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Abstract—Our goal is to understand the evolution of the Au-
tonomous System (AS) ecosystem over the last 12 years. Instead of
focusing on abstract topological properties, we classify ASes into
a number of types depending on their function and business type.
Further, we consider the semantics of inter-AS links – customer-
provider versus peering relations. We find that the available
historic datasets from RouteViews and RIPE are not sufficient to
infer the evolution of peering links, and so we restrict our focus to
customer-provider links. Our findings highlight some important
trends in the evolution of the Internet over the last 12 years, and
hint at what the Internet is heading towards. After an exponential
increase phase until 2001, the Internet has settled into a slower
exponential growth in terms of both ASes and inter-AS links.The
growth is mostly due to enterprise networks and content/access
providers at the periphery of the Internet. The average path
length remains almost constant, mostly due to the increasing
multihoming degree of transit and content/access providers. The
AS types differ significantly from each other with respect totheir
rewiring activity; content/access providers are the most active.
A few large transit providers act as “attractors” or “repell ers”
of customers. For many providers, strong attractiveness precedes
strong repulsiveness by 3-9 months. Finally, in terms of regional
growth, we find that the AS ecosystem is now larger and more
dynamic in Europe than in North America.

I. I NTRODUCTION

The Internet, as a network of Autonomous Systems (ASes),
resembles in several ways a natural ecosystem. ASes of dif-
ferent sizes, functions, and business objectives form a number
of AS speciesthat interact to jointly form what we know as
the global Internet. ASes engage in competitive transit (or
customer-provider) relations, and also in symbiotic peering
relations1. These relations, which are represented as inter-
AS logical links, transfer not only traffic but also economic
value between ASes. The Internet AS ecosystem is highly
dynamic, experiencinggrowth (birth of new ASes),rewiring
(changes in the connectivity of existing ASes), as well as
deaths(of existing ASes). The dynamics of the AS ecosystem
are determined both by external “environmental” factors (such
as the state of the global economy or the popularity of new
Internet applications) and by complex incentives and objec-
tives of each AS. Specifically, ASes attempt to optimize their
utility or financial gains by dynamically changing, directly
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1We refer to “settlement free interconnection” as a “peeringrelation” and
“paid transit” as a “customer-provider” relation.

or indirectly, the ASes they interact with. For instance, the
objective of a transit provider may be to maximize its profit,
and it may approach this goal through competitive pricing and
selective peering. The objective of a content provider, on the
other hand, may be to have highly reliable Internet access
and minimal transit expenses, and it may pursue these goals
through aggressive multihoming and an open peering policy.

Our study is motivated by the desire to better understand
this complex ecosystem, the behavior of entities that constitute
it (ASes), and the nature of interactions between those entities
(AS links). How has the Internet ecosystem been growing? Is
growth more important than rewiring in terms of the formation
of new links? Is the population of transit providers increasing
(implying diversification of the transit market) or decreasing
(consolidation of the transit market)? Given that the Internet
grows in size, does the average AS-path length also increase?
Which ASes engage in aggressive multihoming? What is the
preferred type of transit provider for AS customers? Which
ASes tend to constantly adjust their set of providers? Are there
regional differences in how the Internet evolves? These are
some of the questions we ask in this paper.

Understanding the evolution of the Internet ecosystem is
important for several reasons. First, there is a need to develop
bottom-upmodels of Internet topology evolution that capture
the interactions between autonomous agents (ASes). As such,
we need to study the differences in the business function and
incentives of AS types that form this ecosystem. Second, un-
derstanding the evolution of the Internet is critical for studying
the performance of protocols and applications over time. For
instance, to answer the question “How will BGP perform 10
years from now?” we first need to answer the question “How
will the Internet look 10 years from now?”. Third, there is
a need to generate synthetic AS graphs for simulation and
analysis. A study of the evolution of the Internet can provide
inputs to such topology generators, e.g., the types of ASes in
the Internet and their topological properties (both staticand
dynamic) over time. Finally, in light of the recent interestin
re-designing the Internet with “clean-slate” approaches,it is
crucial to understand how the existing Internet has evolved.
Doing so could help us design new architectures that have
an intrinsic capability to evolve towards desirable economic,
reliability and performance conditions.

