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Abstract—A critical step in creating accurate Internet topology infers aliases from analysis of a graph created from contbine
maps from traceroute data is mapping IP addresses to routers, traceroute and Record Route data. RadarGun [15] looks for
a process known as alias resolution. Recent work in alias gimjjarities in IP ID time series collected from many addes

resolution inferred aliases based on similarities in IP ID time - o .
series produced by different IP addresses. We design, implement, Sherry [16] describes the use of the IP prespecified timgstam

and experiment with a new tool that builds on these insights Option to infer aliases.

to scale to Internet-scale topologies, i.e., millions of addresses, In this paper, we introduce MIDAR, our Monotonic ID-
with greater precision and sensitivity. MIDAR, our Monotonic  Based Alias Resolution tool, an IP ID-based alias resatutio
ID-Based Alias Resolution tool, provides an extremely precise ID technique inspired by Ally and RadarGun. AR ID value
comparison test based on monotonicity rather than proximity. . . . ! .

MIDAR integrates multiple probing methods, multiple vantage IS "?1 16-bit number stored in the IP ID field 'n. the IP header,
points, and a novel sliding-window probe scheduling algorithm Which the sender of a packet sets to some unique value so that
to increase scalability to millions of IP addresses. Experiments the recipient can identify and reassemble fragmented pscke
show that MIDAR's approach is effective at minimizing the false For alias resolution purposes, we are concerned with the IP
positive rate sufficiently to achieve a highpositive predictive value |5 yqjues of packets originated by a router in the control

at Internet scale. We provide sample statistics from runnin .
MIDAR on over 2 miIIiol?l addresses‘,) and validate these resul?s plane, rather than packets forwarded by a router in the data
against available ground truth. Tools such as MIDAR can Plane. Routers themselves can send packets, for example, by
help preserve longitudinal history of the Internet's topological responding to ping or traceroute; by running BGP or NTP;
evolution. and by providing NetFlow, SNMP, or remote terminal access.
There is no standard method for generating IP ID values,
|. INTRODUCTION but many routers maintain a simple IP ID counter that is

ARIANTS of the traceroute tool [1] are widely used forlncremented for packets it generates and w ps from

discovering Internet topology [2}-[5]. Traceroute show95 535 to 0. The key observatlon'ls that if a router uses
. a shared IP ID counterfor generating IP ID values, then
the sequence of router interfaces on the path from the soujce . . .
e . . the router will use consecutive IP ID values when sending
to the destination, and executing traceroute from multip

e . I )
. . . consecutive packets no matter which interface addresseg us

sources to multiple destinations reveals many routerfaxdes

and allows us to infer links between them. A router b

as the source address. Thus, if two addresses share a ¢ounter
definition has at least two interfaces; Internet core reubéien

then they are conclusively aliases, and thBilD time series
have dozens. Alias resolution is the process of identifyin%

sequence of IP ID values collected over time, will have
L ilar values in a given measurement period and will form
which interface IP addresses belong to the same routers and 9 P

) . . a monotonically increasing IP ID sequence when merged
is required to convert the IP-level topology discovered b .

gether, except during counter wraps. The latter expsesse
traceroute to a more useful router-level topology [6], [7].

There are many alias resolution techniques and implem the monotonicity requirementa necessary condition for two

: . : %l’?ﬁe series to be derived from a shared counter. IP ID-based
tations available [8]. The Mercator technique [6], [9], J10 .. : . . . L
alias resolution techniques infer aliases by analyzing Ikhe

identifies aliases by sending a probe packet to one addrelss @'5' values in response packets and inferring which interface

getting a response from a different address. Ally [4] infer .
that a pair of addresses are aliases if probe packets Sen?qgresses use a shareq c_ountgr. Radngun infers a shared
unter by looking for similar time series values, whereas

them produce responses with IP ID values in the correct ordgf . .
Spring [11] described techniques for drawing alias infeemn mgngpodnit/:'lD?eR &?::r;:nst’h?r:gg iornntoleigfebrirfth\?v;klgg for the
from similarities in reverse DNS lookups, and from simple Most roui/ersqseem o 'use agsin le IP ID coﬁn.ter shared
analysis of traceroute graphs. APAR [12], [13] and kapar [80 oss all interfaces and protocols %ut any IP ID based alia
use more sophisticated graph analysis techniques to inrggolution technique mus[t) accouni for thg/se that do not. A
subnets linking routers, and from that, aliases. DisCalg [ q :
small subset of routers sets the IP ID to zero or some other
K. Keys, Y. Hyun, and k claffy are with the Cooperative Assdicin for ~ constant value, a random value, or the value used in the probe
Internet Data Analysis (CAIDA), University of Californi&an Diego. packet [15]_ Such non-counter IP ID values can be detected
M. Luckie is with the University of Waikato. . .
This project is sponsored by the U.S. Department of Homelamuirge ~@nd excluded from IP ID-based alias resolution. Anotherlsma
(DHS) Science and Technology (S&T) Directorate. subset of routers appears to use separate IP ID counters
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for each interface. Use of such unshared IP ID countersaddresses, the order of topology graph sizes observed with
undetectable from an analysis of IP ID values alone. Becausek. In a nutshell, MIDAR collects IP ID time series data
two addresses may be aliases but not share an IP ID counfienn many different vantage points, then mines the datagusin
IP ID-based techniques can not find all alias pairs, and danmar Monotonic Bounds Test (Section 111-B) to discover which
definitively conclude that two addresses that do not shardRaaddresses are likely aliases to the same router. The key
counter are not aliases. Thus, IP ID-based techniques daatures of MIDAR are theMonotonic Bounds TegiMBT),
produce three results: Dositiveshared counter angdositive an ID comparison test with near perfect sensitivity based on
aliases; 2negativeshared counter aridconclusivealiases; 3) monotonicity rather than proximity, which allows MIDAR to
inconclusiveshared counter anihconclusivealiases. achieve an extremely low false positive rate and thus a high
Because of the limited precision of IP ID values and thePV; the use of multiple probing methods to increase the
limited variation in observed rates of change, valocities responsiveness of targets and thus extend the coverage of IP
of IP ID counters (see Appendix A), it is inevitable thatD-based techniques; and the use of multiple vantage points
any large collection of addresses will have many pairs ahd a novel sliding-window scheduling algorithm to achieve
addresses with similar or aligned IP ID time series out @frobing scalability.
sheer coincidence, as predicted by the birthday paradox andhis paper is organized as follows. Sec. Il provides back-
the pigeonhole principle. Suppose a given alias resolutignound on the features and limitations of the two best known
technique has #alse positive rateof o based on how much IP-ID based approaches: Ally and RadarGun. Sec. Ill present
similarity or alignment between two time series it acceptbe essential concepts and components of MIDAR. Sec. IV
as indicating a shared counter. Then for addresses, we reviews our implementation of MIDAR, including four stages
can expectO(N) true positives (TP) and(a x N?) false of probing: Estimation, Discovery, Elimination (of falseg
positives (FP) (see Appendix C). Whe¥i > 105, as in the itives), and Corroboration. Sec. V reports results from e pr
case of Internet-scale alias resolution, true positivéias@s) liminary Internet-scale experiment with MIDAR, and Secl VI
are extremely rare, approximately 1 in a million; that isg thsummarizes our contributions and plans to integrate MIDAR
prevalenceof aliases is extremely low. Hence, unless thimto a larger system for alias resolution.
false positive rate is extremely lowy < 1/N = 1076,
false positives can overwhelm true positives, and the alias
technique will not be useful for reliably identifying alies Il. EXISTING IP ID TECHNIQUES ANDLIMITATIONS
We can quantify the degree of usefulness with pusitive . Ally
predictive valug(PPV) metric, which specifies the fraction of
positive test results—“shared counter” and thus “alias”+tha The Ally component of Rocketfuel was the first tool to
are correct; that is, TRTP+FP). Another important metric for examine IP ID values for alias resolution. Several papers
evaluating IP ID-based techniquessisnsitivity the fraction of describe the Ally alias resolution tool [4], [11], [15]. We
cases of counter sharing that produce a positive test réisait base our description on Bender et al. [15] and on the Ally
is, TP/(TP + FN), where FN stands for false negatives. Fosource code included in the latest distribution of Scriptieo
the purposes of comparing the effectiveness of IP ID-basé.4.8) [18] (earlier standalone releases of Ally are now
techniques, a false negative only means a technique faileddgprecated). The Ally implementation can send probes using
detect counter sharing when sharing was present, whichUBP (default), TCP ACK, or ICMP. The user chooses the
narrower in scope than a definition based on a failure to tetéingle probing method to use with a command-line option.
aliases. (See Appendix B for further discussion of these andOne of the key steps of Ally is checking whether the IP
related terminology.) ID values of two candidate addresses irerder, that is, the
There are two main challenges for an alias resolution tectalues form an increasing sequence consistent with the use
nique as the number of addressésncreases: 1) probing andof a shared counter. Because IP ID counters can wrap from
testing theO(IV?) candidate alias pairs, and 2) minimizing thé5 535 to 0, Ally must use sequence space arithmetic, similar
false positives relative to true positives; that is, ensyia high to that defined in RFC 1982 [19]. We will use the notation
PPV. The Ally technique require®(N?) probes to test all X < Y to denote thdess thanrelationship within sequence
possible pairs of addresses. RadarGun avoids Ally’s sitidyab space.
problems by probing an entire set of addresses as a whol@lly uses the following procedure to test whether addresses
with O(N) probes, but scalability is still limited by a needA and B are aliases. First, Ally sends a probe 4o waits
to obtain overlapping time series from all addresses. Meithil ms, then sends a probe 8. Suppose the IP ID values in
Ally nor RadarGun has a sufficiently low false positive raie tthe responses ard; and By, respectively. Ally can match
handle the millions of addresses that appear in macroscopiesponses to probes, so there is no ambiguity if the response
scale Internet topology graphs such as that collected by Aakrive out of order in time. Ally first checks whethér, and
[17]. Repeating the alias tests of Ally and RadarGun canitow®; are in order and close enough to each other; namely, that
the overall false positive rate and thus increase the PPV, bly — 10 < By < Ay + 200. If so, then Ally waits 400 ms,
because these tests suffer from false negatives, repetiio sends a probe t®, waits 1 ms, and sends a probe4o Ally
also decrease the sensitivity, causing aliases to be missedthen checks that the resulting IP ID valuBs and A, meet
MIDAR is an attempt to overcome these and other limitahe conditionB; —10 < A; < B2+200 and thatd; < A, and
tions of Ally and RadarGun and to scale to millions of IPv43, < B. If all these conditions are met, then Ally declatés
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and B to be aliases; otherwise, they are declared to be “noapart and velocities are typically low (Fig. 7), suggesting
aliases,” but like all IP ID-based techniques, Ally can onljs only slightly lower than 0.0032. But even if the two halves
infer that they do not share a counter. of the test were completely independeatwould be at best
Because Ally cannot know nor control the exact generati@bout 0.00001. Extrapolating these rates to one milliogetar
time of each collected IP ID value, Ally uses a margin of erraxddresses suggests there would be at least 5 million false
when comparing IP ID values to accommodate uncertaintigmsitives, and probably closer to 1.6 billion, which is asle
The A; — 10 margin is to accommodate reordering of probef magnitude more than the expected 1 to 10 million true
packets along the forward path, which would cause IP Ipositives.
values to be generated in the ordét ( A1), with By < A;.
The A; + 200 margin is to accommodate the advanceme%t RadarGun
of the IP ID counter during the inter-arrival time of the peob ~
packets at their destinations. For the most accurate seguly We base our discussion of RadarGun on the RadarGun v0.3
requires IP 1D values to be sampled closely in time, but prolseurce code [20] in addition to the RadarGun paper [15]. The
packets will typically undergo a certain amount of dispamsi RadarGun implementation can send probes using TCP ACK
beyond the 1 ms separation they had when sent, due to cr@gfault), UDP, or both. When both protocols are used, Radar-
traffic, differences in routing (for example,f and B reside in Gun sends the TCP ACK and UDP probes consecutively for
different prefixes), load-balanced paths with differemigigas, the same address and analyzes the resulting data indeplgnden
and other causes. The greater the packet dispersion, taegrewithout regard for their common destination address.
the potential counter advancement between collected IP IDRadarGun avoids Ally’s scalability problems by probing an
samples. entire set of addresses as a whdk V') probes, rather than as
Ally has the following limitations. First, it is unclear individual pairs,O(N?) probes. RadarGun makes 30 probing
whether these empirically-derived margins of ert&r{10 and passes through the address list to obtain 30 IP ID samples fro
X +200) are universally applicable to typical packet dispersiogach address, with samples from different addresses inter-
amounts and counter velocities. Second, using fixed marglagved with each other; for example, given addresses, C,
of error is a fragile balancing act between minimizing falsRadarGun takes the samplds, B, C1, Ag, Ba, Co, . ... This
positives and false negatives. The wider these margingtee, probing scheme produces an IP ID time series for each
more they allow false positives from chance alignments of @ddress. An IP ID time seried (for address4) consists of a
ID values. However, if these margins are too narrow, they theequence of samplgs!; }, where eachi; specifies the sample
can lead to false negatives if counters advance at a high rtmee and the IP ID,(¢;, ID;). RadarGun uses the measured
or in bursts, or if probe packets undergo a significant amourgceive time of a response packet as an approximation of the
of dispersion. Third, Ally relies on only four IP ID samples t sample time, since it does not know exactly when a router
infer aliases, which makes Ally susceptible to false pes#i generated a given IP ID sample. RadarGun discards a time
caused by chance alignments, independent of the marginssefies as unusable if (1) fewer than 25% of the 30 probes
error. Fourth, Ally cannot perform IP ID-based alias reiolu elicited responses (that is, RadarGun has fewer than 7 IP ID
on a router that rate limits its responses, because Ally sieeshmples), (2) all collected samples have an IP ID of zero or
the responses to be generated closely in time. all have the IP ID used by probes, or (3) the time series is
Finally, a significant drawback of the Ally technique ishonlinear—that is, either the IP ID counter is advancing too
that, givenN addresses, it requirg8(NN?) probes to test all quickly to measure, or IP ID values are randomly generated.
possible pairs. To make Ally more practical, some heusstic RadarGun considers a time series to be nonlinear if either
are needed to reduce the size of the search space. For exangflevo conditions is met. The first condition is based on the
Rocketfuel considered a pair of addresses as candidatesffequency ofnegative deltasn a time series. Adeltais the
testing with Ally if both addresses are a similar hop diseandifference in value of adjacent IP ID samples in a time series
away from each of several vantage points (but the hop distartbat is, AID; = ID;;; — ID;. A negative deltais when
can be different across vantage points). Although thisibear AID; < 0. Negative deltas occur naturally as an IP ID counter
significantly reduces the amount of testing needed with,Allwraps from 65535 to 0. For any given sampling interval,
the reduction is not enough for practical use on the milliohs the faster an IP ID counter advances, the more frequently a
addresses that appear in macroscopic-scale Internetotppolnegative delta will appear in a time series, since the counte
graphs. Also, any pruning heuristic carries the risk of excan wrap more often within the time period sampled by
cluding some candidate pairs that would otherwise have bd@adarGun. Negative deltas can also occur when IP ID values
identified as aliases (for example, aliases that are inrdifte are generated randomly, since the average probability of an
prefixes may be routed along paths of different lengths froimdividual delta being negative is 50% in a sequence of random
a vantage point). values. Regardless of the exact cause, whether too fast a
Even if it were possible to apply Ally to one million counter or random IP ID values, RadarGun discards a time
addresses, Ally's false positive rate))(would be too high series as nonlinear if greater than 30% of the deltas are
to produce a useful positive predictive value. The margins begative.
error in Ally’s test allows samples to be 210 ID values apart, The second condition for nonlinear time series is based on
or 210/65536 = 0.32% of the ID space. The two halves of thethe apparent rate of advancement, or velocity, of an IP ID
test are closely correlated because they are taken only 400counter. RadarGun computes the velocity fromuamrapped
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IP ID time series. A time series is typically unwrapped by 1140 T —
i . addrA —e— _
adding 65536 (the full IP ID space) whenever a negative 1120 |- addrB —=— / .
delta occurs. RadarGun also tries to account for one or more 1100 | ]
counter wraps that may have occurred in large gaps in time 5 1080 |
between samples, even when the delta is positive. RadarGuna ;o4 |-
infers the number of possible wraps in each gap from an
estimate of the time between wrap&fwrap derived from a 1020 -
simplistic calculation on the positive deltas in a time sgri 1000 . . . .

