time series collected with different methods; that is, ifa
router uses the same IP ID counter to generate responses to
different probing methods as well as for different interfaces.
We expect that a router will use a shared counter on all
interfaces when responding to TCP and UDP probes, since we
expect the responses to come from a shared CPU that would
execute (router-wide) services potentially reachable with these
protocols. However, when we use ICMP orIndirect probing,
the ICMP echo replyor time exceededresponses could be
generated entirely on a line card (that is, on the fast path) [22],
and a line card may have its own IP ID counter not shared
with either the CPU or other line cards on the same router.
Thus, there is a chance that responses to ICMP andIndirect
probes may not share a counter with responses to TCP or UDP
probes.

We can detect counter sharing across probing methods in
the same way we identify shared counters across interfaces—
we apply MBT to a pair of time series obtained from the same
interface but with different probing methods. Note that these
cross-method comparisons do not suffer from the high false
positive rate of the cross-interface comparisons described in
Appendix C, since only a single interface is involved. We

8 INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE

observe a relatively high incidence of counter sharing for
our dataset (see Sec. V), ranging from 88.9% to 97.4% of
addresses per pair of methods (see Appendix F for full details).

The relatively high rate of counter sharing suggests that
employing multiple methods may be a fruitful way of finding
additional aliases. An obvious way to use multiple methods is
to probe all targets with all methods and then perform alias in-
ference on the resulting time series. This brute-force approach
has the advantage of checking all possible combinations of
addresses and methods for aliases, but it increases the difficulty
of scaling up measurements, since we need overlapping time
series from all methods. Furthermore, because of cross-method
counter sharing, it can be redundant to probe a target with
multiple methods; for example, if a target responds with a
shared counter to TCP and UDP, then the time series produced
by either method can be compared equally well to others for
alias inference, so there is no need to collect both time series.
Thus, we make a trade-off in MIDAR by probing with only
one methodper target but supporting multiple methodsacross
targets. By using only one method per target, we need to send
only one quarter of the probes, allowing us to probe four times
more targets with the same resources, but we may not be able
to find all potentially discoverable aliases if some routersdo
not share counters across methods, since we do not collect
data using all combinations of addresses and methods.

To determine which methods are usable with each target,
MIDAR probes all targets with all methods in the earliest
stage (see Sec. IV-A). This process is inherently scalable
since time series do not need to overlap across targets. When
there are several usable methods for a given target, MIDAR
selects a single method to use in subsequent stages based on
the following method preferences. We prefer TCP over UDP
because UDP is more often rate-limited and thus less reliable
in eliciting responses. If UDP and ICMP do not appear to
share a counter with each other, we prefer UDP, because ICMP
is more likely to be generated on a line card using an ID
counter that is not shared across interfaces. But if UDP and
ICMP do share a counter, the choice of protocol does not
affect the chances of cross-interface counter sharing, andwe
prefer ICMP because it is less likely to be rate limited than
UDP. We assignIndirect the lowest preference because (1) it
is more likely to be generated on a line card with an unshared
counter, (2) it is more likely to be rate limited, (3) a routing
change may prevent us from probing a target and (4) it is much
more difficult to recover from the loss of a vantage point mid-
run, since a target may be reachable withIndirect from only
a limited number of vantage points (perhaps just one).

D. Multiple vantage points

MIDAR employs multiple vantage points to increase the
aggregate probing rate, an obvious approach to scalabilitysug-
gested but not implemented in [15]. Because MIDAR needs to
compare time series collected by the different vantage points,
their clocks must be synchronized, for example with NTP or
RADclock [23], [24]. MIDAR does not require extraordinarily
precise clock synchronization, but it does require an estimate
of the maximum clock errorǫ across all vantage points during

execution.1 The lower theǫ, the tighter the monotonic bounds
become in the Monotonic Bounds Test (Sec. III-B), so we
recommend minimizingǫ where possible by, for example,
deploying RADclock instead of NTP.

The higher probing rate achievable by multiple vantage
points is not enough by itself to achieve true scalability as
the number of targets increases to Internet-scale. We discuss
another technique MIDAR employs for scalability in the next
section.

E. Achieving probing scalability with sliding window

For target addressesA,B,C, . . ., the simplest approach
to collecting overlapping time series is to take the samples
A1, B1, C1, . . . , A2, B2, C2, . . .; that is, loop through the target
list multiple times, probing the targets in order. If we probe N
addresses atp packets per second (pps), then each pass through
the target list will takeI = N/p seconds; that is, each target
is sampled at an interval ofI seconds. The resulting time
series for each target is usable only if the sampling interval I
is less than or equal to the maximum sampling intervalImax

for that target (see Sec. III-A).I must be short enough to
accommodate the highest velocity of theN targets. Suppose
the highest velocity is 2000 ID/s. Then, from Eq. 1, we must
haveI ≤ 9.83 s. If N = 2 × 106, then to achieveI = 9.83 s,
we must probe at 203 459 pps, which is at least 71.6 Mb/s of
traffic with TCP probes. The brute force approach of probing
from 1000 machines in parallel would reduce the probing rate
to 203 pps per machine, but managing that many machines is
problematic. Here, we present a more scalable technique that
can achieve even smaller intervals for high velocity targets,
at half the per-machine probing rate, using fewer than 40
machines.

MIDAR achieves probing scalability with asliding window
scheduling algorithm that exploits two observations. The first
observation is that, whenN ≥ 106, the expectedO(N)
number of aliases is significantly smaller than theO(N2)
possible pairs of addresses (see Appendix C). Therefore,
collecting overlapping time series forall possible pairs of
addresses is largely unnecessary work. If addresses have very
different velocities, they cannot share a counter, so we do
not need to apply the MBT to them and thus do not need
their time series to overlap. That is, we can use loose velocity
similarity as a high sensitivity (but low PPV) shared counter
test, to filter out many unshared counter pairs at an early stage.
The second observation is that target velocities range widely
from near zero ID/s to several thousand ID/s, but the vast
majority of the targets we have observed have low velocities
(see Appendix A), so we need to use a short sampling interval
only for the minority of high velocity targets.

MIDAR incrementally probes the target list over multiple
rounds. In each round, MIDAR sends one probe to each target
in a window in sequence. Awindow is a contiguous subset of
the target list defined by starting and ending target indexes.
The width and position of the window changes over time.
The width of the window determines the sampling interval

1To estimateǫ, we usedntpq/ntpdate to determine the clock offset and
delay of each vantage point during a MIDAR run.

INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE 9

 0
 400
 800

 1200
 1600

 0 200 400 600 800 1000 1200 1400es
tim

at
ed

 v
el

oc
ity

address index

 30

 40

 50

 60

 70

 80

 90
 0 200 400 600 800 1000 1200 1400

AB C D
ro

un
d

Fig. 5. Portion of sliding window schedule for a real large-scale run. The
full schedule covers 272 rounds and 37 546 addresses per monitor, but for
brevity, we show only every fifth round from 30 to 90 and only the first
1400 addresses. Addresses A and B have similar velocities, soare near each
other in the velocity-sorted list, and thus share the windowin rounds 35–83.
Addresses A and C have less similar velocities, and share a window only in
rounds 70–83. Addresses A and D have even less similar velocities, and so
D does not enter the window until round 85, after A has exited.

for the targets within the window, since a target cannot
be sampled more closely in time than it takes to probe a
window sequentially. The position or coverage of the window
determines which targets will have overlapping time series.
MIDAR ensures that the window covers only likely shared-
counter candidates by working with a target list sorted in
descending order by target velocity, which puts addresses with
similar velocities near each other (MIDAR obtains the target
velocities in the Estimation stage, see Sec. IV-A). We can
think of the simplest approach described at the beginning of
this section as a degenerate case with a fixed window covering
the entire target list, so that we collect one sample from all
targets in each round and overlapping time series for all targets
after multiple rounds of probing.

Fig. 5 illustrates the execution of the sliding window. In
the upper subfigure, each dashed horizontal line representsthe
target list at a particular round of execution (so each vertical
line represents the same target address over all rounds), and
each solid bar represents the window. For brevity, the figure
only shows every fifth round. The lower subfigure shows the
target velocities in ID/s, with the target indexes matchingup
vertically between the two subfigures. For discussion, we have
labeled four target addresses (A, B, C, andD) and highlighted
their target indexes with vertical lines.

Observe first that the width of the window increases over
time, from around 300 targets at round 30 to 1000 targets at
round 90. The window must be narrow near the beginning
of the list to ensure a sampling interval short enough for the
highest velocity in the window. Because velocities vary widely
in the beginning (dropping from 1600 to 400 ID/s in the first
300 targets), the narrow window includes all targets that could
plausibly share a counter with the highest-velocity target,
while excluding many targets that could not. The window is
several times wider at round 90 than at round 30 because the
target velocities at indexes 400–1400 are much lower with less
variation, so the sampling interval can be longer, and more of

the adjacent targets are shared-counter candidates based on
their velocities.

Next, observe that the window gradually moves down the
list over successive rounds. The more rounds two addresses
stay together in the window, the more overlap there will be
between their time series. We wish to (1) ensure sufficient
overlap between targets with nearly the same velocities, (2)
obtain at leastsomeoverlap between targets with moderately
similar velocities, and (3) avoid wasting resources on obtaining
overlap between targets with sufficiently different velocities.
Targets with nearly the same velocities, such asA and B in
Fig. 5, are near each other in the target list and thus will stay
together in the window the longest and have the most overlap.
TargetsA and B have overlapping samples from round 35,
whenB first falls within the window, until round 83, whenA
last appears in the window. Targets with only similar velocities,
such asA andC, are farther apart in the target list and thus
will only stay together in the window for a limited number
of rounds (rounds 70–83 forA and C), but collecting even
a few overlapping samples is still useful for ruling out these
unlikely shared-counter pairs with MBT. Finally, targets with
sufficiently different velocities, such asA andD, never appear
together in a window and have no overlap, but we presume
they cannot share counters, so lacking overlap is a feature that
improves efficiency.

In probing with the sliding window, MIDAR must balance
two competing requirements in each round—the window must
be narrow enough to ensure a sufficiently short sampling
interval for the highest target velocity in the window, and
the window must be wide enough to include all adjacent
targets with velocities similar enough to share counters. We
can quantify this trade-off with metrics that depend only on
target velocities and use the metrics to guide the choice of the
optimal window size. Letvhigh be the highest target velocity in
a window, andvlow the lowest. These are the velocities of the
first and last targets in the window, because the target list is
sorted by descending velocity. We define aspacingmetric for
the quality of a window’s sampling interval from how much
a counter with velocityvhigh would advance between samples;
specifically, we define a counter advancement of 16 384, or
1/4 of the ID space, to be one unit ofspacing. If the counter
advances 1/8 of the ID space, then the spacing will be 0.5. The
lower the spacing, the more frequently we sample a target.
We define asimilarity metric for a window’s inclusiveness of
similar target velocities from the ratiovlow/vhigh, with a value
of 2/3 being one unit ofsimilarity. A ratio of 1/3 would be a
similarity of 0.5. The lower the similarity, the wider the range
of velocities allowed as possible shared counter pairs. As a
window becomes larger, the spacing metric increases (gets
worse) and the similarity metric decreases (gets better). For
each round, we choose the window’s starting target index, and
then choose the window size at which these two metric values
are equal (or cross). If possible, we first advance the starting
target index of the window past any targets in the beginning
portion of the window that have already been probed at least
30 times while sharing a window with all targets of similar
enough velocities to potentially share counters. In this way,
the window eventually slides down the entirety of the target

10 INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE

list over multiple rounds.
MIDAR partitions the full target list across multiple vantage

points and simultaneously probes with a sliding window from
all locations. To ensure that all shared-counter candidates
(that is, targets with similar velocities) have overlapping time
series even across vantage points, MIDAR assigns, to the
extent possible, both an equal number of targets and an equal
distribution of target velocities to each vantage point, sothat
the windows of different vantage points cover the same range
of velocities at the same time. Targets that can only be probed
with the Indirect method can only be assigned to vantage
points that saw that target in a traceroute path, but despitethis
hard constraint on target assignment, we are able to achieve
nearly identical velocity distributions, due to the flexibility
offered by a large number of targets that are usable with other
methods. For example, in one MIDAR run, the number of
targets assigned to each of 30 vantage points ranged from
43 375 to 43 938, a difference of only 1%.

A pre-calculated schedule drives the execution of the sliding
window on each vantage point. We can calculate the position
of the window for all rounds ahead of execution and compile
this information into a schedule because the sliding windowis
dependent only on target velocities, which are known prior to
execution. The schedule includes a delay in each round for any
vantage point that was assigned less than its share of targets
for that round, allowing us to finely synchronize the probing
of a given velocity range across all vantage points.