There is an extensive literature on AS-level topology mea-
surement and modeling (reviewed in detail in Section VIII).A
large portion of that literature, however, takes a graph-theoretic
perspective, viewing all ASes as nodes in a graph and all inter-



2

AS relations as edges, without considering the type of relation
(customer-provider versus peering) or the role of the partic-
ipating ASes (customer versus provider). Viewing all ASes
as the same type of node ignores the major differences in the
function and objectives of different ASes. Further, even though
most of the previous work on AS-level topology modeling
mentions the terms ‘evolution” or “dynamics”, the main focus
has been on measurements and modeling of growth, ignoring
rewiring. The latter is very important, however, as it represents
the attempt of individual ASes to optimize their connectivity.
Finally, most of the earlier work on AS-level topologies has
focused on macroscopic properties and metrics, such as the
degree distribution, the clustering coefficient or the graph
diameter, without considering the local policy and semantics
of inter-AS relations. The latter are very important as they
control the flow of traffic and value in the AS ecosystem.

In this paper, we attempt to measure and understand the
evolution of the Internet ecosystem during the last twelve
years (1998-2010). We propose a method to classify ASes
into a number of types depending on their function and
business type, using observable topological properties ofthose
ASes. The AS types we consider are large transit providers,
small transit providers, content/access/hosting providers, and
enterprise networks. We are able to classify ASes into theseAS
types with an accuracy of 75-80%. We focus onprimary inter-
AS links, meaning links that are used under “normal operating
conditions”, to distinguish with backup links that appear under
failure conditions or routing convergence. We also consider
the semantics of inter-AS links, in terms of customer-provider
(CP) versus peering (PP) relations, and distinguish between
the customer, provider and peering role of an AS in each
relation. Unfortunately, we find that the available historical
datasets from RouteViews and RIPE arenot sufficient to infer
the population and evolution of peering links.So we restrict
the focus of this study to the evolution of the population of
AS types and of customer-provider links.

The rest of this paper is structured as follows. In Section II,
we describe the data collection and filtering methodology. In
Section III, we study the evolution of the global Internet. In
Section IV, we present a classification scheme of ASes into
four AS types based on their business function. Then, we
examine the evolution of each AS type at a global scale as
well as regionally. In Sections V and VI, we investigate the
evolution of customer-provider relations in the Internet,from
the perspective of the customer and provider, respectively.
In Section VII, we present some results on the evolution of
the Internet peering ecosystem. We discuss related work in
Section VIII and conclude in Section IX.

II. DATASETS AND METHODOLOGY

A study of the evolution of the Internet ecosystem needs
frequent snapshots of the AS-level Internet topology, anno-
tated with policy information for each link. Given that such
historical information is not available, we have to rely on
measurement and inference, collecting data from multiple
sources and considering the limitations of each dataset. This
section describes the datasets we use and the subsequent
filtering and validation processes.

We collected BGP AS-paths from BGP table dumps ob-
tained from the two major publicly available repositories at
RouteViews [33] and RIPE [30]. The RouteViews collection
process started in November 1997, providing an invaluable
resource in the past 12 years. The first RIPE collector became
active in October 1999. We rely only on these two repositories
because no other source of topological/routing data (routing
registries, traceroutes, looking glass servers, etc.) provides
historical information. Note that the use of AS-paths has
been shown to be inadequate to expose thecomplete Internet
topology[10, 11, 18]. In particular, even though most ASes are
detected, a significant fraction of peering and backup linksat
the edges of the Internet are missed [9, 18, 41]. In fact, it has
been estimated that there are at least 40% more peering linksin
the Internet than those obtained from AS-paths [9, 11]. We are
well informed of these limitations, which are further exposed
later in this section. There are, however, three important points
to consider. First,we do not aim to detect backup links; instead,
we are only interested in primary Internet links, used most of
the time (as opposed to backup links that are only used upon
failures or overload conditions). We describe later how to avoid
backup links in the data filtering process. Second,the main
focus of this evolutionary study is customer-provider links. A
recent study [22] showed that peering links are growing in
importance as more traffic now flows on such links, as opposed
to traditional transit paths. However, as we show later in this
section, the available monitors from RouteViews and RIPE
cannot detect all peering links or the births and deaths of those
links. Third, even though missing links can be detrimental for
complex inference applications (such as AS path predictionor
BGP root-cause analysis), it has been shown recently that they
are less critical in topology inference[42].
Filtering of backup and transient links: Next, we describe
how to detect primary links, avoiding backup links and false
AS-paths that often appear during BGP convergence. Short-
term failures and transient routing events can “confuse” an
evolutionary study, misinterpreting link disappearancesand
appearances due to transient failures as link deaths and births
respectively. For instance, suppose that the primary linklp
between AS-x and AS-y fails at timet1, causing the activation
of a backup linklb between AS-x and AS-z.lp is repaired at
t2 and the connectivity returns to its original state. Since we
focus on primary links, our goal is to ignore the transient event
during(t1, t2) and tonotdetectlb. On the other hand, a change
of routing policy that exchanges the role of linkslp andlb (so
that lb becomes the primary link) should be detected as the
death oflp and the simultaneous birth oflb.