For a gap of duratiom\tyap, there are] Atgap/ Atwrap) inferred 0 20 40 60 80 100
wraps, and RadarGun adds this many multiples of the IP ID time
space when unwrapping the time series. Once a time series has

; indiRig- 1. There can always be a false positive under the Radaditance
been. unwrapped, RadarG_un computes t.he VeIOCIty by flndltETgNgregardless of the threshold used. For example, thegev#PalD distance
the linear least squares “ne_tha_t best fits the _unwrapped een these addresses is only 40, which is below the 266hibid for being
ID values; the slope of the line is the velocity in ID/s. Theiliases, but these addresses cannot share a counter bteamsrged sample
more negative deltas there are in a time series. the higber yﬁﬁints do not form a monotonic sequence over time. A similar ttoason

. ' e{ists for any threshold.

apparent velocity of the unwrapped samples. Therefordy bo
true high velocity counters and random IP ID values will lead

to high apparent velocities. RadarGun discards a time serj . . . . .
as nonlinear if the velocity is greater than 800 ID/s, retgms! (Tar dataset, there is no inherently right choice for théatlice

thresholds, since the thresholds must be low to minimizsefal
of the cause.

The key insight of RadarGun is that if two addresses shag;snwes with lower velocity addresses, and high to migeni

1040

an IP ID counter, then their time series should have near cise negatives with higher vglouty addre_s_ses. Even if the
R . resholds were chosen adaptively to velocities, the lioles
IP ID values when overlapping in time. RadarGun infers

. s must still have margins of error to allow for bursty IP ID
whether two addresses are aliases by employirdistance -~ :
L . > counter advancement and other uncertainties, which prgven
testto measure how closely their time series describe the same . . .
. . . exact separation of aliases from non-aliases. As a result,
underlying counter. The key building block of the distanestt adjusting the distance thresholds never fully eliminatdsef
is the calculation of theample distancehe distance between ) y

S o ! : ositives, false negatives, or inconclusive results, batety
an individual sample point in one time series and the explecte . :
. . . shifts the balance between them. Third, there can always be a
value of the IP ID counter in the other time series at the sa

moment in time. There are two cases to computing the sam Jse positive under the distance test regardless of tleshiotd

. . . ed, as Fig. 1 shows, because the distance test does nkt chec
distance, with all calculations performed on the unwrappef,or the monotonicity requirement
time seriesA and B of the two addresses peing tested. Let As a consequence of the abc;ve weaknesses. the distance
cBém_m(cfﬁjj ’Cg;g é> ll)iisa t?:tr\?vglaenofdj;r;eztzte ;gfrt]é{ae r;d ATi%re test pr.oduces too many false positives for RadarGun to scale
time, that is, therje is somiefor which ta; < t5; < taisi. to r’m_lhons of addresse_s. qu e>_<amp|e, extrapolating theefa
RadarGun then uses linear interpolatioﬁ b_etwéjerandAiH positive rate (0.0005) implied in Bender et al. [15] to one
million target addresses suggests there will be an order of

to estimatelD 4 e, the expected IP ID value of attp ;. In . . o :
the second casé3; does not lie between any two sampleg]a‘~:.5r.]'twje more false positives (264 million pairs) tharetru
sitives, giving a very poor PPV.

of A, and RadarGun extrapolates the best fit line througﬂ?F h b RadarG d btai |
A (the same line used to calculate the velocity) to estimate urthermore, because RadarGun needs to obtain overlap-

ID 4 st In either case, RadarGun then computes the sam?l’@g shamp!es from fa” ??drlesse; in ordt;ar to ap:ﬂy thee;ietanc
distance’ j = |ID 4 est— ID 5 ;. After computing all sample €St t erehls %lpratl)ct}ca IMit o the num (T(r Of?, r§|ss| \ijla
distancesiz ; betweenB and A, and similarly computing the Gun can handle before requiring network-uniriendly lesils

sample distance, ; betweend and B, RadarGun calculates probing bandwidth. For example, handling one million tasge
the average samp[e distance: with 10s probe spacing would require 100000 packets per

second, or 35 Mbl/s.
204t 208,

App =
|Al +|B|

If Aq p < 200, then RadarGun concludelsand 3 are aliases;
if Asp > 1000, then they are not aliases. Otherwise, the To find aliases among a large numi@érof router addresses,
distance test is inconclusive. MIDAR collects an IP ID time series from each of the
By employing the distance test on time series, RadarGaddresses and tests for a shared IP ID counter in each of
is more tolerant than Ally of ICMP rate limiting and lesshe O(N?) address pairs. We take a bottom-up approach to
susceptible to false positives caused by chance alignmeitsscribing MIDAR. In this section, we describe the esséntia
However, RadarGun’s distance test has several weaknesseacepts and key features of MIDAR, and discuss our ap-
First, the distance thresholds for aliases and non-aliases proach to mitigating false positives. In the following sent
derived empirically and subjectively from a particularakt we will describe how we integrate these components into the
and may not apply to other datasets. Second, even for apartiomplete MIDAR system.