The sliding window scales gracefully without manual pa-
rameter adjustment to varying numbers of targets and vantage
points and to varying levels of overlap quality between time
series. Using this approach, with a self-imposed limit of
100 pps per vantage point to minimize impact on the network,
we were able to collect the required overlapping time series
for 1.9 million addresses in 5.9 hours using 40 vantage points,
with a worst case sampling interval of 15% of the wrap
period. This aggregate probing rate of 4 000 pps is significantly
lower than the 229 748 pps that would be needed by the brute
force approach to achieve the maximum allowable worst case
interval of 30% of the wrap period.

F. Further reducing false positives

For the millions of addresses typically discovered by
Internet-scale mapping experiments, some of the trillionsof
possible pairs of addresses will have similar IP ID time series
over a given measurement period out of sheer coincidence (see
Appendix C). Thus, all alias tests will be susceptible to false
positives at this scale. Fortunately, unrelated IP ID counters
that were coincidentally similar during one period of time will
eventually diverge under continued observation since evena
tiny difference in velocity becomes magnified over time. We
exploit this fact to substantially improve confidence in positive
test results and to rule out false positives. We repeatedly
test pairs that pass MBT, delaying hours or days between
applications. The more MBT applications a pair passes, the
higher our confidence of a shared counter, but a single test
failure conclusively rules out a shared counter. Because of
the virtually zero false negative rate of MBT, assuming the

clock error is not underestimated and counter anomalies are
detected (see Appendix I), we can repeatedly apply MBT with
negligible risk of losing aliases.

We initially identify candidate alias pairs by probing all
addresses with a sliding window and then applying MBT
(Sec. IV-B). When we take the transitive closure of these
candidate alias pairs, we obtain large, sparsealias sets, that
is, sets of addresses that seem to share a counter. Because
of the many inevitable false positives, these alias sets are
typically composed of smaller cliques or near-cliques of true
alias sets linked together by false alias pairs. We could repeat
the sliding window probing to retest candidate alias pairs,but
we undertake a more specialized probing approach in order to
increase the effectiveness of MBT and thus our confidence in
positive test results. We work in two stages. In the first stage,
we perform focused probing and testing of every identified
candidate alias pair in order to eliminate most false positives
and to break up large alias sets into more realistic constituent
sets. In the second stage, we probe each of these smaller
constituent sets as a whole and apply MBT to both the pairs
we have already discovered to share a counter and the pairs
implied by transitive closure of those discovered pairs; that is,
we check the internal consistency of an alias set, that everypair
in a set shares a counter. In both stages, we probe with tighter
probe spacing than can be achieved with the sliding window,
which makes the MBT bounds tighter and helps to eliminate
more false positives. We also repeat the second stage multiple
times with delays between executions in order to allow IP ID
counters to diverge. Under this regime, each candidate alias
pair is tested multiple times over many hours, and the chances
of a false positive remaining is extremely low.

IV. MIDAR I MPLEMENTATION

A complete execution of MIDAR is divided into four stages.
In the Estimationstage, we determine the velocity and best
probe method for each address for use in subsequent stages.
In the Discoverystage, we probe all target addresses with a
sliding window schedule that allows us to efficiently discover
pairs that potentially share an IP ID counter. In theElimination
stage, we re-probe the potential alias pairs to rule out most
false positives. Finally, in theCorroboration stage, we probe
each candidate alias set as a whole to confirm them and to rule
out remaining false positives. After completion of all probing
stages, we infer reliable alias sets using all available data and
results.

A. Estimation stage

In the Estimation stage, we ascertain two fundamental
properties of each target. We first identify the best usable
probing method for each target, according to the method
preferences discussed in Sec. III-C. All subsequent MIDAR
stages probe each target with only the target’s best method.
We next estimate the velocity of each target by applying
Eq. 2 to the time series collected by a target’s best method.
The subsequent Discovery stage uses these estimated target
velocities to calculate itsImax according to Eq. 1 and create
the sliding window schedule.

INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE 11

We partition the target list across vantage points and probe
every target with every probing method. Because we care only
about the properties of individual targets, we do not need to
collect overlapping time series across targets, so the probing
procedure is inherently scalable to any number of targets.
To avoid potential bias in selecting a probing method, we
randomize the probing order of the methods for each target.
We probe each target 30 times, with an average spacing of
about 7.8 s between probes of a given method to the same
target. This spacing is close enough to reliably sample targets
with velocities up to 2 520 ID/s, according to Eq. 1.

B. Discovery stage

In the Discoverystage, we determine which address pairs
appear to share a counter. We first generate a sliding window
probing schedule using the velocities found in the Estimation
stage and, following this schedule, probe each target with its
best probing method. We then analyze the results of these Dis-
covery probes, applying our shared counter tests to every pair
of targets with overlapping time series. Our most importanttest
for shared counters is the Monotonic Bounds Test (Sec. III-B).
But before applying the MBT, we can sometimes rule out a
shared counter with two simpler checks on IP ID byte order
and precision (see Appendix I). We explicitly do not use tests
based on hop distance between monitor and target, or on the
inferred initial TTL set by the target in the response, because
these tests are unnecessary and can yield a significant number
of false negatives.

C. Elimination stage

In the Elimination stage, we perform focused probing and
testing of every identified candidate alias pair in order to
eliminate most false positives and to break up large candidate
alias sets into more realistic constituent sets. Because the
primary goal is to eliminate false positives, we wish to probe
candidate alias pairs with the tightest probe spacing possible
in order to minimize the ID bounds in the MBT. One way
to achieve minimal probe spacing is to probe each alias pair
separately; that is, obtain overlapping time series for just two
addresses at a time. The main drawbacks of this approach
are the high cost of probing a large number of alias pairs
(6.8 million pairs in our experiment, see Sec. V) and the
undesirability of repeatedly probing addresses that are involved
in many alias pairs.

We can achieve far greater probing efficiency by exploiting
the graph structure of alias sets, with addresses as nodes and
candidate alias pairs as edges. Due to chance alignments in
the Discovery stage, alias sets tend to be very sparse graphs
with many smaller cliques or near-cliques linked together
by relatively few edges. In Elimination, we decompose each
large alias set into overlapping smaller subgraphs, ensuring
each edge occurs in at least one subgraph. We try to extract
subgraphs that are as close to a clique as possible, since we
can efficiently collect overlapping time series between allpairs
in a clique with minimal amount of probes, but if the resulting
clique would cause∆ID to exceed 5% of the ID space, we
choose a subgraph smaller than a clique to guarantee tight

probe spacing for more effective elimination of false positives.
To reduce repeated probing of addresses, we try to minimize
the number of subgraphs that include any given address. In the
experiment described in Sec. V, this subgraph-based probing
generated only 15% as many probes as would have been
needed by pair-wise probing.