To achieve the previous objective we follow the “majority
filtering” approach described next. Note that asnapshot, in the
following discussion, does not refer to a time instant but toa
period of 21 days. During a certain snapshot, we collect atN

different times the unique AS-paths that are exported from all
active RouteViews and RIPE monitors. The period between
these successivesamplesis Ts, with N Ts=21 days.We keep
only those AS-paths that appear in the majority of the samples
and ignore the rest. This process is designed to filter out links
that appear due to routing transient events, as well as due to
“hard” failures of interdomain links (e.g. due to router crashes
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or fiber cuts). Routing transients typically persist for less than
a few hours, while we expect that hard failures are repaired
within 10 days. In each of these cases, the majority filtering
rule will successfully filter out the transient links.2 Note that
if a certain link X-Y is used as primary in one AS path but as
backup in another path, it will be included in our snapshot.

To select an appropriate value ofN , we do the following.
We collect all visible AS-paths for each day of January 19983.
We divide the month intoN blocks of the same duration, and
collect the set of visible AS-paths from a randomly selected
instant in each of theN blocks. Then, we perform majority
filtering, considering only AS-paths that appear in the majority
of the N samples. Finally, we measure the number of visible
AS links. We varyN from 1 to 10, and repeat the previous
process multiple times for each value ofN . As N increases,
the average number of visible links decreases (from 5850 to
5725 during that month) because fewer backup links become
visible. Additionally, the variability in the number of visible
links decreases. We observe thatN=5 results in about the same
average as higher values ofN , and low variance (standard
deviation of 12 links). In the rest of this study,N=5 samples.

The trade-off behind the selection of the snapshot duration
(21 days in our study) is explained next. If the snapshot
duration is too long (say more than a month), then we may
miss several birth-death (or death-birth) transitions of the same
link. On the other hand, if the snapshot duration is too small
(say a few days), then the majority filtering mechanism may
not be able to filter out backup links that appear during long-
lasting failures such as fiber cuts. Finally, a new snapshot is
collected every three months, providing us with 49 snapshots
(more than 12 years) from January 1998 to January 2010.
Variations in the number of active monitors: Another issue
we need to consider is that the number of BGP monitors in
both RouteViews and RIPE has been increasing significantly
over the last 12 years, from 14 in 1997 to 352 at the beginning
of 2010. The increase in the number of monitors has been less
than 20% in 44 out of the 48 pairs of successive snapshots. As
the number of monitors increases, some previously existing
links may become visible for the first time at a certain
snapshot. How do we distinguish those first appearances of
existing links from genuine link births? Similarly, sometimes
monitors are removed. How do we distinguish between the
disappearance of existing links from genuine link deaths?
Also, can we bound the estimation error in the number of link
births and deaths between each pair of successive snapshots?

To answer the last question we perform the following
analysis. Let the set of monitors at snapshotsT1 and T2 be
M1 andM2 respectively. LetL1 andL2 be the set of links
observed atT1 andT2, respectively.L2−L1 is the set of new
link appearances betweenT1 andT2. This is our estimate for
the set of new link births. This set includes the links that were
genuinely born betweenT1 and T2, but it may also include
an error term that is the set of links that were present atT1

but became visible atT2 due to the monitor set increase. To

2A similar process was used by Dimitropoulos et al. [12], but considering
an AS-path only if it appears inall N samples.

3We repeated this experiment using data from the latest snapshot in January
2010, with qualitatively similar results.

derive an upper bound for the latter, we do the following.
First, determine the set of linksL′

2 that would be observed
atT2 using the set of monitors that were common betweenM1

andM2, i.e.,M1 ∩M2. The setL′
2 −L1 (whereL′

2 −L1 ⊆
L2 −L1) includes links that were definitely born betweenT1

and T2, and hence it gives alower boundon the number of
actual link births. On the other hand, the number of links in
the set(L2 −L1)− (L′

2−L1) is an upper bound for the error
between the estimated and actual number of link births. So,
the worst case relative error(WCRE) in the number of link
births betweenT1 andT2 is:

WCRE=
|(L2 − L1)| − |(L′

2 − L1)|

|(L′
2 − L1)|

(1)