[1l. MIDAR D ESIGN
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A. Time series in MIDAR

16 oA
MIDAR takes a sampling of IP ID values to construct the 2 5 Bs
time series used for alias resolution. MIDAR considers a&tim Bav !
seriesunusablefor alias resolution if (1) fewer than 75% of As
the probes to the target elicited responses, (2) 25% or moge Byt 1A
of the collected samples have a constant IP ID value (such as Ba TA;
zero) or echo the IP ID used by probes, or (3) the time series A7 vBg
cannot be modeled as a monotonically increasing sequence; —o— seriesA Ba 1A *Be
that is, the observed frequency of negative deltas is so high e L B
that we are not confident we are detecting all wraps of the © Ay >
IP ID counter, or we suspect the IP ID values are randomly time
generated.

To reliably detect all counter wraps, we must use a samplirg. 2. Illlustration of the sample-wise execution of the Mimmic Bounds
interval that is shorter than the time between wraps, sowkat Test (MBT). MBT checks an IP ID sample of one time series (€3g),against
btai il tive delt h th t the closest surrounding samples (in time) of the other timesde.g.,A;
obtain 8)_(3(: y one negative aelta W enever e_ coun ersrvraaqu2)_ The tested sample must lie within the monotonic bounds sehéy t
and positive deltas at all other times. Sampling even mos@rounding samples (e.g3 must fall within the bounding box with corners
frequently will yield more positive deltas during the timmet atA: andAz). When there is a counter wrap between the surrounding samples
P . . . . (e.g., betweerd, and A5 when checkingBs), the monotonic bounds split
counter is increasing monotonically but still only one MBER 1 'two parts. (Velocity is exaggerated for clarity.)
delta at each counter wrap, so the overall fraction of deltas
that are negative will decrease. We adopt RadarGun’s 30%
threshold on the maximum allowed fraction of negative delta. Monotonic Bounds Test
before we consider a time series unusable. This 30% thréshol .
Do e . J The Monotonic Bounds Test (MBT) checks whether the
is intentionally more conservative than the 50% threshoh:_L . . -
) . ID times series of two addresses meet the monotonicity
suggested by the Nyquist-Shannon sampling theorem when a " i
counter wrap is thought of as a “signal” occurring at a Cartalrequwement, a necessary condition for sharing an IP 1D
counter; that is, whether the time series form a monotolyical

frequency. The 30% limit on negative deltas also has tri‘ﬁ“creasin IP ID sequence when considered as a single merged
advantage of excluding 98.8% of random time series, whi g g 9 9

cannot be used for alias resolution (see Appendix G). ime series. The MBT is a rigorous test that does not employ

: . o ad hoc thresholds to accommodate uncertainties.
We define themaximum sampling intervalyax to be the

largest sampling interval that still ensures the fractidn %MBT checks that two time seriesl and 5 meet the
: : onotonicity requirement by individually checking thatcha
negative deltas is no more than 30%. MIDAR collects ety requ y individuatly g

Lo . . _“sample ofB meets the monotonicity requirement with respect
initial time series from each target address using a smaltifix b yreq P

. L to the samples of4, and that each sample of meets the
sampling interval and then calculatggy individually for each P P

) . requirement with respect to the samplesif If all sample
target based on the target’s observed velocity. MIDAR uses ttests pass, thed and B as a whole meet the monotonicity
computed/ i, to customize the sampling interval individuall ’

. L . . yrequirement. We first describe the sample-wise execution of
for each target when collecting additional time series alttu MBT in a slightly simplified form and then provide the ful
used for alias resolution (Sec. llI-E).

b hat limiting the fraction of ive del Jetails. LetB; = (tp,;,IDp,;) be a sample of3. Suppose
Observe that limiting the fraction of negative deltas to 30 e are checking thaB; meets the monotonicity requirement

is equivalent to limiting the average counter advancement g, ... respect to the samples of. Let A; = (ta;, ID4,)
sample to 30% of the ID space, because the counter advanges 4 L= (tasen, IDais1) bé adjac;ent sarﬁ%les “;ﬁ
through 100% of the ID space between each counter Wrﬁl iy nrh A

H h 1 ina i i . . guch thattsa; < tp,; < ta.+1; thatis, A; and A, are
V;gg%/{ (iasmaxmum sampling interval for a time series Wifhe pearest adjacent samples 4fin time to B;. Fig. 2
v

illustrates the two different MBT cases. In the first case, th
Imax = (0.3 x 2'9) /5 (1)  counter has not wrapped between the samplesand A,

i ) . ) (that is, AID4; > 0), and so we can simply check that
We define the velocityy of a time series to be the averagep IDp,; < ID4i41. We can imagine this constraint

slope of the segments weighted by segment duration; that i, the ID values as a bounding box whose corners are
S AID; defined byA; and A;,,, and Bj must faII.within this box
U= S5 An (2) to pass MBT. For example, in Fig. 3, lies betweenA;
and A, in time and falls within the bounding box of these
where AID; and At; are the change in ID and time, re-samples, and thuB, meets the monotonicity requirement. In
spectively, between samplésand i + 1. If there is a neg- contrast,B; is betweenA, and A; in time but does not fall
ative delta between samplgsand i + 1, then we define within the bounding box (becaudé z 3 £ 1D 4 3) and thus
AID; = ID;,1 + 26 — ID;; that is, the distance between theviolates the monotonicity requirement. In the second MBT
unwrappedD samples at negative deltas. To avoid distortionsase, the counter has wrapped betwegnand A, ; (that
due to sampling gaps or atypical counter behavior, we egclui$, AID 4 ; < 0). Therefore, the bounding box betweeh
discontinuities (Appendix H) when calculating velocity. and A;. 1 is split into two pieces, and we must have either
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Fig. 4. With all other things being equal, monotonic bound®ftis, the
range of IP ID values allowed by the MBT) become tighter wheima tseries
has a lower velocity (subfigure (a) compared to (b)) or wherDRdlues are
sampled on shorter intervals ((c) vs. (b)).

Fig. 3. Monotonic Bounds Test with imperfect time de@ample time ranges
are shown as horizontal bars (with exaggerated size foityglaBamples B
and C lie at least partially within the bounding boxes, makiingossible to
draw a monotonic curve (dotted lines) through them conneatigighboring
samples from interface A, showing that samples B and C may come dro
counter shared with A. Sample D lies completely outside thenbimg boxes,
S0 no monotonic curve can connect samples in A and still passighrD,

<0 D cannot come from a counter shared with A. relative ordering of samples were known, but the sengjtivit

the test is preserved despite these uncertainties—a thsefai
against the larger bounds conclusively means that there is n
IDa; < IDp; or IDp; < ID ;. For example,B; lies Shared counter. We can thus accommodate uncertainties in

betweenA, and A; and passes, sinc) 44 < IDps. Bs both the response time and clock error without compromising
also lies between these samples but violates the mondipnihe rigor of MBT.
requirement by lying outside both pieces of the bounding box Fig. 3 illustrates the execution of MBT using sample time
If all samples of B pass, then MBT swaps the roles df ranges. We wish to individually test the samplgs C, and
and B and individually checks the samples df againstB D against the surrounding samples{of; }. The time ranges
with the same procedure. If any sample-wise test fails, vaé B and D (shown as horizontal bars) do not overlap with
can immediately conclude that thdt and B do not share a the time ranges of;, so we know the true relative ordering
counter without performing the remaining sample-wisestestof these samples, and MBT execution is straightforward. For
So far, we have described a time series as bé{ng/D;)} B, the monotonic bounds are defined by and A, the
with ¢; being the sample time. In order for MBT to maintain d1€arest adjacent samples 4f that do not have overlapping
virtually zero false negative rate (a crucial propertyadlon time ranges withB, and B passes. FoD), the monotonic
in MIDAR), MBT needs accurate sample times to determirRounds are defined by, and A3, and D fails since it lies
which samples define the monotonic bounds for each samphitside the bounding box. Sampfé is the interesting new
wise test. Therue sample timer;, is the exact moment in time case, since the time ranges ©fand its nearest surrounding
that a router generated a response with the given IP ID valgémpleA: overlap. Because of the overlap, we cannot know
We cannot determine; with active measurement, but we cavhetherC' precedesd, and therefore should be bounded by
calculate accurate bounds en We know the measured time A1 and Az (the left bounding box), or whether follows A,
s; when we sent our probe and the measured timavhen and should be bounded by, and Az (the right bounding
we received the response, and that the true send and recB®¥). MIDAR simply avoids relying on the indeterminatg
times are within+e of the measured times, wheteis the and looks outward toward!; and A3, which are the next
maximum clock error of all monitors during a MIDAR runnearest samples that do not overlap withto find the suitable
(see Sec. IlI-D). Since the response must have been geseraf@notonic bounds to usé! falls within this larger bounding
between sending and receiving, we know that the true sampRx (that is,ID 41 < IDc < IDa3) and therefore passes.
time must be within thesample time rangés; — €, r; + ), The dashed line passing through, C, and A, illustrates
which we will substitute forr; in MBT execution. a possible monotonic counter consistent with these sample
MIDAR obtains the samples of a single time series s¥alues and time ranges.
quentially by sending the next probe only after receiving Because the MBT is based strictly on the definition of
the response to a prior probe or after a timeout, so ther@notonicity, we must detect and account for discontiesiti
is never any uncertainty about the ordering of the samplé&ppendix H) and other anomalies (Appendix I) that occur oc-
within a single time series. However, since MIDAR probesasionally in time series that otherwise adhere to the digimi
multiple interfaces in parallel (Sec. IlI-E), two samplesrh Whenever a sample-wise MBT test involves an ID value that
two separate time series can have overlapping time rangésjuestionable due to a discontinuity or anomaly, the test m
and consequently the true relative ordering of these sampgienerate a false negative. Rather than risk this rare ewer,
is uncertain. When the time range of one of the boundirip not apply the MBT in that case, and rely on the remaining
samples overlaps with the time range of the test sample, g&mple-wise tests for the most accurate result.
MBT widens its bounds to the next closest sample whose timeln general, the more ID samples we have available to test
range does not overlap with the test sample. This makes thigh MBT, and the tighter the monotonic bounds, the more
monotonic bounds larger than they could have been if thetexaonfident we can be that a positive test result means a shared
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TABLE |

SUMMARY OF PROBING METHODS

maintain the same Paris-traceroute flow label (TOS, prdétoco
source and destination addresses, ICMP type and code, and

Method | Probe Packet Expected Response ICMP checksum [21]) as the original traceroute measurement

TCP TCP ACK to port 80 on tar-| TCP RST or (rarely) ICMP N thel th t till ch d f it
get port unreachablérom target evertheless, the route can still change, and we may duerei

UDP UDP packet to port 33435 on ICMP port unreachabldrom (1) a new route to the destination that entirely bypasses the

- Téra‘;t . T }éfa%t . o g target address, or (2) a new route that still passes through

ecno requesto targe ecno replyirom targe . .