We probe each subgraph for 10 rounds, where a round
consists of a single probe to each member of the subgraph
consecutively, which guarantees maximum overlap between
the time series of the addresses. We send probes to members
of the same subgraph no faster than once every 600 ms and
no slower than once every second. The purpose of the lower
bound is to avoid the appearance of an attack and to avoid
rate limiting at the target, since at least one popular brandof
router will by default rate-limit ICMPunreachableresponses
to one every 500 ms. For each subgraphS, the round duration
is typically a little over|S| × 600ms and at most|S| × 1 s.

To reduce total run time, we probe multiple subgraphs in
parallel. The artificial delay within each round allows us to
interleave rounds of different subgraphs without significantly
increasing the duration of each round. We can control our
aggregate probing rate by adjusting the number of subgraphs
we probe in parallel.

D. Corroboration stage

In the Corroboration stage, we take the transitive closure
of all candidate alias pairs that passed the Elimination stage
to obtain candidate alias sets. We then probe each of the sets
as a whole and apply MBT to both the pairs we have already
discovered to apparently share a counter and the pairs implied
by transitive closure of those discovered pairs.

Probing in the Corroboration stage is the same as in the
Elimination stage. The only difference is in the input—the sets
are smaller, but we want coverage of every possible transitive
closure pair in each set, not just the previously discovered
pairs. Although most sets are small, some are still large enough
or have high enough velocity that they need to be broken
into subgraphs as in Elimination. Compared to Elimination,
more subgraphs are required to cover an alias set of a given
size in Corroboration because we must probe every pair in
the transitive closure. Minimizing the size of these sets by
eliminating as many false positives as possible in Elimination
allows Corroboration to work with reasonable efficiency.

The Corroboration stage can also be used as a standalone
test for potential alias sets discovered by means other thana
MIDAR Discovery run, such as with DNS name inference or
other alias resolution techniques. Used this way, the Corrobo-
ration stage is more efficient and has better PPV and sensitivity
than Ally or RadarGun.

E. Final alias inference

After all probing stages, we can finally infer reliable alias
sets. First, we find all pairs that passed Elimination and were
reconfirmed in Corroboration. Each of these pairs has passed
the MBT at least two times, so we have fairly high confidence
that they are actually shared counters. The transitive closure
of these pairs yields the alias sets corresponding to routers.

12 INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE

TABLE II
CLASSIFICATION OF ADDRESS PAIRS IN OUR EXPERIMENT

stage/classification pairs fraction
total input to Discovery 1 753 713 330 078 100.00%
Discovery - unusable 110 318 572 353 6.29%
Discovery - not enough overlap 802 244 369 262 45.75%
Discovery - failed (unshared) 841 143 560 073 47.96%
Discovery - passed (shared) 6 828 390 0.000389%
Elimination - passed (shared) 3 168 049 0.000181%
Corroboration - passed (shared) 2 783 801 0.000159%

For each new pair created through transitive closure, we
perform the MBT and other alias tests using any and all data
collected in previous stages. Because the Corroboration stage
was specifically designed to obtain overlapping time seriesfor
every pair in every alias set, we can perform at least one MBT
on each of these transitive closure pairs, except when addresses
were unresponsive. Atransitive closure conflictoccurs when
addressesA andB appear to share a counter,B andC appear
to share a counter, butA andC do not share a counter. Such
a conflict cannot appear in an actual alias set, but can appear
in experimental data due to a false positive or false negative,
or an actual change in the underlying topology during data
collection. Whatever the cause, we conservatively discard any
alias sets with transitive closure conflicts; the sets that remain
are MIDAR’s final router alias sets.

V. EXPERIMENTAL RESULTS

In this section, we describe an Internet-scale experiment
with MIDAR performed on CAIDA’s Archipelago (Ark) [17]
infrastructure. These results are summarized in Table II.

For input to MIDAR, we collected 2 323 682 addresses,
primarily from intermediate (router) addresses in 189 mil-
lion Paris-traceroute paths in theIPv4 Routed /24 Topology
Dataset[25], which is an effort to systematically measure IP-
level paths from Ark monitors to a dynamically generated list
of IP addresses covering all /24 prefixes in routed IPv4 address
space. Of these addresses, MIDAR’s Estimation stage found
that 1 872 813 (80.6%) were usable (Sec. III-A). For more de-
tailed classification of Estimation responses, see Appendix D.

In the Discovery stage, we probed these usable addresses
from 40 Ark monitors with a sliding window schedule. Of
the

(

N
2

)

= 1.75 × 1012 address pairs, 6.8× 106 (0.0004%)
appeared to use a shared counter. The small fraction is not
surprising because the number of shared pairs should beO(N)
whereas the number of total pairs isO(N2). The 45.8% of
pairs that did not have enough overlap in their time series to
apply the MBT does not mean that MIDAR missed 45.8%
of potential aliases. Recall, the sliding window schedule is
designed to not waste resources creating overlap between pairs
with very different velocities that are thus very unlikely to
share a counter. Analyzing all possible pairs in the Discovery
stage is by far the most computationally expensive task in a
large-scale MIDAR run; using a server with eight 3.0 GHz
CPUs (hyperthreading provides a total of 16 logical cores),
analysis of the 1.75 trillion pairs took 20 hours. Transitive
closure of the apparent shared pairs resulted in 75 350 apparent
alias sets containing a total of 1 033 759 addresses.

TABLE III
VALIDATION OF MIDAR ALIAS PAIRS AGAINST GROUND TRUTH.

(“U NSHARED” ARE NOT FALSE NEGATIVE ALIASES BECAUSE WE DO NOT

AUTOMATICALLY INFER NON -ALIAS FROM UNSHARED, SINCE SOME TRUE

ALIASES MAY NOT USE A SHARED COUNTER.)

validation set
R&E Tier1

true pairs in MIDAR target list 17 930 66 875
true pairs that were monotonic in Estimation 8 061 38 250
MIDAR true positive shared 5 856 26 436
MIDAR false positive shared 0 11
MIDAR unshared 8 386

Of the 75 350 apparent alias sets found by the Discovery
stage, 2 706 sets were large enough that we wanted to break
them up before the Corroboration stage, which needs small
sets to work efficiently. The remaining 72 644 sets were al-
ready small enough to be efficiently tested in the Corroboration
stage, so we did not test them in the Elimination stage. The
largest of the 2 706 large sets contained 618 877 addresses, but
only 6 272 188 of the 191 504 061 126 possible pairs were ac-
tually classified as shared. This very sparse graph is consistent
with our expectation of many smaller cliques or near-cliques
of true alias sets being linked together by relatively few false
alias pairs. These large sets were successfully broken up by
eliminating pairs that failed the MBT or were untestable in
the Elimination stage, leaving 174 075 sets containing 704 506
addresses, with the largest set containing 658 addresses.