We measured the WCRE for every pair of snapshots. In 39
out of 48 snapshot pairs, the WCRE is less than 10%. For all
but one pair, the WCRE is less than 20%. In the remainder of
this paper, we omit the pair of snapshots for which the WCRE
was larger than 20% (Jan-Apr 2000). We measured the WCRE
separately for customer-provider (CP) links and peering (PP)
links. Unfortunately, the WCRE is high for peering links and
in 9 out of 48 snapshot pairs it is greater than 100%. A
plausible reason is that the detection of peering links can
depend significantly on the location of monitors. On the other
hand, the WCRE for CP links is low, and for all except one
pair of snapshots (Jan-Apr 2000), it is less than 10%.4

The previous analysis considers the effect of an increased
set of monitors on the measurement of link births. A similar
problem occurs while measuring link deaths, as some moni-
tors are occasionally disconnected temporarily or permanently
from the RouteViews and RIPE collectors. We performed a
similar analysis to determine the effect of monitor deaths on
the estimated number of link deaths. We find that the WCRE
in the estimated number of link deaths is less than 10% for
46 out of the 48 snapshot pairs.

The previous WCRE analysis showed that, even though we
can estimate well (within 10%) the births/deaths of CP links,
we do not get a reasonable accuracy for PP link births/deaths.
This is a negative but significant result, which should be
considered by future studies that rely on RouteViews and RIPE
topological data. It also implies that the conclusions of several
previous topological studies should be re-examined.
Sensitivity of population counts to number of monitors:We
next examine the visibility of CP and PP links, as well as of
ASes, when we vary the number of used monitors. Consider
first the population of ASes. LetnAS be the set of visible
ASes if we use all available monitors at a given snapshot.
We randomly select a fractionf of available monitors, and
determine the population of ASes that is visible using that
subset of monitors. We repeat this experiment 100 times for
each fractionnAS(f). Figure 1 shows the median, 10th and
90th percentile values of the rationAS(f)

nAS
for the snapshot Jan

2007, and the corresponding ratios for the populations of CP
links and PP links. The results are quantitatively similar across
snapshots, without any noticeable trends.

4We calculate WCRE for every pair of snapshots, and so it does not
accumulate over time.
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Notice that the number of visible ASes is strongly insen-
sitive to the number of available monitors. Even with 10%
of the monitors we practically see the same set of ASes that
is visible with all monitors. The fraction of CP links is also
insensitive to the number of available monitors, as long as
we use more than 60-70% of the available monitors in the
given snapshot. So, we expect that a 10-20% increase in the
number of available monitors across successive snapshots will
not cause a significant variation in the number of visible CP
links. The situation is very different with PP links however.
The fraction of visible PP links increases roughly linearly
with the fraction of used monitors. This means that if we had
more monitors we would probably see significantly more PP
links. So,the estimated population size of PP links should be
viewed as lower bound on the actual population size.Similar
observations were recently reported by Oliveira et al. [27].

The previous observations have two major implications.
First, on the positive side,it appears that the RouteViews and
RIPE historical datasets contain enough monitors to detectthe
ASes and CP links in a robust manner.Even though we cannot
be certain that we seeall ASes or CP links, we at least have
evidence that these populations would not differ by a large
number if we had more monitors. Second, on the negative
side, it is clear that the RouteViews and RIPE datasets are
not sufficient to detect the population or the birth/death rates
of PP links.Consequently, in the rest of the paper we focus on
the evolution of CP links. When we present some results for
PP links, the reader should recall that those figures are lower
bounds on the actual number of PP links.
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Fig. 1. Visibility of ASes, CP and PP links as a function of thenumber of
monitors used in a snapshot.

Policy inference: After collecting and filtering the data as
described earlier, the final data processing step is to use the
AS-paths in each snapshot (those that passed the majority
filtering process) to infer the relationships between adjacent
ASes. For this purpose we use the well-tested algorithm
described by Gao in [16]. Despite the significant follow-up
work on AS relationship inference [12, 37], we use Gao’s
algorithm because of its ability to infer relationships using only
observed AS paths, without additional information such as data
from routing registries or active probes. Comparisons of the
accuracy of these algorithms [16, 37] have shown that Gao’s
algorithm is more accurate in identifying peering relationships.

Further, Zhang et al. [42] showed that the inferences from
Gao’s algorithm are quite stable with respect to variationsin
the observed AS paths. The algorithm infers four types of AS
relationships: Customer-Provider (CP), Peering (PP), Sibling,
and Unknown. We ignore the last two types, as they account
for less than 2% of links in any snapshot.