Indirect | TTL-limited ICMP echo re- | ICMP time exceededrom the target address but at a d'ﬁerem hop d]St_&lﬂCE. MIDAR

questto a hosipastthe target| target does not currently handle the first case—this is the greatest

weakness ofndirect probing. MIDAR handles the second case
by hunting for the target at nearby TTLs. If &mdirect probe
counter. Although monotonic bounds can be large in theokyith TTL = 7" does not elicit the expected response, we send
they are typically small in practice for two reasons. Firsgdditional probes with TTl= 7 =+ 1. If we find the target at
monotonic bounds are defined separately by each pair ©ife of these TTLs, we use that new TTL as the expected TTL
samples and are by construction as tight as possible. Tieis, for subsequent probes. MIDAR performs tAi§L expansion
lower velocity time series in Fig. 4a has tighter bounds tha}ﬂocess only in the Estimation stage (see Sec. IV-A). In our
the higher velocity time series in Fig. 4b. Low velocity timexperiments, TTL expansion increased the response rate to
series make up the majority of the cases observed in our dafgjirect probing from 76.5% to 80.8%. Expanding further to
and the monotonic bounds can be quite small; for example.+ 2 provided only a negligible increase in the response rate
adjacent samples with ID values 5 and 7 define monotonjgile significantly increasing the probing cost.
bounds that can be satisfied by Only a Single 1D Value, 6Append|x E describes the extent to which emp|0ying mul-
Second, we can use a shorter sampling interval to tighten fifle probing methods increases usable time series for our
bounds independently of the target velocity, as illusttety  dataset described in Sec. V. Using TCP alone resulted in
Fig. 4b and 4c, which have identical counters but differeghly 34.6% of the addresses having usable time seriesnigavi
probe spacing. To the extent possible, MIDAR tries to keggearly two-thirds completely unresolvable to IP ID basédsal
monotonic bounds small by adapting probe spacing to tRgsolution. If we employ all four methods, 80.6% of addresse
actual measured velocity of each target interface (Se&)lll yield usable time series to at least one method.
The main concern with employing multiple probing meth-
C. Multiple probing methods ods is how consistently the interfaces on the same router
Recent implementations of Ally and RadarGun offer behave. In the simplest case, either all or none of the mxted
choice of several probing methods selectable by the user (tpf a single router respond with usable IP ID values to a
ically only one method per run). Bender et al. [15] mentionegiven method. In this case, we can collect all IP ID samples
the possibility of combining multiple methods (they suggesvith the same method, presenting no additional difficulty fo
TCP and UDP) in order to increase the number of targettias inference. However, interfaces on a single routerato n
with usable IP ID samples. They did not offer any proceduralways behave consistently, perhaps due to differentifiljer
nor investigate the usefulness or effectiveness of comginion different routes to the various interfaces. In such gases
methods. In this section, we describe the procedure usedvisg can infer aliases only if we can meaningfully compare IP
MIDAR to fully exploit four probing methods—TCP, UDP, ID time series collected with different methods; that isaif
ICMP, and a method we callTL-limited indirect probingor router uses the same IP ID counter to generate responses to
Indirect for short. different probing methods as well as for different integfac
Table | summarizes the methods supported by MIDAR. Th&e expect that a router will use a shared counter on all
TCP, UDP, and ICMP methods are straightforward: sendirerfaces when responding to TCP and UDP probes, since we
probe packet to the target, and if the response is of the &egheexpect the responses to come from a shared CPU that would
type, collect the IP ID value. Although UDP responses fromxecute (router-wide) services potentially reachabld wiese
a different address are often from a different interfacehmn tprotocols. However, when we use ICMP lodirect probing,
same router, there is a risk that such responses are frorth@ ICMP echo replyor time exceededesponses could be
different router altogether, so we do not use them in MIDARjenerated entirely on a line card (that is, on the fast p2ti) [
interpreting these responses is more in the domain of thed a line card may have its own IP ID counter not shared
Mercator technique. Thimdirect method imitates a traceroutewith either the CPU or other line cards on the same router.
measurement. Every intermediate address in a tracerotite pehus, there is a chance that responses to ICMPladulect
responded with an ICMBme exceedetesponse, so in theory, probes may not share a counter with responses to TCP or UDP
we can elicit atime exceededesponse again by reproducingorobes.
the exact conditions of a traceroute measurement. For aiWe can detect counter sharing across probing methods in
address observed at hdpin a traceroute path, thedirect the same way we identify shared counters across interfaces—
method sends a probe with a TTL a&f from the original we apply MBT to a pair of time series obtained from the same
vantage point to the original destination and obtains an IRterface but with different probing methods. Note thatsthe
ID sample from thetime exceededesponse. To maximize cross-method comparisons do not suffer from the high false
the chances of the probe taking the same route as the opgsitive rate of the cross-interface comparisons destribe
inal traceroute packet and expiring at the target address, Appendix C, since only a single interface is involved. We
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observe a relatively high incidence of counter sharing faxecutiont The lower thee, the tighter the monotonic bounds

our dataset (see Sec. V), ranging from 88.9% to 97.4% lécome in the Monotonic Bounds Test (Sec. llI-B), so we

addresses per pair of methods (see Appendix F for full dgtailrecommend minimizinge where possible by, for example,
The relatively high rate of counter sharing suggests thdéploying RADclock instead of NTP.

employing multiple methods may be a fruitful way of finding The higher probing rate achievable by multiple vantage

additional aliases. An obvious way to use multiple methads points is not enough by itself to achieve true scalability as

to probe all targets with all methods and then perform ahias ithe number of targets increases to Internet-scale. We stiscu

ference on the resulting time series. This brute-force@ggr another technique MIDAR employs for scalability in the next

has the advantage of checking all possible combinations s#ction.

addresses and methods for aliases, but it increases thoeikyffi

of s_caling up measurements, since we need overlapping tiE‘.eAchieving probing scalability with sliding window

series from all methods. Furthermore, because of crossadet

counter sharing, it can be redundant to probe a target W{'[h

multiple methods; for example, if a target responds with ) .

shared counter to TCP and UDP, then the time series produ?lgg B1,C1, ..., Ay, By, O, . ; that s, loop through the target

. multiple times, probing the targets in order. If we pedld
by either method can be compared equally well to others ngdresses atpackets per second (pps), then each pass through

alias inference, so there is no need to collect both timeseri ; . ] .
Thus, we make a trade-off in MIDAR by probing with onIyFhe target list will tgke[ = N/p seconds; that is, ea_ch tqrget
is sampled at an interval of seconds. The resulting time

one methoder target but supporting multiple methodsross . . . o
targets. By using only one method per target, we need to se%ecj'ef’s ftohra?]ag? ;arl?aelt tlg ;J;:?LZZ?TIKJ:]t:zr:alr;pllinngtemlefva
only one quarter of the probes, allowing us to probe four §m d bling M

more targets with the same resources, but we may not be aﬂgéﬁ;gﬁgg t(r?:ehisr?gét”\ij(iitm%sft tgg t;’:]oerttseg?juw;;g
to find all potentially discoverable aliases if some routgos 9 Y gets. supp

. the highest velocity is 2000 ID/s. Then, from Eq. 1, we must
not share counters across methods, since we do not Co"r‘%’?/ez < 9.83s. If N — 2 x 10°, then to achievdl — 9.83s,

data using all combinations of addresses and methods. S
To determine which methods are usable with each tariEW[e must probe at 203 459 pps, which is at least 71.6 Mbls of

For target addressed, B,C,..., the simplest approach
collecting overlapping time series is to take the samples

MIDAR probes all targets with all methods in the earlie paffic with TCP _probe_s. The brute force approach of probmg
om 1000 machines in parallel would reduce the probing rate

stage (see Sec. IV-A). This process s inherently scalat%oe203 pps per machine, but managing that many machines is

since time series do not need to overlap across targets. Whenb . .
. A0 lematic. Here, we present a more scalable technique tha
there are several usable methods for a given target, MID

. . can achieve even smaller intervals for high velocity taget
selects a single method to use in subsequent stages base nalf the per-machine probing rate. using fewer than 40
the following method preferences. We prefer TCP over UD?’t P P 9 ' 9

because UDP is more often rate-limited and thus less reliabl

machines.
in eliciting responses. If UDP and ICMP do not appear to MIDAR achieves probing scalability with sliding window
share a counter with each other, we prefer UDP, because IC

eduling algorithm that exploits two observations. Thet fi
is more likely to be generated on a line card using an |

g servation is that, wheV > 109, the expectedO(N)

; T 5
counter that is not shared across interfaces. But if UDP aHHmber of aliases is significantly smaller than t&N~)
ICMP do share a counter, the choice of protocol does n

%(t)ssible pairs of addresses (see Appendix C). Therefore,
affect the chances of cross-interface counter sharingwand

collecting overlapping time series fall possible pairs of
prefer ICMP because it is less likely to be rate limited thaaddresses Is largely unnecessary work. If addresses haye ve
UDP. We assigrindirect the lowest preference because (1) i

ifferent velocities, they cannot share a counter, so we do
is more likely to be generated on a line card with an unsharngt need to apply the MBT to them and thus do not need
counter, (2) it is more likely to be rate limited, (3) a rowin

fheir time series to overlap. That is, we can use loose wgloci
change may prevent us from probing a target and (4) it is musmmlanty as a high sensitivity (but low PP.V) shared counte
- . _fest, to filter out many unshared counter pairs at an earnfjesta
more difficult to recover from the loss of a vantage point mid- o ”» .
) - he second observation is that target velocities rangelyide
run, since a target may be reachable wihirect from only
S : ; from near zero ID/s to several thousand ID/s, but the vast
a limited number of vantage points (perhaps just one). . .
majority of the targets we have observed have low velocities
(see Appendix A), so we need to use a short sampling interval