Of the 3 168 049 pairs in the input to the Corroboration
stage, 2 790 570 were pairs that were tested in Elimination and
passed, and 2 705 601 (97.0%) of those were reconfirmed as
being shared in Corroboration, suggesting that Elimination had
already removed the majority of Discovery’s false positives
among those pairs. The remaining 377 479 pairs belonged to
the small Discovery sets that were not subjected to Elimi-
nation. Transitive closure of pairs that passed Corroboration
yielded 125 497 sets containing 413 828 addresses. The largest
set was the same 658-address set found by the Elimination
stage. Of these sets, only 13 contained transitive closure con-
flicts. Treating the conflicted sets as untrustworthy leavesus
with 125 484 sets containing 412 900 addresses and 2 490 702
total alias pairs. Only 1631 (0.07%) of the address pairs in 261
(0.2%) of the sets were untested by MBT, that is, inferred only
via transitive closure. The high degree of internal consistency
in the face of nearly complete full-mesh testing of every set
is strong evidence that MIDAR’s positive predictive value is
extremely high (that is, it finds very few false positives).

VI. VALIDATION

For validation, we used two sets of ground truth data:R&E,
a collection of known topologies provided by research and
educational networks (CAnet [26], CENIC [27], GÉANT [28],
I-Light [29], Internet2 [30], and NLR [31]); andTier1, a
known topology provided by a Tier 1 ISP.

The most direct validation we can do is test whether MIDAR
and a validation set agree on the classification of alias pairs.
Table III shows the result of this comparison for the two
validation sets. For both sets, the number of false positives
is a small fraction of the number of true positives, showing

INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE 13

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90fr
ac

tio
n

of
 p

ai
rs

 w
ith

 o
ve

rla
pp

in
g

ro
un

ds
 ≤

 x

overlapping rounds

R&E (8061)
Tier1 (38250)

Fig. 6. Time series overlap between known alias pairs during sliding window.

that MIDAR and the validation sets largely agree. Note that
disagreements may indicate not just errors in MIDAR, but
also errors in the validation set or real changes in the network
between collection of MIDAR data and validation sets.

The alias pairs not classified as shared or unshared are those
that were inconclusive or discarded. The most significant cause
of incompleteness is that interfaces without monotonic IP ID
counters simply cannot be tested by MIDAR (nor any other
IP ID based technique). Additionally, unresponsiveness can
eliminate some interfaces from consideration.

To test the quality of the sliding window schedule, we
examine how many rounds of overlap were achieved between
the time series of pairs of known aliases. In Discovery, we
require at least 5 sample points to pass the MBT; and if there
are no discontinuities or unresponsive probes, it takes 3 rounds
of overlap to obtain 5 testable points. Fig. 6 shows that the
sliding window failed to achieve this 3 round minimum for
fewer than 6.7% of known alias pairs in the Tier1 dataset, and
fewer than 1.3% in the R&E dataset. Furthermore, these values
are only upper bounds on sliding window failures, because
some unknown fraction of these non-overlapping pairs are due
to the pairs not actually using a shared counter, in which case
no amount of overlap would allow them to pass the MBT.

VII. C ONCLUSIONS

In this work, we described the design, implementation,
experimental results, and validation of MIDAR, which extends
recent work in IP ID-based IPv4 address alias resolution with
new techniques that are higher in precision and sensitivity.
MIDAR integrates multiple probing methods, multiple van-
tage points, an extremely accurate alias test based on IP
ID monotonicity, and a novel sliding-window algorithm to
increase scalability of IPv4 address alias resolution to millions
of addresses. Our experiments show that MIDAR’s approach
is effective at minimizing false positives sufficiently to achieve
a high positive predictive value at Internet scale.

We are currently using MIDAR to capture periodic router-
level topology samples of the global IPv4 Internet over time,
which we curate and share with researchers [32]. We plan
to integrate MIDAR into our larger Multi-Approach Alias
Resolution System (MAARS), which combines the strengths

of other tools such as kapar and iffinder to improve overall
accuracy and completeness.

REFERENCES

[1] V. Jacobson, “traceroute tool,” ftp://ftp.ee.lbl.gov/traceroute.tar.gz.
[2] k. claffy, T. Monk, and D. McRobb, “Internet tomography,”in Nature,

Jan. 1999.
[3] N. Spring, D. Wetherall, and T. Anderson, “Scriptroute:A public

Internet measurement facility,” in4th USENIX Symposium on Internet
Technologies and Systems, 2002.

[4] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” inACM SIGCOMM, 2002.

[5] Y. Shavitt and E. Shir, “DIMES: Let the Internet measure itself,” in
ACM Computer Communications Review, Oct. 2005.

[6] J.-J. Pansiot and D. Grad, “On routes and multicast trees in the Internet,”
in ACM SIGCOMM, 1998.

[7] M. H. Gunes and K. Sarac, “Importance of IP alias resolution in
sampling internet topologies,” inIEEE Global Internet 2007 (GI 2007),
May 2007.

[8] K. Keys, “IP alias resolution techniques,” Tech. Rep., 2008, http://www.
caida.org/publications/papers/2008/aliasresolution techreport/.

[9] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet map
discovery,” in INFOCOM, Mar. 2000.

[10] K. Keys, “iffinder tool,” 2000, http://www.caida.org/tools/measurement/
iffinder/.

[11] N. Spring, M. Dontcheva, M. Rodrig, and D. Wetherall, “How to resolve
IP aliases,” Tech. Rep., May 2004.

[12] M. H. Gunes and K. Sarac, “Analytical IP alias resolution,” in IEEE
International Conference on Communications (ICC 2006), Jun. 2006.

[13] ——, “Resolving IP aliases in building traceroute-based internet maps,”
Tech. Rep., Dec. 2006.

[14] R. Sherwood, A. Bender, and N. Spring, “Discarte: A disjunctive Internet
cartographer,” inACM SIGCOMM, 2008.

[15] A. Bender, R. Sherwood, and N. Spring, “Fixing Ally’s growing pains
with velocity modelling,” in IMC, 2008.

[16] J. Sherry, E. Katz-Bassett, M. Pimenova, H. V. Madhyastha, A. Kr-
ishnamurthy, and T. Anderson, “Resolving IP aliases with prespecified
timestamps,” inIMC, 2010.

[17] Y. Hyun, “Archipelago measurement infrastructure,” http://www.caida.
org/projects/ark/.