Finally, the AS topology and relationship matrix provide an
annotated graph for each snapshot. The differences between
successive snapshots show the evolutionary events of link and
node births and deaths, which form the core of the analysis in
the following sections. Note that if a certain link has changed
role at some snapshot (say from CP to PP), we view that
event as the death of a CP link and the simultaneous birth of
a PP link between the corresponding ASes. The reader may
be wondering about the frequency of link type changes, from
CP to PP or the opposite. Even though we cannot answer this
question in a definite manner (due to the visibility problem
with PP links), we measured that 8.6% of the PP links in a
snapshot become CP links in the next snapshot (This number
is the average over all pairs of snapshots). The fraction of CP
links that become PP links appears to be much less (1%) but
that is probably due to the poor visibility of PP links. Also,
these changes are not cumulative, as we run the relationship
inference algorithm separately for each snapshot.

III. G ROWTH AND REWIRING TRENDS

We first examine the evolution of some major characteristics
of the global Internet.
Growth of ASes and inter-AS links: Figure 2 shows the
number of ASes and inter-AS links in each snapshot. Due to
the previously discussed issues with measuring PP links, we
only count the number of CP links in each snapshot. A first
observation is that, despite the economic recession of 2001-03
and the well documented turmoil in the telecom market,the
Internet AS-level topology has been increasing in size over
the last 12 years.Second, it appears that the Internet has gone
through two distinct growth phases so far:an initial phase,
up to mid-2001, in which the Internet grew exponentially
in terms of the number of ASes and links(of the form
y=a ∗ ebx). Then, the growth process switched toa slower
exponential growth5 for both the number of ASes and links.
We find that the number of ASes from 1998 to mid-2001
can be modeled asy=(3226±153)*e(0.091±0.004)x, where x

is the snapshot number (x=0,1,. . . ). After 2001, the number
of ASes can be modeled asy=(8200±203)∗e(0.03±0.001)x.
Regarding the number of CP links, the corresponding
functions are y=(5462±434)∗e(0.102±0.006)x and
y=(15260±550)∗e(0.034±0.001)x. These regression formulae
give a correlation coefficient that is at least 99%. Though our
goal is not to study the exact nature of the exponential growth
trajectories (the small exponent in the second exponential
makes it quite close to linear growth), we emphasize that a
qualitative change in the growth trajectory did occur around
2001. To eliminate the possibility that this trend shift is an

5In an earlier version of this paper, we reported a linear growth from 2001
to late 2007. Based on an additional two years of data until early 2010, we
find that the exponential models yield better regression fits.
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Fig. 2. Evolution of the number of ASes and CP links. The regression curves
are also shown.

artifact of the measurement infrastructure (e.g. the changing
set of monitors), we measured the number of visible ASes
and CP links with a set of monitors that remained the same in
the last 12 years. The results, even though revealing a lower
number of links, still show a trajectory change in mid-2001.
Huston [19] observed a similar trend shift in the number of
ASes (but not CP links) around mid-2001.

We determine the time at which the growth shifted from the
initial to the slower exponential as follows. We assume that
the number of CP links and ASes can be modeled asy=a eb x

whenx≤z andy=c ed x whenx>z. We then compute the value
zmin that minimizes the total sum-of-squares error (SSE) for
the above regression formula.zmin is our estimate for the
snapshot where the growth changed to the slower exponential.
We find that the initial exponential phase lasted for the first
16 snapshots for ASes and 15 snapshots for CP links,ending
in mid/late 2001.Figure 2 shows the exponential regression
curves for the number of ASes and CP links.

We study the number of advertised ASNs allocated from
different regional registries, using WHOIS to determine the
registry for each ASN. We find that the number of advertised
ASes from ARIN (North America) and RIPE (Europe) show
different growth after 2001 (both grew exponentially before
2001). While ARIN shows a linear growth, the growth of
RIPE changed to a slower exponential in mid-2001. We found
that the super-linear growth of RIPE ASNs is due to a large
number of requests for ASNs from Eastern Europe. The
LACNIC, APNIC and AFRINIC registries have also grown
super-linearly since 2001, but they together account for only
16% of all ASes as of January 2010. We conclude that the
super-linear growth of all ASes since 2001 is due mainly to
the exponential growth of RIPE since 2001.6

Evolution of CP link count (and lower bound estimates
of PP link count): Next, we distinguish between CP and PP
links, and examine the growth trends separately for these two
link types. We emphasize again that the number of PP links we
report here should be viewed as alower boundon the actual
number of peering links. Figure 3 shows the number of CP

6Using data from the ERX project [1] and RIPE NCC’s INRDB [31],we
found that only 0.5% of the ASes that we study were involved intransfers
between registries.
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and PP links, as well as their fractions, over time. Both link
types have been increasing in absolute numbers. As shown
earlier, the number of CP links shows an initial exponential
growth followed by a slower exponential growth after 2001.
Modeling the growth of PP links is difficult with the given
measurements. It appears, however, that that growth process
has followed a different trajectory than that of CP links.