D. Multiple vantage points only for the minority of high velocity targets.

MIDAR employs multiple vantage points to increase the MIdDAIR mcrr(]amentglhl\//”pgztl;es th§ target I|sbt otver mﬁl?ple ¢
aggregate probing rate, an obvious approach to scalabilgy rounds In €ach round, Senas one probe 1o each targe

gested but not implemented in [15]. Because MIDAR needst eagrni(tw;lilsr': Zi%ﬁgcg' ASA; Iz;]r?icr)]WIzsirijcgr:]g%uo{tjasrszfisri;e(jes
compare time series collected by the different vantagetp;oinThe wi%th and positionyof the \?vin dow char?gesgover time

their clocks must be synchronized, for example with NTP X . : Lo
RADclock [23], [24]. MIDAR does not require extraordinai QI[he width of the window determines the sampling interval

precise CIO_Ck synchronization, but it does requwe. an mm 170 estimatee, we usecht pg/nt pdat e to determine the clock offset and
of the maximum clock erro¢ across all vantage points duringdelay of each vantage point during a MIDAR run.
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30 e c ° the adjacent targets are shared-counter candidates based o

20 _- their velocities.

50 - Next, observe that the window gradually moves down the
- list over successive rounds. The more rounds two addresses
° 70 — stay together in the window, the more overlap there will be

GO T — S between their time series. We wish to (1) ensure sufficient

B — S overlap between targets with nearly the same velocities, (2

2 0 200 400 600 800 1000 1200 1400 obtain at leassomeoverlap between targets with moderately
é 1600 similar velocities, and (3) avoid wasting resources oniobtg
§ 1:88 overlap between targets with sufficiently different vetims.
_g 400 - . e Tgrgets with nearly the same velocities, ;uchfhandB i'n
g 0 0 200 a0 eoo soo 1000 1200 1400 Fig. 5, are near each other in the target list and thus will sta

together in the window the longest and have the most overlap.
. . - _ Targets A and B have overlapping samples from round 35,
8 hetn coves o oot e adieeses svydnk o When B frt fals within the window, un round 83, whest
brevity, we show only every fifth round from 30 to 90 and onle tfirst last appears in the window. Targets with only similar vetiesi
1400 addresses. Addresses A and B have similar velocitiearesnear each such asA and C, are farther apart in the target list and thus
her in the velocity- i ind —83. i i i imi
oo & o & o s i vl s ey il only stay together in the window for a fmited number
rounds 70-83. Addresses A and D have even less similar vielcind so Of rounds (rounds 70-83 fad and C'), but collecting even
D does not enter the window until round 85, after A has exited. a few overlapping samples is still useful for ruling out thes
unlikely shared-counter pairs with MBT. Finally, targetghw
sufficiently different velocities, such asand D, never appear
for the targets within the window, since a target cannebgether in a window and have no overlap, but we presume
be sampled more closely in time than it takes to probethey cannot share counters, so lacking overlap is a fedtate t
window sequentially. The position or coverage of the windownproves efficiency.
determines which targets will have overlapping time series In probing with the sliding window, MIDAR must balance
MIDAR ensures that the window covers only likely sharedwo competing requirements in each round—the window must
counter candidates by working with a target list sorted ibe narrow enough to ensure a sufficiently short sampling
descending order by target velocity, which puts addres#s winterval for the highest target velocity in the window, and
similar velocities near each other (MIDAR obtains the targéhe window must be wide enough to include all adjacent
velocities in the Estimation stage, see Sec. IV-A). We caargets with velocities similar enough to share counters. W
think of the simplest approach described at the beginning @in quantify this trade-off with metrics that depend only on
this section as a degenerate case with a fixed window covertagget velocities and use the metrics to guide the choicheof t
the entire target list, so that we collect one sample from aptimal window size. Letnigh be the highest target velocity in
targets in each round and overlapping time series for @etar a window, andu., the lowest. These are the velocities of the
after multiple rounds of probing. first and last targets in the window, because the targetdist i
Fig. 5 illustrates the execution of the sliding window. Irsorted by descending velocity. We definsgacingmetric for
the upper subfigure, each dashed horizontal line reprefentsthe quality of a window’s sampling interval from how much
target list at a particular round of execution (so each ealti a counter with velocitynign would advance between samples;
line represents the same target address over all rounds), specifically, we define a counter advancement of 16384, or
each solid bar represents the window. For brevity, the figut¢4 of the ID space, to be one unit spacing If the counter
only shows every fifth round. The lower subfigure shows thedvances 1/8 of the ID space, then the spacing will be 0.5. The
target velocities in ID/s, with the target indexes matchimy lower the spacing, the more frequently we sample a target.
vertically between the two subfigures. For discussion, we haWe define asimilarity metric for a window’s inclusiveness of
labeled four target addresses, (B, C', and D) and highlighted similar target velocities from the rati@ow /vnigh, With a value
their target indexes with vertical lines. of 2/3 being one unit osimilarity. A ratio of 1/3 would be a
Observe first that the width of the window increases oveimilarity of 0.5. The lower the similarity, the wider thenge
time, from around 300 targets at round 30 to 1000 targetsdtvelocities allowed as possible shared counter pairs. As a
round 90. The window must be narrow near the beginningindow becomes larger, the spacing metric increases (gets
of the list to ensure a sampling interval short enough for thveorse) and the similarity metric decreases (gets betten). F
highest velocity in the window. Because velocities varyetyd each round, we choose the window’s starting target inde, an
in the beginning (dropping from 1600 to 400 ID/s in the firsthen choose the window size at which these two metric values
300 targets), the narrow window includes all targets thatdco are equal (or cross). If possible, we first advance the starti
plausibly share a counter with the highest-velocity targetrget index of the window past any targets in the beginning
while excluding many targets that could not. The window igortion of the window that have already been probed at least
several times wider at round 90 than at round 30 because 8tetimes while sharing a window with all targets of similar
target velocities at indexes 400-1400 are much lower wih leenough velocities to potentially share counters. In thiy,wa
variation, so the sampling interval can be longer, and mére the window eventually slides down the entirety of the target

address index
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list over multiple rounds. clock error is not underestimated and counter anomalies are
MIDAR partitions the full target list across multiple vage detected (see Appendix ), we can repeatedly apply MBT with
points and simultaneously probes with a sliding window fromegligible risk of losing aliases.
all locations. To ensure that all shared-counter candsdate We initially identify candidate alias pairs by probing all
(that is, targets with similar velocities) have overlagptime addresses with a sliding window and then applying MBT
series even across vantage points, MIDAR assigns, to ff&ec. IV-B). When we take the transitive closure of these
extent possible, both an equal number of targets and an eqeaxididate alias pairs, we obtain large, spabas sets that
distribution of target velocities to each vantage pointflsat is, sets of addresses that seem to share a counter. Because
the windows of different vantage points cover the same range the many inevitable false positives, these alias sets are
of velocities at the same time. Targets that can only be grobiypically composed of smaller cliques or near-cliques aétr
with the Indirect method can only be assigned to vantagalias sets linked together by false alias pairs. We couléatp
points that saw that target in a traceroute path, but deipge the sliding window probing to retest candidate alias pdits,
hard constraint on target assignment, we are able to achiewe undertake a more specialized probing approach in order to
nearly identical velocity distributions, due to the flekilyi increase the effectiveness of MBT and thus our confidence in
offered by a large number of targets that are usable withrothositive test results. We work in two stages. In the firstestag
methods. For example, in one MIDAR run, the number ofie perform focused probing and testing of every identified
targets assigned to each of 30 vantage points ranged froamdidate alias pair in order to eliminate most false peesiti
43 375 to 43938, a difference of only 1%. and to break up large alias sets into more realistic comstitu
A pre-calculated schedule drives the execution of thergiidi sets. In the second stage, we probe each of these smaller
window on each vantage point. We can calculate the positioanstituent sets as a whole and apply MBT to both the pairs
of the window for all rounds ahead of execution and compilwe have already discovered to share a counter and the pairs
this information into a schedule because the sliding wingow implied by transitive closure of those discovered pairaf ik,
dependent only on target velocities, which are known pidor e check the internal consistency of an alias set, that exary
execution. The schedule includes a delay in each round for dn a set shares a counter. In both stages, we probe with tighte
vantage point that was assigned less than its share of sargebbe spacing than can be achieved with the sliding window,
for that round, allowing us to finely synchronize the probingrhich makes the MBT bounds tighter and helps to eliminate
of a given velocity range across all vantage points. more false positives. We also repeat the second stage taultip
The sliding window scales gracefully without manual patimes with delays between executions in order to allow IP ID
rameter adjustment to varying numbers of targets and vanta@gunters to diverge. Under this regime, each candidate alia
points and to varying levels of overlap quality between timpair is tested multiple times over many hours, and the clance
series. Using this approach, with a self-imposed limit off a false positive remaining is extremely low.
100 pps per vantage point to minimize impact on the network,
we were able to collect the required overlapping time series IV. MIDAR | MPLEMENTATION
for 1.9 million addresses in 5.9 hours using 40 vantage point A complete execution of MIDAR is divided into four stages.
with & worst case sampling interval of 15% of the wrag, ihe Estimationstage, we determine the velocity and best
period. This aggregate probing rate of 4000 pps is signifigan ,-ohe method for each address for use in subsequent stages.
lower than the 229748 pps that would be needed by the bryteyne piscoverystage, we probe all target addresses with a

force approach to achieve the maximum allowable worst ca§gjing window schedule that allows us to efficiently diseov

interval of 30% of the wrap period. pairs that potentially share an IP ID counter. In Bignination
stage, we re-probe the potential alias pairs to rule out most
F. Further reducing false positives false positives. Finally, in th€orroboration stage, we probe

For th il f add wpically di d beach candidate alias set as a whole to confirm them and to rule
or the mifions ol addresses lypically discovere Jut remaining false positives. After completion of all pirgdp