[18] “Scriptroute source code,” http://www.scriptroute.org/source/
scriptroute-0.4.8.tar.gz.

[19] R. Elz and R. Bush, “Serial number arithmetic,” RFC 1982, Aug. 1996.
[20] “RadarGun source code,” http://www.cs.umd.edu/∼bender/radargun/

radargun-0.3.tgz.
[21] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, and

M. Latapy, “Avoiding traceroute anomalies with Paris traceroute,” in
IMC, Oct. 2006.

[22] J. Aweya, “IP router architectures: an overview,” inInternational Journal
of Communication Systems, 2001, pp. 447–475.

[23] D. Veitch, J. Ridoux, and S. B. Korada, “Robust Synchronization of Ab-
solute and Difference Clocks over Networks,”IEEE/ACM Transactions
on Networking, vol. 17, no. 2, pp. 417–430, April 2009.

[24] J. Ridoux and D. Veitch, “Principles of Robust Timing Over the
Internet,” ACM Queue, Communications of the ACM, vol. 53, no. 5,
pp. 54–61, May 2010.

[25] http://www.caida.org/data/active/ipv4routed 24 topology dataset.xml.
[26] https://amidala.canet4.net/cgi-bin/reports.pl.
[27] D. Newcomb, CENIC, La Mirada, CA, private communication, May

2011.
[28] http://stats.geant2.net/lg/.
[29] http://routerproxy.grnoc.iu.edu/ilight/.
[30] http://routerproxy.grnoc.iu.edu/internet2/.
[31] http://routerproxy.grnoc.iu.edu/nlr/.
[32] http://www.caida.org/data/active/internet-topology-data-kit/.

APPENDIX A
VELOCITY DISTRIBUTION

Fig. 7 shows the distribution of velocities for usable time se-
ries (Sec. III-A) collected by the Estimation stage (Sec. IV-A).
The figure shows separate distributions for each of the four
supported MIDAR probing methods (Sec. III-C), with the key

14 INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000 10000

C
D

F

Velocity (ID/s)

TCP (803617)
UDP (1148511)
ICMP (832946)
Indir (1323740)

Fig. 7. Distribution of IP ID velocities for usable time series collected by
the Estimation stage using four probing methods (the key includes the count
of time series for each method). The distribution is heavily skewed toward
low velocities and tapers off long before reaching the maximumdiscernible
velocity of 2 520 ID/s for the given sampling interval.

TABLE IV
RELATIONSHIPS BETWEEN BINARY CLASSIFICATION TERMS.

Actual value
Positive Negative

Test Positive TP FP → PPV
result Negative FN TN → NPV

↓ ↓ ↓

Sensitivity Specificity → Accuracy

giving a count of the included time series for each method.
The upper bound on the plot is approximately 2 520 ID/s,
the maximum we could detect with our chosen sampling
interval. The CDF tapers off long before reaching this upper
bound, suggesting there are not many actual interfaces using
monotonic IP ID counters with velocities higher than this
bound; that is, any apparent velocities higher than this bound
are likely due to randomly generated IP ID values.

APPENDIX B
BINARY CLASSIFICATION

To aid in discussion of alias resolution tests, it is useful
to review some terminology commonly used in epidemiology
and other fields. Some of these terms and their relationships
are illustrated in table IV.

• positive: having the condition in question (e.g., a pair of
addresses sharing an IP ID counter, or being aliases)

• negative: not having the condition in question
• actual positives(AP): number of cases that actually have

the condition in question
• actual negatives(AN): number of cases that actually do

not have the condition in question
• prevalence: fraction of cases that actually have the con-

dition, AP/(AP + AN)
• true positives(TP): actual positives that test as positive
• true negatives(TN): actual negatives that test as negative
• false positives(FP): actual negatives that test as positive
• false negatives(FN): actual positives that test as negative
• sensitivityor true positive rate(TPR) or recall: fraction

of actual positives that test as positive, TP/AP
• specificityor true negative rate(TNR): fraction of actual

negatives that test as negative, TN/AN

• positive predictive value(PPV) or precision: fraction of
positive tests that are correct, TP/(TP+ FP)

• negative predictive value(NPV): fraction of negative tests
that are correct, TN/(TN+FN) (the value1−NPV was
called “false negative (rate)” in [11])

• accuracy: fraction of tests that are correct,(TP +
TN)/(TP+ TN + FP+ FN)

• false positive rate(FPR orα): fraction of actual negatives
that test positive, FP/AN

• false discovery rate(FDR): fraction of positive tests that
are incorrect, FP/(TP + FP) = 1 − PPV (called “false
positive (rate)” in [11])

If there are no inconclusive test results or we treat incon-
clusive results as negative, then the following identitieshold:

• AP = TP+ FN
• AN = TN + FP
• α = 1 − specificity

Accuracy alone is not a good measure of the quality of a
test. When prevalence is low, as in the case of large scale alias
resolution, a test that mostly gives negative results will have
a large number of true negatives and thus high accuracy, but
might still have poor sensitivity and PPV.

APPENDIX C
FALSE POSITIVES

The potential for false positives is very high when using IP
ID time series for alias resolution at Internet scale.

According to the well-known “birthday problem,” in a group
of just 23 or more randomly chosen people, there is greater
than 50% probability that at least one pair of people will have
the same birthday. Similarly, given that the IP ID space has
216 = 65 536 distinct values, it takes a group of just 302 IP
addresses to have a 50% probability of some pair of addresses
having the same IP ID value at any given time, and just
777 addresses for a 99% probability. When the number of
targetsN passes the number of possible valuesH, collisions
are guaranteed by the pigeonhole principle. Even worse, if
our IP ID test allows a range of nearby values instead of
just equal values, the frequency of collisions increases byan
amount that can be approximated by dividingH by a factor
proportional to the size of the range. This would be the case
if it were possible to probe allN targets instantaneously with
Ally. In the context of the birthday problem, this requirement
would be like requiring a pair of people in a group to have
birthdays within 4 days of each other (which happens with
50% probability in a group of just 9 people).

Given N target addresses, and an average ofd addresses
per router, the number of alias pairs (actual positives) is
approximately the number of interface pairs per router times
the number of routers:

AP ≈

(

d

2

)

×
N

d
=

N(d − 1)

2
(3)

and the number of non-alias pairs (actual negatives) is the
total number of pairs that must be compared minus the actual
positives:

AN =

(

N

2

)

− AP ≈
N(N − d)

2
(4)

INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE 15

TABLE V
CLASSIFICATION OF IP ID BEHAVIOR OF ADDRESSES PROBED WITH VARIOUS METHODS. PERCENTAGES ARE RELATIVE TO ADDRESSES PROBED.