The bottom panel in Figure 3 shows the fraction of CP and
PP links.The fraction of PP links has been increasing steadily
after 2001, even though the growth rate of CP links is larger
than that of PP links. The reason is that the relative increase
rate of PP links is larger than that of CP links. Given that we
probably underestimate the number of PP links,the fraction
of PP links at the beginning of 2010 is at least 20%.
Evolution of AS-path length and multihoming trends: Next,
we investigate the evolution of the average AS-path length
(after removing AS-path prepending). We do so by calculating
the average length of the AS-paths observed in each snapshot.
The upper panel in Figure 4 shows thatthe average path length
has remained practically constant (at 4.2 AS hops) over the
last 12 years.This is interesting, given the significant growth
of the underlying network. The fact that the average AS-path
length has remained constant points to adensification process
that increases the average degree of ASes at a sufficiently high
rate to keep the average AS-path length constant. Indeed, the
upper panel of Figure 4 shows that the average AS degree,
counting only CP links, has increased consistently over time,
from 3.2 links to 4.5 links per AS. The median degree (not
shown) is dominated by small networks that have just 1 or
2 providers, and hence it does not show an increasing trend.
This densification process has also been studied by Leskovec
et al. [23], who observed that the effective diameter7 of the
AS graphslowly decreaseswith time. Earlier modeling work,
such as the preferential attachment growth model of Albert
and Barabasi [2], predicted an average path length that grows
slowly with the size of the network (O(ln ln n)), when a newly
attached node has at least two edges. Such a growth model
would result in an increase in the average path length from 4.2

7The effective diameter of a graph is the minimum value ofd such that at
least 90% of the connected node-pairs are at distance at mostd. A smoothed
version of this metric is used in [23].
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to 4.72 over the last 12 years, contrary to the constant average
path length of 4.2 that we observed. It is possible that ASes
choose their providers in a “distance-aware” manner, so that
the AS-path length from/to their major sources/destinations
remains practically constant with time.

A plausible explanation for the densification of the Internet
is the increasing popularity ofmultihoming for economic,
reliability and performance reasons. The bottom panel of Fig-
ure 4 shows the averagemultihoming degree,8 the number of
providers of a given AS, for two broad classes of ASes:stubs
(ASes that never had customers during their observed lifetime),
and non-stubs. We find thatthe average multihoming degree
has been increasing in both classes.Non-stubs, however,
have been increasing their average multihoming degree much
faster than stubs (from 1.5 to about 3.6), in particular after
2003. This may be because non-stubs, which are typically
content/access/hosting/transit providers, attempt to optimize
their connectivity and reliability by multihoming to several
upstream transit providers. For many stubs, on the other hand,
one or two (primary) transit providers is often enough.
Growth versus rewiring: Next, we seek to understand the
relative significance ofgrowth versus rewiring. Growth refers
to the addition of new ASes in the network (together with
their corresponding links), whilerewiring refers to changes in
the connectivity of existing ASes.Specifically, we focus on the
number of CP link births due to AS births (growth) versus
CP link births due to rewiring. We also look at the number
of CP link deaths due to AS deaths versus CP link deaths
due to rewiring. The top panel of figure 5 shows, for each
pair of snapshots, the number of CP link births due to AS
births and due to rewiring. Initially, the CP link births due
to AS births and rewiring were comparable in number. Since
2001, however, we find that the number of CP link births
due to internal rewiring has increased much faster than that
due to AS birth. Currently,around 81% of link births are
associated with existing ASes (rewiring). A similar analysis,
shown in the bottom panel, shows that the number of CP
link deaths due to rewiring is significantly higher than that
due to AS deaths. About 86% of the link deaths are due to
rewiring and this fraction is increasing. These observations are

8Multiple physical links between two ASes count as a single inter-AS link.
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Fig. 5. Evolution of the number of CP link births (and deaths)due to node
births (and deaths) versus rewiring.

important for two reasons. First, most of the literature on AS
topology modeling has focused on growth, ignoring rewiring.
Second, rewiring represents an effort by individual ASes to
optimize their performance, profitability or other objectives.
An intriguing possibility is that the Internet, as a multi-agent
and self-organized system, attempts to optimize a certain,
still unknown, global objective in a distributed manner. This
possibility has also been discussed by Chang et al. [7].