Internet-sca_le mapping experl_ments, some of the _t””'OﬁS_stages, we infer reliable alias sets using all available datd
possible pairs of addresses will have similar IP ID timeeseri results

over a given measurement period out of sheer coincidenee (se

Appendix C). Thus, all alias tests will be susceptible tsdal o

positives at this scale. Fortunately, unrelated IP 1D cersmt A- EStimation stage

that were coincidentally similar during one period of tim#lw  In the Estimation stage, we ascertain two fundamental
eventually diverge under continued observation since everproperties of each target. We first identify the best usable
tiny difference in velocity becomes magnified over time. Wprobing method for each target, according to the method
exploit this fact to substantially improve confidence inifes  preferences discussed in Sec. IlI-C. All subsequent MIDAR
test results and to rule out false positives. We repeateditages probe each target with only the target's best method.
test pairs that pass MBT, delaying hours or days betwe®e next estimate the velocity of each target by applying
applications. The more MBT applications a pair passes, thg. 2 to the time series collected by a target's best method.
higher our confidence of a shared counter, but a single td$te subsequent Discovery stage uses these estimated target
failure conclusively rules out a shared counter. Because \alocities to calculate itdmax according to Eq. 1 and create
the virtually zero false negative rate of MBT, assuming thime sliding window schedule.
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We patrtition the target list across vantage points and propmbe spacing for more effective elimination of false pusa.
every target with every probing method. Because we care ofily reduce repeated probing of addresses, we try to minimize
about the properties of individual targets, we do not need tioee number of subgraphs that include any given addresseln th
collect overlapping time series across targets, so theipgobexperiment described in Sec. V, this subgraph-based mobin
procedure is inherently scalable to any number of targetgenerated only 15% as many probes as would have been
To avoid potential bias in selecting a probing method, weeeded by pair-wise probing.
randomize the probing order of the methods for each targetWe probe each subgraph for 10 rounds, where a round
We probe each target 30 times, with an average spacingcohsists of a single probe to each member of the subgraph
about 7.8s between probes of a given method to the saommsecutively, which guarantees maximum overlap between
target. This spacing is close enough to reliably sampleetargthe time series of the addresses. We send probes to members

with velocities up to 2520 1D/s, according to Eq. 1. of the same subgraph no faster than once every 600 ms and
no slower than once every second. The purpose of the lower
B. Discovery stage bound is to avoid the appearance of an attack and to avoid

In the Discoverystage, we determine which address pairrgIte limiting at the target, since at least one popular braind

appear to share a counter. We first generate a sliding Windrouter will by default rate-limit ICMPunreachableresponses

W i
probing schedule using the velocities found in the Estiomati t6one every 500ms. For each subgrapithe round duration

stage and, following this schedule, probe each target wsth > typically alittle over|z_§| x 600ms and at ”?05‘15| x 1s. _
To reduce total run time, we probe multiple subgraphs in

best probing method. We then analyze the results of these Dis e o
. ; arallel. The artificial delay within each round allows us to
covery probes, applying our shared counter tests to every ;fz)a

of targets with overlapping time series. Our most importast interleave rounds of different subgraphs without signiftba

for shared counters is the Monotonic Bounds Test (Sec.)l.ll—égcrfssgt]g t?gbicri]urarlg;)en bOf a?jasztirrwoutr;% rYl\J/‘rant()::rno??sTkr)OIr;ur:s
But before applying the MBT, we can sometimes rule out Jggregate p g yad 9 grap

shared counter with two simpler checks on IP ID byte ord(\a’¥e probe in parallel.

and precision (see Appendix I). We explicitly do not usegest _

based on hop distance between monitor and target, or on theCorroboration stage

inferred initial TTL set by the target in the response, beeau In the Corroboration stage, we take the transitive closure
these tests are unnecessary and can yield a significant nundfeall candidate alias pairs that passed the Eliminatiogesta

of false negatives. to obtain candidate alias sets. We then probe each of the sets
as a whole and apply MBT to both the pairs we have already
C. Elimination stage discovered to apparently share a counter and the pairsachpli

L . y transitive closure of those discovered pairs.
In the Elimination stage, we perform focused probing ang Probing in the Corroboration stage is the same as in the

testing of every identified candidate alias pair in order tI‘%Iimination stage. The only difference is in the input—thesse
eliminate most false positives and to break up large catelida ' . .
re smaller, but we want coverage of every possible trassiti

alias sets into more realistic constituent sets. Because A . ; .
) . - o : closure pair in each set, not just the previously discovered
primary goal is to eliminate false positives, we wish to mob

. . ; . : . -pairs. Although most sets are small, some are still largegimo
f:and|date a"a.s.p"’.‘“s with the tlghtest. probe spacing btmsgr have higr? enough velocity that they need to b% gl:noken
n ord(_ar o minimize the 1D bo.und.s in the MBT. One_ W& hto subgraphs as in Elimination. Compared to Elimination,
to achieve minimal probe spacing is to probe each alias Piore subgraphs are required to cover an alias set of a given
separately; that 1S, obtain overl_appmg time series f_o‘ri;ws si%e in Corroboration because we must probe every pair in
addresses at a time. The main drawbacks of this approgg

are the high cost of probing a large number of alias pai e transitive closure. Minimizing the size of these sets by

(6.8 million pairs in our experiment, see Sec. V) and thee‘?lmmatmg as many false positives as possible in Elinamat

undesirability of repeatedly probing addresses that aiad dllows Corroborat!on to work with reasonable efficiency.
. : . The Corroboration stage can also be used as a standalone
in many alias pairs.

We can achieve far areater probing efficiency by ex Ioitintest for potential alias sets discovered by means other @han
9 P 9 Y by €xp IgllDAR Discovery run, such as with DNS name inference or

the g.raph structurg of alias sets, with addresses as nodes SMer alias resolution techniques. Used this way, the ®@orro
candidate alias pairs as edges. Due to chance alignments_in

. : reﬁcion stage is more efficient and has better PPV and sdhsitiv
the Discovery stage, alias sets tend to be very sparse graphs

. ! g : an Ally or RadarGun.
with many smaller cliqgues or near-cliques linked together
by relatively few edges. In Elimination, we decompose each o
large alias set into overlapping smaller subgraphs, emguriE- Final alias inference
each edge occurs in at least one subgraph. We try to extracAfter all probing stages, we can finally infer reliable alias
subgraphs that are as close to a clique as possible, sincesets. First, we find all pairs that passed Elimination andewer
can efficiently collect overlapping time series betweerpalts reconfirmed in Corroboration. Each of these pairs has passed
in a cligue with minimal amount of probes, but if the resugtin the MBT at least two times, so we have fairly high confidence
clique would causeAID to exceed 5% of the ID space, wethat they are actually shared counters. The transitiveuoos
choose a subgraph smaller than a cligue to guarantee tightthese pairs yields the alias sets corresponding to rmuter
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TABLE I TABLE Il
CLASSIFICATION OF ADDRESS PAIRS IN OUR EXPERIMENT VALIDATION OF MIDAR ALIAS PAIRS AGAINST GROUND TRUTH
(“UNSHARED" ARE NOT FALSE NEGATIVE ALIASES BECAUSE WE DO NOT

stage/classification pairs fraction AUTOMATICALLY INFER NON -ALIAS FROM UNSHARED, SINCE SOME TRUE

total input to Discovery 1753713330078 100.00% ALIASES MAY NOT USE A SHARED COUNTER)

Discovery - unusable 110318572353 6.29%

Discovery - not enough overlap 802 244 369 262 45.75% validation set

Discovery - failed (unshared) 841143560073 47.96% R&E Tierl

Discovery - passed (shared) 6828390  0.000389% true pairs in MIDAR target list 17930 66875

Elimination - passed (shared) 3168049  0.000181% true pairs that were monotonic in Estimatign 8061 38250

Corroboration - passed (shared) 2783801 0.000159% MIDAR true positive shared 5856 26436
MIDAR false positive shared 0 11
MIDAR unshared 8 386

For each new pair created through transitive closure, we
perform the MBT and other alias tests using any and all data

collected in previous stages. Because the Corroboratagest Of the 75350 apparent alias sets found by the Discovery

was specifically designed to obtain overlapping time sddes stage, 2706 sets were large enough that we wanted to break

- - E;)I:f,em up before the Corroboration stage, which needs small
every pair in every alias set, we can perform at least one M

L X sets to work efficiently. The remaining 72644 sets were al-
on each of these transitive closure pairs, except when ssketse ready small enough to be efficiently tested in the Corrolamat
were unresponsive. Aansitive closure conflicbccurs when y 9 y

addresses! and B appear to share a countét andC' appear stage, so we did not test them in the Elimination stage. The
P ' PP largest of the 2 706 large sets contained 618 877 addresges, b
to share a counter, but andC' do not share a counter. Such : )
. . . only 6272188 of the 191504061 126 possible pairs were ac-
a conflict cannot appear in an actual alias set, but can appea - : : .
) . . -tually classified as shared. This very sparse graph is densis
in experimental data due to a false positive or false negativ

. : . ith our expectation of many smaller cliques or near-clgjue
or an actual change in the underlying topology during daﬁé true alias sets being linked together by relatively felgda

collection. Whatever the cause, we conservatively discayd aalias airs. These large sets were successfully broken up b
alias sets with transitive closure conflicts; the sets thatain paurs. 9 y P by

are MIDAR’s final router alias sets eliminating pairs that failed the MBT or were untestable in
' the Elimination stage, leaving 174 075 sets containing T84 5
addresses, with the largest set containing 658 addresses.