TCP UDP ICMP indirect
addresses probed 2 323 641 100.00% 2 323 641 100.00% 2 323 641 100.00% 1 832 771 100.00%
insufficient responses 905 267 38.96% 1 151 476 49.55% 482 399 20.76% 352 537 19.24%
— mostly unresponsive 865 498 37.25% 1 014 227 43.65% 459 545 19.78% 322 991 17.62%
— mostly unexpected 39 741 1.71% 136 863 5.89% 22 723 0.98% 28 454 1.55%
non-counter ID values 137 363 5.91% 17 164 0.74% 999 677 43.02% 138 553 7.56%
— mostly zero 130 744 5.63% 15 044 0.65% 1 293 0.06% 110 849 6.05%
— mostly repeat 100 0.00% 568 0.02% 236 0.01% 985 0.05%
— mostly reflect 6 516 0.28% 1 349 0.06% 998 077 42.95% 26 270 1.43%
not monotonic 477 394 20.55% 6 490 0.28% 8 619 0.37% 17 941 0.98%
monotonic 803 617 34.58% 1 148 511 49.43% 832 946 35.85% 1 323 740 72.23%

The prevalence is then(d−1)/(N−1). Some fractionα of the
tests on actual negatives will give false positive results when
counters belonging to unrelated addresses are coincidentally
synchronized to within the tolerance of the test. Then, the
total number of false positives will be

FP= α × AN ≈ α ×
N(N − d)

2
(5)

For alias resolution results to have a usefulpositive predictive
value, the number of false positives must be much smaller than
the number of actual positives. Comparing Eq. 5 and Eq. 3,
and solving forα, gives us an upper bound on useful values
of α:

α ≪
d − 1

N − d
(6)

Thus, whenN ≫ d, the maximum acceptable false positive
rate of the test is inversely proportional to the number of target
addresses.

To decreaseα, RadarGun and MIDAR compare tens of
sample points in time series, as opposed to just two points
in Ally. However, the decrease is not as much as one might
expect, for two reasons. First, the samples in a single series
are not independent, but are related by an underlying counter
that increments with a somewhat regular rate. From this
perspective, we can view the test as requiring that two counters
have similarinitial ID values and similarvelocity (rate of ID
change). Second, because the velocity distribution of realID
time series is heavily skewed towards low velocities as seen
in Fig. 7, many pairs of counters will have a low velocity
difference. Two unrelated counters that start with a similar ID
value and have a low velocity difference will take a long time
to diverge.

Furthermore, note that the alias relationship is transitive.
That is, if addressesA and B are aliases, andB and C are
aliases, we must infer thatA andC are also aliases; all three
addresses belong to the same router. Even a small set of false
positives, interpreted at face value, could lead us to incorrectly
merge many distinct routers into one. The topology distortion
caused by false positives is thus amplified by transitive closure.

APPENDIX D
RESPONSE RATE ANDIP ID CHARACTERISTICS

To study the usefulness of the probing methods, we analyze
our Estimation run, in which we probed 2 323 641 addresses
with all available probing methods. The Indirect method could
not be used with non-Ark addresses, because we do not have

the necessary traceroute information for them. Table V shows
the results.

We count a target as havinginsufficient responsesif fewer
than 75% of the probes to the target elicit the expected
response. The subcategories enumerate the most common rea-
sons.Mostly unresponsivemeans more than 75% of probes did
not elicit any response. During Indirect probing, a sequence
of TTL expansion that does not elicit any response from the
target is counted as a single non-response. We count a target
asmostly unexpectedif more than 75% of the probes elicit a
response of an unexpected type. For most targets, either allor
none of the responses are unexpected. Most of the unexpected
responses are ICMPdestination unreachablemessages from
non-target addresses.

The main cause of unresponsiveness for the Indirect method
appears to be network changes during the delay between
the traceroutes and our experimental probes. When the delay
is shorter, the response rate is higher. For example, in a
different Indirect probing run to 3 000 targets from a single
monitor, the response rate was 98.8% for addresses gathered
from traceroutes taken only 3–4 hours earlier. The traceroutes
collected for Table V were taken up to 18 days before the
Estimation run, showing that Indirect probes can still be useful
even after a moderate delay. However, we do see significant
variability between monitors in the response rate to Indirect
probing, suggesting different levels of route instabilityand per-
packet load balancing near each location.

We classify a target as havingnon-counter ID valuesif it
had sufficient responses but 25% or more of the ID values
were zero, some other constant value, or the value used in the
probe packet. Such ID values are not useful to us because they
do not reveal the state of an underlying shared counter. The
subcategories enumerate targets for which more than 75% of
IDs had the same type of non-counter value. Nearly half of the
targets respond to ICMPecho requestby echoing the ID, and
a significant fraction of targets respond to TCP and Indirect
with zero-valued IDs.

Finally, any target that passed all of the above tests is
classified asmonotonic if its response IDs can be modeled
as a monotonic counter, otherwisenonmonotonic. TCP is the
only method for which a significant fraction of targets passed
the earlier criteria only to be classified as nonmonotonic.

16 INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE

TABLE VI
UTILITY OF COMBINING MULTIPLE PROBING METHODS. PERCENTAGES

ARE RELATIVE TO 2 323 641TOTAL ADDRESSES.

combination of methods responsive usable
tcp 62.75% 34.58%

udp 56.35% 49.43%
icmp 80.22% 35.85%

indir 64.97% 56.97%
udp icmp indir 88.27% 77.39%

tcp icmp indir 89.11% 76.02%
tcp udp indir 85.72% 77.28%
tcp udp icmp 82.66% 68.91%
tcp udp icmp indir 89.25% 80.60%

TABLE VII
CROSS-METHOD COUNTER SHARING FOR ADDRESSES THAT YIELD

USABLE TIME SERIES TO MULTIPLE METHODS.

methods addresses shared
TCP:UDP 595 465 562 582 94.48%
TCP:ICMP 383 712 341 247 88.93%
TCP:indir 511 111 456 523 89.32%
UDP:ICMP 523 710 509 951 97.37%
UDP:indir 774 993 745 913 96.25%
ICMP:indir 545 585 525 224 96.27%

APPENDIX E
UTILITY OF MULTIPLE PROBING METHODS

Table VI shows the increase in target responsiveness and
usable time series achievable by employing multiple probing
methods for our dataset. Individually, ICMP has the highest
responsiveness but the lowest amount of usable time series
due to many addresses echoing the IP ID of the probe in
the response. UDP and Indir have the highest amount of
usable time series of any single method despite being more
susceptible to rate limiting. If we employ all four methods,
89.2% of addresses respond to at least one method, and 80.6%
yield usable time series to at least one method. This improved
coverage will make alias resolution much more complete.