Given the increasing significance of rewiring, we next focus
on the births and deaths of links between existing nodes
in two successive snapshots. LetG1 and G2 be the graphs
representing the primary AS topology in two consecutive
snapshots. We constructG′

1 from G1 by removing all nodes
that are not present inG2; similarly constructG′

2 from G2.
Note thatG′

1 andG′
2 have the same set of nodes. LetE′

1 and
E′

2 be the set of links inG′
1 andG′

2 respectively. We use the
following graph-level metric, referred to asJaccard Distance,
to quantify the rewiring betweenG′

1 andG′
2.

s(E′

1, E
′

2) =
|(E′

1 − E′
2) ∪ (E′

2 − E′
1)|

|E′
1 ∪ E′

2|
(2)

s(E′
1, E

′
2) captures both link births and deaths between the two

snapshots. For example, a Jaccard distance of 0.5 indicatesthat
50% of the links seen in the two snapshots were either born
before the second snapshot or died after the first.

We calculate the Jaccard distance separately, first, on the CP
graph where the customer is a stub, and second, on the CP
graph where the customer is a non-stub. Figure 6 shows these
metrics for each pair of snapshots. We find that the Jaccard
distance is much smaller when the customer is a stub, as
compared to when the customer is a non-stub, indicating that
non-stubs have been more aggressive than stubs in changing
their upstream connectivity.We investigate this further, after
proposing a finer classification of AS types in the next section.

IV. EVOLUTION OF AS TYPES

It is important to recognize that not nodes in the Internet
graph are the same. ASes connect to the Internet with dif-
ferent requirements and business interests, and optimize their
connectivity in different ways [14].
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AS classification scheme:We propose a simple classification
scheme for ASes according to their business type. The initial
classification consists of the following five AS types.

Enterprise Customers (EC) represent various organiza-
tions, universities and companies at the network edge that are
mostly users, rather than providers of Internet access, transit
or content. Typically, ECs do not have AS customers.

Small Transit Providers (STP) are regional ISPs that
provide Internet access and transit services. STPs aim to
maximize their customer base in their geographical area and
to reduce their transit costs throughselective peering. STPs
often peer selectively rather than openly to avoid peering with
ASes already in their customer tree, or ASes that are likely
to become customers at a future time. We count national and
academic/research backbones also as STPs.

Large Transit Providers (LTP) are international ISPs with
a large footprint, both in terms of number of AS customers and
geographical presence. LTPs aim to maximize their customer
base, peering with other ASes only when it is necessary to
maintain reachability (restrictive peering).

Access/Hosting Providers (AHP)are ISPs that offer In-
ternet access (e.g., DSL, cable modem, leased lines) and/or
server hosting. Their access customers can be residential users
or enterprises that do not have AS numbers, while their server
hosting customers are content/service providers that alsodo
not have AS numbers9. AHPs often engage in selective peering
to minimize the transit costs paid to their upstream providers.

Content Providers (CP)are not in the business of offering
Internet transit or access. Instead, their revenues resultfrom
providing content that users pay for. CPs aim to minimize
transit costs, and so often haveopen peeringpolicies.

Similar classifications have been proposed in previous work.
Chang et al. [6] classified ASes (for the purposes of de-
termining interdomain traffic matrices) into “web hosting”,
“residential access” and “business access”. Dimitropoulos et
al. [13] classified ASes into large and small ISPs, customer
networks, universities, Internet exchange points and network
information centers. We chose the previous five AS types
based on the terminology used in discussions on the NANOG
mailing list and in W. Norton’s white papers [26].

9A limitation of AS topologies derived from BGP tables is thatthey only
include organizations that have AS numbers.

Note that the difference between LTPs and STPs is quan-
titative, as both AS types have the same business function.
LTPs are basically the major ISPs that are often referred to,
rather informally, as “‘tier-1” transit providers. The “tier-1”
label is often associated with 10-20 ASes. We choose to be
more inclusive, defining as LTPsthe top-30 ASesin terms of
the average number of customers during the time period in
which an AS was seen in the last decade. That average is
larger than 180 AS customers for the LTPs in our datasets.