V. EXPERIMENTAL RESULTS Of the 3168049 pairs in the input to the Corroboration

In this section, we describe an Internet-scale experimetfd€: 2790570 were pairs that were tested in Elimination an
with MIDAR performed on CAIDA's Archipelago (Ark) [17] passed, and 2705601 (97.0%) of those were reconfirmed as

infrastructure. These results are summarized in Table II. being shared in Corroboration, suggesting that Elimimeliad

For input to MIDAR, we collected 2323682 addressegl,Iready removeq the majority_qf Discovery's f?"se posiive
primarily from intermediate (router) addresses in 189 mifMong those pairs. The remaining 377479 pairs belonged to

lion Paris-traceroute paths in tiBv4 Routed /24 Topology the_ sma_llll Dis_c_over)l/ sets ﬂ;at \_Nereh not subjgcgzd tohnlilimi-
Dataset[25], which is an effort to systematically measure IPU_atl'(;)n('j 1r2a5n4s£|)t$/ € closure ot paﬁ; S;Epzsdse orrgh lat
level paths from Ark monitors to a dynamically generated lig'elce Sets containing addresses. |h&targe

of IP addresses covering all /24 prefixes in routed IPv4 andre St Was the same 658-address set found by the Elimination

space. Of these addresses, MIDAR'’s Estimation stage fouﬁf&ge' Of these sets, only 13 contained transitive closome ¢

ts. Treating the conflicted sets as untrustworthy leaves
that 1872813 (80.6%) were usable (Sec. IlI-A). For more d Ic .
tailed classification of Estimation responses, see AppeRdi with 125484 sets containing 412 900 addresses and 2490702

| alias pairs. Only 1631 (0.07%) of the address pair$ih 2
%) of the sets were untested by MBT, that is, inferreg onl
via transitive closure. The high degree of internal coesisy

Hb he face of nearly complete full-mesh testing of every set
IS strong evidence that MIDAR’s positive predictive valge i
extremely high (that is, it finds very few false positives).

In the Discovery stage, we probed these usable addres é%
from 40 Ark monitors with a sliding window schedule. Oft*;"
the (§) = 1.75 x 10'? address pairs, 6.8 10° (0.0004%)
appeared to use a shared counter. The small fraction is
surprising because the number of shared pairs shoul? be)
whereas the number of total pairs @& N?). The 45.8% of
pairs that did not have enough overlap in their time series to
apply the MBT does not mean that MIDAR missed 45.8% VI. VALIDATION
of potential aliases. Recall, the sliding window schede i For validation, we used two sets of ground truth d&&E,
designed to not waste resources creating overlap betwémsn pa collection of known topologies provided by research and
with very different velocities that are thus very unlikely t educational networks (CAnet [26], CENIC [27]EANT [28],
share a counter. Analyzing all possible pairs in the Disppvel-Light [29], Internet2 [30], and NLR [31]); andTierl, a
stage is by far the most computationally expensive task inkaown topology provided by a Tier 1 ISP.
large-scale MIDAR run; using a server with eight 3.0 GHz The most direct validation we can do is test whether MIDAR
CPUs (hyperthreading provides a total of 16 logical coregind a validation set agree on the classification of aliaspair
analysis of the 1.75 trillion pairs took 20 hours. TrangtivTable Il shows the result of this comparison for the two
closure of the apparent shared pairs resulted in 75 350 epparalidation sets. For both sets, the number of false positive
alias sets containing a total of 1033759 addresses. is a small fraction of the number of true positives, showing
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fraction of pairs with overlapping rounds < x

[3]
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overlapping rounds

(6]
(7]

Fig. 6. Time series overlap between known alias pairs dutiding window.

that MIDAR and the validation sets largely agree. Note thalf!
disagreements may indicate not just errors in MIDAR, butg
also errors in the validation set or real changes in the mtwo

between collection of MIDAR data and validation sets. 19

13

of other tools such as kapar and iffinder to improve overall
accuracy and completeness.
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APPENDIXA
VELOCITY DISTRIBUTION

level topology samples of the global IPv4 Internet over time Fig. 7 shows the distribution of velocities for usable tinee s

which we curate and share with researchers [32]. We plaes

to integrate MIDAR into our larger Multi-Approach Alias The figure shows separate distributions for each of the four

(Sec. llI-A) collected by the Estimation stage (SecAlV

Resolution System (MAARS), which combines the strengtlsipported MIDAR probing methods (Sec. IlI-C), with the key
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1 T « positive predictive valu¢PPV) or precision fraction of
0.9 £ e positive tests that are correct, AP + FP)
08 « negative predictive valugNPV): fraction of negative tests
0.7 e that are correct, TTN+FN) (the valuel — NPV was
L 06 1y 4 called “false negative (rate)” in [11])
g 0% i « accuracy fraction of tests that are correc(TP +
04 ¥ TN)/(TP+ TN + FP+ FN)
8'2 : ] TCP (803617) « false positive rat§FPR orq): fraction of actual negatives
il L \OMP @300a8) ] that test positive, FRAN
0 e Indir(1323740) o o false discovery ratdFDR): fraction of positive tests that
0.01 0.1 1 10 100 1000 10000 are incorrect, FATP + FP) = 1 — PPV (called “false
Velocity (ID/s) positive (rate)” in [11])

4 R . . . If there are no inconclusive test results or we treat incon-
Fig. 7. Distribution of IP ID velocities for usable time seyieollected by . . . . o .
the Estimation stage using four probing methods (the key dtesithe count ClUSIVe results as negative, then the following identitiedd:

of time series for each method). The distribution is heavilgvgd toward e« AP=TP+FN
low velocities and tapers off long before reaching the maxindiscernible AN = TN -+ EP
velocity of 2520 ID/s for the given sampling interval. ° - +

o «a =1 — specificity

Accuracy alone is not a good measure of the quality of a
test. When prevalence is low, as in the case of large scak alia

TABLE IV
RELATIONSHIPS BETWEEN BINARY CLASSIFICATION TERMS

Actual value resolution, a test that mostly gives negative results walieh
Positive Negative ; ;
Test —Posiive T 25 — a .Iarge number of true ne.g.a.tlves and thus high accuracy, but
result [ Negative EN ™ NPV might still have poor sensitivity and PPV.
1 ! !
Sensitivity | Specificity | — Accuracy APPENDIXC

FALSE POSITIVES

giving a count of the included time series for each method. The potential for false positives is very high when using IP
The upper bound on the plot is approximately 2520 1D/4D time series for alias resolution at Internet scale.

the maximum we could detect with our chosen sampling According to the well-known “birthday problem,” in a group
interval. The CDF tapers off long before reaching this upp&f just 23 or more randomly chosen people, there is greater
bound, suggesting there are not many actual interfaceg usiian 50% probability that at least one pair of people willéav
monotonic IP ID counters with velocities higher than thi§l€ same birthday. Similarly, given that the IP ID space has
bound: that is, any apparent velocities higher than thismdou2'® = 65536 distinct values, it takes a group of just 302 IP

are likely due to randomly generated IP ID values. addresses to have a 50% probability of some pair of addresses
having the same IP ID value at any given time, and just
APPENDIXB 777 addresses for a 99% probability. When the number of
BINARY CLASSIFICATION targetsNV passes the number of possible valdéscollisions

To aid in discussion of alias resolution tests, it is usef@€ guaranteed by the pigeonhole principle. Even worse, if

to review some terminology commonly used in epidemiologgtl !P ID test allows a range of nearby values instead of

and other fields. Some of these terms and their relationshipst €aual values, the frequency of collisions increasesry
are illustrated in table V. amount that can be approximated by dividihg by a factor

« positive having the condition in question (e.g., a pair Oprpportional to. the size of the range. This would be the case
addresses sharing an IP ID counter, or being aliases) If it were possible to probe alV targets instantaneously with
. negative not having the condition in ,question Ally. In the context of the birthday problem, this requireme

- ) ould be like requiring a pair of people in a group to have
g]céusgﬁ;figlxe;ﬁﬁzés?g:ber of cases that actually haV%/irthdays within 4 days of each other (which happens with
o actual negativegAN): number of cases that actually doSO% probability in a group of just 9 people).
not have the condition in question Given N target addresses, and an averagel gddresses
per router, the number of alias pairs (actual positives) is

« prevalence fraction of cases that actually have the co X . . )
dition, AP/(AP -+ AN) approximately the number of interface pairs per router $ime
! the number of routers:

« true positivegTP): actual positives that test as positive

« true negativegTN): actual negatives that test as negative AP ~ <d> N _Nd-1) 3)

. false positive{FP): actual negatives that test as positive 2 d 2

- false negative¢FN): actual positives that test as negativend the number of non-alias pairs (actual negatives) is the

« sensitivityor true positive rate(TPR) orrecall: fraction total number of pairs that must be compared minus the actual
of actual positives that test as positive, /PP positives:

« specificityor true negative ratd TNR): fraction of actual AN — <N> AP~ N(N —d)
negatives that test as negative, /N “\2 - 2

4
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TABLE V
CLASSIFICATION OF IP ID BEHAVIOR OF ADDRESSES PROBED WITH VARIOUS METHODSPERCENTAGES ARE RELATIVE TO ADDRESSES PROBED
TCP UDP ICMP indirect
addresses probed 2323641 100.00%| 2323641 100.00% 2323641 100.00% 1832771 100.00%

insufficient responses 905267 38.96%| 1151476 49.55%| 482399 20.76%| 352537 19.24%
— mostly unresponsive 865498 37.25%| 1014227 43.65%| 459545 19.78%| 322991 17.62%
— mostly unexpected 39741 1.71%| 136863 5.89% 22723 0.98% 28454 1.55%
non-counter ID values 137363 5.91% 17164 0.74%]| 999677 43.02%| 138553 7.56%

— mostly zero 130744 5.63% 15044 0.65% 1293 0.06%| 110849 6.05%
— mostly repeat 100 0.00% 568 0.02% 236 0.01% 985 0.05%
— mostly reflect 6516 0.28% 1349 0.06%| 998077 42.95% 26270 1.43%
not monotonic 477394 20.55% 6490 0.28% 8619 0.37% 17941 0.98%
monotonic 803617 34.58%| 1148511 49.43%| 832946 35.85%| 1323740 72.23%

The prevalence is thefal—1)/(N —1). Some fractionv of the the necessary traceroute information for them. Table V show

tests on actual negatives will give false positive resultemv the results.

counters belonging to unrelated addresses are coinciyenta

synchronized to within the tolerance of the test. Then, the We count a target as havirigsufficient responsei$ fewer

total number of false positives will be than 75% of the probes to the target elicit the expected

N(N — d) response. The subcategories enumerate the most common rea-

— (5) sonsMostly unresponsiveneans more than 75% of probes did

, i . .. not elicit any response. During Indirect probing, a sequence

For alias resolution results to.have a usefasitive predictive of TTL expansion that does not elicit any response from the

valug the number of false ppsmves must pe much smaller th?&get is counted as a single non-response. We count a target

the numl_aer of actu_al positives. Comparing Eq. 5 and Eq. gsmostly unexpectei more than 75% of the probes elicit a

and .solvmg fora, gives us an upper bound on useful Valuer%sponse of an unexpected type. For most targets, either all

of a: d—1 none of the responses are unexpected. Most of the unexpected
a << N —d (6) responses are ICMBestination unreachablenessages from