APPENDIX F
CROSS-METHOD IP ID COUNTER SHARING

Table VII shows the frequency of cross-method counter
sharing for our dataset. For each pair of methods, Table VII
lists the number of addresses that responded to both methods
with usable IP ID values and then the count and percentage
of those addresses that had a shared counter. Overall, there
is a high incidence of counter sharing, ranging from 88.9%
to 97.4%. As expected, TCP and UDP share often at 94.5%.
The sharing rates of the remaining pairs seem to be correlated
with the response type; that is, counters seem more likely to
be shared when two probing methods elicit a similar type of
response. For instance, the sharing rate of TCP with either
ICMP or Indirect is comparatively low perhaps because TCP
rarely elicits an ICMP response. In contrast, UDP always
elicits an ICMP response, and we thus see comparatively
greater counter sharing between UDP, ICMP, andIndirect.

APPENDIX G
NEGATIVE DELTA RATE OF RANDOM TIME SERIES

A random time seriesis produced from random IP ID values
rather than from a monotonic counter. In random time series,

the average probability of anindividual delta being negative is
50%, regardless of the sampling rate. Therefore, the expected
number of negative deltas appearing in a random time series
of n values is given by the binomial distribution forn − 1
trials andp = 0.5. This distribution is a bell-shaped curve
with mode at(n − 1)/2.

For a time series of 30 samples (29 deltas), we would
allow a maximum of⌊0.3 × 29⌋ = 8 negative deltas before
classifying the time series as unusable based on our 30%
threshold on negative deltas (Sec. III-A). The probabilityof
getting 8 or fewer negative deltas out of 29 random deltas is
just 0.012, so 98.8% of random time series will be correctly
identified as unusable. We do not need to detect all random
time series because of the extra testing MIDAR performs to
eliminate false positives (Sec. III-F), but we can reduce work
by detecting and eliminating targets that produce random time
series.

APPENDIX H
DISCONTINUITIES IN TIME SERIES

An IP ID time series that appears mostly monotonic may
have an occasionaldiscontinuity, a local region of uncertainty
where we cannot be confident that a counter remained mono-
tonic between individual samples.

There are two types of discontinuity. First, there is a
discontinuity if the time gap between samples is too large,
or more precisely, if∆ti is greater than 3.5 times the median
∆t of the same time series. This means that we lost three
or more consecutive samples (assuming a regular spacing of
probes) due to rate limited responses or packet loss. Recall
that our definition of a usable time series required at least
three samples between counter wraps, so if we have lost three
or more samples, the gap may hide one or more counter wraps.

The second type of discontinuity occurs when the counter
advances too quickly between samples, which could be due
to a burst of router traffic causing high velocity monotonic
ID advancement, but could also be due to the router’s counter
being reset, causing a non-monotonic ID change. Letv̂ be
the median segment velocity for a given time series. If either
the actual counter advancement∆ID i or the expected counter
advancement̂v∆ti of a segment is greater than 30% of the ID
space, we mark that segment as a discontinuity.

We take discontinuities into account in all our analyses,
allowing us to use time series that would otherwise introduce
errors or be unusable. For example, we exclude discontinuities
when computinḡv in Eq. 2; that is, for a discontinuity between
samplesi andi+1, we exclude∆ID i and∆ti, thus improving
the robustness of̄v to atypical or transient counter behavior.
We observed a discontinuity in approximately 0.8% of the
usable time series we collected.

APPENDIX I
ANOMALIES IN MONOTONIC COUNTERS

We observe several types of anomalies in IP ID values.
MIDAR detects and accounts for these anomalies in order to
maximize its sensitivity and positive predictive value,

INTERNET-SCALE IPV4 ALIAS RESOLUTION WITH MIDAR: SYSTEM ARCHITECTURE 17

0000
1000
2000
3000
4000
5000
6000
7000
8000
9000
A000
B000
C000
D000
E000
F000
0000

21:50:00 21:51:00 21:52:00 21:53:00 21:54:00 21:55:00

IP
 ID

 (
he

x)

time

16 bits (incorrect)
12 bits (correct)

Fig. 8. An example of the limited-precision counter anomaly. The näıve
interpretation shows a much larger unwrapped delta (dashed line) than the
correct interpretation.

Most routers transmit ID values in big-endian order (net-
work byte order), but some use little-endian order. If ID values
from a low-velocity counter are interpreted in the wrong byte
order, then the counter will appear to have a velocity about
256 times greater than its true velocity. On the other hand, if a
high-velocity counter is interpreted with the wrong byte order,
it will be indistinguishable from random. We developed an
inexpensive test to detect the correct byte order, and foundthat
approximately 0.6% of usable time series were little endian.
We can also use byte order as an additional criterion for ruling
out aliases, assuming that every interface of a router woulduse
the same byte order for a given probe method (Sec. III-C) (but
we do not assume that every router uses the same byte order
for different probe methods).

The second type of anomaly is caused by routers that do
not use all 16 bits of the IP ID field. Such alimited precision
counter will wrap around its smaller ID space more frequently
than a full precision counter with the same velocity, as shown
in Fig. 8. To identify ab-bit limited precision counter, we
require not only that the16−b high bits are constant, but also
that there is at least one wrap, and that every wrapped segment,
after being unwrapped, has a velocity similar to that of the
non-wrapped segments. Failing to identify limited precision
counters would not directly lead to false results, but it would
lead us to unnecessarily mark their their wrapped segments as
discontinuities. We can also use limited precision counters to
rule out shared counters: two time series with different ranges
cannot share a counter. We found about 0.39% of usable time
series had limited precision, most commonly using 12 bits
with values between 0x6000 and 0x6FFF.

The final type of anomaly we observed appears to be due
to a race condition in which the two bytes of the ID counter
are incremented asynchronously. For example, we may see a
sequence of (hexadecimal) ID values like 11F7, 11FB, 1100,
1204, 1209, where it appears the third valueshouldbe 1200,
but the high byte has not yet been incremented. We also saw
cases in the opposite order, e.g. 11F7, 11FB, 12FF, 1204,
1209, where it appears that the low byte of the third value
has not yet changed from FF to 00, even though the high
byte has changed from 11 to 12. We call these anomalies
XX00 and XXFF outliers. We take a conservative approach

and discard these questionable samples from the time series.
Although we found these anomalies in only 0.01% of 3.2
million observed monotonic time series, failing to accountfor
them could result in false negatives in the MBT, decreasing
the overall sensitivity.