. ... non-tar r .
Thus, whenN > d, the maximum acceptable false positive on-target addresses

rate of the test is inversely proportional to the number e The main cause of unresponsiveness for the Indirect method
ad_lqre(sjses. RadarG d MIDAR ppears to be network changes during the delay between
0 decreasay, radarbun an compare tens O%he traceroutes and our experimental probes. When the delay
;ample points in time series, as opposed 10 just two POIRLS shorter, the response rate is higher. For example, in a
in Ally. I;lowever, the dec?_ase E not aslmuph as_onle m'ggﬁferent Indirect probing run to 3000 targets from a single
expect, for two reasons. First, the samples in a sing € S€Mfonitor, the response rate was 98.8% for addresses gathered
are npt mdependent, but are related by an underlying counﬁ%m traceroutes taken only 3—4 hours earlier. The tracesou
that mcr_ements W'th. a shomewhat feg%"_ar r;\te. From thﬂ:%llected for Table V were taken up to 18 days before the
perspe_ctlye,_vye_ can view the test as requiring that two @8Nt g4imation run, showing that Indirect probes can still befuls
have similarinitial ID values and similavelocity (rate of 1D even after a moderate delay. However, we do see significant
c_hange)._ Sepond, pecause the velocity d|str|but|gp of Ii2al variability between monitors in the response rate to Iradire
time series is heavily skewed towards low velocities as se being, suggesting different levels of route instabitityd per-
in Fig. 7, many pairs of counters will have a low velocit hacket load balancing near each location
difference. Two unrelated counters that start with a sima '
value and have a low velocity difference will take a long time e classify a target as havimpn-counter ID valuesf it
to diverge. _ o _had sufficient responses but 25% or more of the ID values
Furthermore, note that the alias relationship is trarsitivyyere zero, some other constant value, or the value used in the
That is, if addressesl and B are aliases, and a”‘_j ¢ are  hrope packet. Such ID values are not useful to us because they
aliases, we must infer that andC' are also aliases; all thréeq, ot reveal the state of an underlying shared counter. The
addresses belong to the same router. Even a small set of fl§fcateqories enumerate targets for which more than 75% of
positives, interpreted at face value, could lead us to OOy | pg had the same type of non-counter value. Nearly half of the
merge many distinct routers into one. The topology distarti (5rgets respond to ICMBcho requesby echoing the ID, and
caused by false positives is thus amplified by transitivewte. 5 gignificant fraction of targets respond to TCP and Indirect
with zero-valued IDs.

FP=a x AN =~ o x

APPENDIXD
RESPONSE RATE ANDIP ID CHARACTERISTICS Finally, any target that passed all of the above tests is
To study the usefulness of the probing methods, we analydassified asmonotonicif its response IDs can be modeled
our Estimation run, in which we probed 2323 641 addressas a monotonic counter, otherwisenmonotonicTCP is the
with all available probing methods. The Indirect methodldouonly method for which a significant fraction of targets paksse
not be used with non-Ark addresses, because we do not htwe earlier criteria only to be classified as nonmonotonic.
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TABLE VI

UTILITY OF COMBINING MULTIPLE PROBING METHODS, PERCENTAGES (€ average probability of and_iVidual delta being negative is
ARE RELATIVE TO 2 323 641TOTAL ADDRESSES 50%, regardless of the sampling rate. Therefore, the exgect
_— _ number of negative deltas appearing in a random time series
combination of methods | responsive| usable f | . . by the bi ial distributi f
tp 62.75% | 34.58% of n values is given by the binomial distribution for — 1
udp 56.35% | 49.43% trials andp = 0.5. This distribution is a bell-shaped curve
icmp 80.22% | 35.85% with mode at(n — 1)/2.
indir 64.97% | 56.97% E : ; f 30 | 29 del Id
udp icmp indir 8857 | 77.39% or a time series o samples ( _ eltas), we wou
tcp icmp  indir 89.11% | 76.02% allow a maximum of|0.3 x 29] = 8 negative deltas before
tcp udp indir | 85.72% | 77.28% classifying the time series as unusable based on our 30%
tcp  udp icmp 82.66% | 68.91% th hold ti delt S H-A). Th babib
tcp udp icmp indir|  89.25% | 80.60% reshold on negative deltas (Sec. Ill-A). The probabibfy
getting 8 or fewer negative deltas out of 29 random deltas is
TABLE VII just 0.012, so 98.8% of random time series will be correctly
CROSSMETHOD COUNTER SHARING FOR ADDRESSES THAT YIELD jdentified as unusable. We do not need to detect all random
USABLE TIME SERIES TO MULTIPLE METHODS . . )
time series because of the extra testing MIDAR performs to
methods | addresses| shared eliminate false positives (Sec. IlI-F), but we can reducekwo
TCP:UDP 595465 | 562582 94.48% i iminati i
ing and eliminating tar hat pr ran i
ToPICMP | 383712 | 341247  88.93% by FJetect gande ating targets that produce randame t
TCP:indir 511111 | 456523  89.32% Series.

UDP:ICMP | 523710| 509951 97.37%
UDP:indir 774993 | 745913  96.25%
ICMP:indir 545585 | 525224  96.27% APPENDIXH

DISCONTINUITIES IN TIME SERIES

APPENDIX E An IP ID time series that appears mostly monotonic may
have an occasionaliscontinuity a local region of uncertainty

UTILITY OF MULTIPLE PROBING METHODS X 4
. . ) where we cannot be confident that a counter remained mono-
Table VI shows the increase in target responsiveness %Hic between individual samples

usable time series achievable by employing multiple prgbin
methods for our dataset. Individually, ICMP has the higheaF
responsiveness but the lowest amount of usable time ser

There are two types of discontinuity. First, there is a

scontinuity if the time gap between samples is too large,

nore precisely, ifAt; is greater than 3.5 times the median
of the same time series. This means that we lost three

susceplible 1o rate limiting. If we employ all four methOdStEg\j our definition of a usable time series required at least
Cl

0
89.2% of addresses respond to at least one method, and 80 e samples between counter wraps, so if we have lost three

. . . T {
yield usable_ time Seres to at Iea_st one method. This 'mlanSr more samples, the gap may hide one or more counter wraps.
coverage will make alias resolution much more complete. The second type of discontinuity occurs when the counter
advances too quickly between samples, which could be due
APPENDIXF : . . . X
to a burst of router traffic causing high velocity monotonic
CROSSMETHOD IP ID COUNTER SHARING .

ID advancement, but could also be due to the router’'s counter
sharing for our dataset. For each pair of methods, Table \He median segment velocity for a given time series. If eithe
lists the number of addresses that responded to both methg@gsactual counter advancemelfD; or the expected counter
with usable IP ID values and then the count and percentag@/ancementAt; of a segment is greater than 30% of the ID
is a high incidence of counter sharing, ranging from 88.9% \ye take discontinuities into account in all our analyses,
to 97.4%. As expected, TCP and UDP share often at 94.58f16,ying us to use time series that would otherwise intreduc
The sharing rates of the remaining pairs seem to be coreelaggyors or be unusable. For example, we exclude discorigsuit
with the response type; that is, counters seem more likely \ien computing; in Eq. 2; that is, for a discontinuity between
be shared Whep two probing methods elicit a S|m|Iar_ typg 95mple3’ andi+1, we excludeAID; andAt;, thus improving
response. For instance, the sharing rate of TCP with eithgp ropustness of to atypical or transient counter behavior.

ICMP or Indirect is comparatively low perhaps because TCRye observed a discontinuity in approximately 0.8% of the
rarely elicits an ICMP response. In contrast, UDP alway§aple time series we collected.

elicits an ICMP response, and we thus see comparatively
greater counter sharing between UDP, ICMP, &mtlrect

APPENDIX |
APPENDIX G ANOMALIES IN MONOTONIC COUNTERS
NEGATIVE DELTA RATE OF RANDOM TIME SERIES We observe several types of anomalies in IP ID values.

A random time series produced from random IP ID valuesMIDAR detects and accounts for these anomalies in order to
rather than from a monotonic counter. In random time serigraximize its sensitivity and positive predictive value,
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0000 pr—r—r

and discard these questionable samples from the time series
Although we found these anomalies in only 0.01% of 3.2
million observed monotonic time series, failing to accofant
them could result in false negatives in the MBT, decreasing
the overall sensitivity.
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Fig. 8. An example of the limited-precision counter anomalye Ttive
interpretation shows a much larger unwrapped delta (dashell than the
correct interpretation.

Most routers transmit ID values in big-endian order (net-
work byte order), but some use little-endian order. If IDuesd
from a low-velocity counter are interpreted in the wrongebyt
order, then the counter will appear to have a velocity about
256 times greater than its true velocity. On the other hdral, i
high-velocity counter is interpreted with the wrong byteen;
it will be indistinguishable from random. We developed an
inexpensive test to detect the correct byte order, and fthertd
approximately 0.6% of usable time series were little endian
We can also use byte order as an additional criterion fonguli
out aliases, assuming that every interface of a router waskd
the same byte order for a given probe method (Sec. 11I-C) (but
we do not assume that every router uses the same byte order
for different probe methods).

The second type of anomaly is caused by routers that do
not use all 16 bits of the IP ID field. Suchlianited precision
counter will wrap around its smaller ID space more frequentl
than a full precision counter with the same velocity, as show
in Fig. 8. To identify ab-bit limited precision counter, we
require not only that theé6 — b high bits are constant, but also
that there is at least one wrap, and that every wrapped seégmen
after being unwrapped, has a velocity similar to that of the
non-wrapped segments. Failing to identify limited premisi
counters would not directly lead to false results, but it {glou
lead us to unnecessarily mark their their wrapped segments a
discontinuities. We can also use limited precision counter
rule out shared counters: two time series with differengesn
cannot share a counter. We found about 0.39% of usable time
series had limited precision, most commonly using 12 bits
with values between 0x6000 and Ox6FFF.

The final type of anomaly we observed appears to be due
to a race condition in which the two bytes of the ID counter
are incremented asynchronously. For example, we may see a
sequence of (hexadecimal) ID values like 11F7, 11FB, 1100,
1204, 1209, where it appears the third vasimuldbe 1200,
but the high byte has not yet been incremented. We also saw
cases in the opposite order, e.g. 11F7, 11FB, 12FF, 1204,
1209, where it appears that the low byte of the third value
has not yet changed from FF to 00, even though the high
byte has changed from 11 to 12. We call these anomalies
XX00 and XXFF outliersWe take a conservative approach