This leaves us with around 42000 ASes (all ASes that
were seen in the last 12 years) that cannot be classified
manually. Instead, we first picka training set of 50 ASes
for each of the remaining four AS types (EC, STP, AHP
and CP) that are definitely of the corresponding type (based
on information obtained from their webpages). For ECs, we
pick well-known universities and corporations. For STPs, we
choose transit providers that are mostly regional in terms of
their coverage and customer size. For CPs and AHPs, we
pick well-known content providers, hosting sites, and large
broadband/dial-up residential/business access ISPs. Next, we
observe the topological properties of the ASes in each training
set, in terms of theaveragenumber of customersC, providers
P , and peersR for that AS in the last decade. We found
significant overlap in the number of providers among the four
AS types, and so we do not rely on that metric. On the other
hand, the number of customers and peers(C, R) allows us
to distinguish between ECs, STPs and CPs. Unfortunately,
we are unable to distinguish CPs from AHPs. These two
AS types, even though have different business roles, largely
overlap in terms of bothC andR. So, in the rest of the paper
we merge these two AS types in what will be referred to as
Content/Access/Hosting Providers (CAHPs). Figure 7 shows
the average number of customers and peers for ASes in the
four training sets. Most ECs have zero customers and peers,
and do not appear in this graph.

The next step is to determine a set of boundaries in the two-
dimensional(C, R) space that separate the training sets of the
four AS types with the minimum number of misclassifications.
We apply the well known machine learning technique of
decision treeson the training samples to obtain the following
C and R coordinate boundaries for each AS type:

EC: C < 2.1, R <= 1
STP: 2.1≤ C < 180,R <4 and 48≤ C < 180,R ≥4

LTP: C ≥ 180
CAHP: C < 2.1, R > 1 and2.1 ≤ C < 48, R ≥ 4

Based on the previous boundaries, we next use the average
C andR values of each AS (measured over the snapshots in
which that AS was present in the ten-year dataset) to classify
it into one of the four AS types. Note that the AS types we
consider are quite distinct from each other in terms of their
function and business goals. It is thus reasonable to expect
that ASes do not change from one AS type to another during
their lifetime. To examine this hypothesis, we performed the
following test. We rerun the decision tree algorithm to classify
each AS using a two-year dataset from 2006 and 2007. We
then compared the two-year classification with that based on
the 12-year dataset. We found that only 3% of the ASes that
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appear in both datasets were classified differently. In mostof
these cases, it appears that the classification change was due
to a large shift in the customer and peer degrees of that AS.
For example, AS-1 has a large average customer degree over
the 12-year dataset and is classified as an LTP. However, in
the two-year dataset it has a customer degree of 0, and is
classified as an EC. AS1 was originally owned by Genuity
Inc., a large global ISP. In 2004, Genuity sold AS-1 to Level3
Communications, also a global ISP. Level3 does not use that
AS number for its transit services, and this is why that AS
has no customers in the two-year dataset.

To evaluate the accuracy of the previous classification
scheme, we perform the following. We select a random sample
of 150 ASes (50 ECs, 50 STPs and 50 CAHPs), and mix these
samples to remove any information about the classification
of these ASes (to avoid any subjective bias in the validation
process). Then, we use information from WHOIS servers and
the webpages of those ASes to infer their main business
function. If the actual business function does not match the
classification produced by our algorithm, we count that AS
as a misclassification. We find that the classification accuracy
for ECs is 78%. The errors in this category are due to
some residential access providers or content providers that are
classified as ECs because they have no AS customers and
no peers. The accuracy for STPs is 82%. The errors here
are due to ASes that mainly offer content hosting services.
These providers have few AS customers and a small number
(or none) of peers and hence they get classified as STPs. The
classification accuracy for CAHPs is 76%. The errors in this
case are mostly due to some academic/research backbones that
get classified as CAHPs due to their large number of peers.
Dimitropoulos et al. [13] reported 78% accuracy for their AS
classification; however, the AS classes they define are different
from ours, and hence are not directly comparable.
Population trends for each AS type: Figure 8 shows the
population of each AS type over the last 12 years. These curves
show two distinct phases, similar to the global growth trends
observed in Section III, with a change of trajectory around
2001. The STP population shows a small growth rate (increase
by factor of 1.41 since Jan 2002). The LTP population remains
almost 30 by definition. The EC population shows a strong
growth trend (increase by factor of 2.86 since Jan 2002),
contributing most of the growth in the number of ASes. The

CAHP population, even though much smaller in absolute num-
bers than ECs, has also been growing significantly (increaseby
factor of 1.97 since Jan 2002). ECs and CAHPs represent the
periphery of the network, where the users and content reside.
Judging by the population of this AS type,the Internet edge
grows at a significant and stable pace.On the other hand, LTPs
and STPs represent the core of the Internet. Even though the
STP population was growing significantly before 2001, their
growth rate in the last few years has decreased. This may be
an indication that the number of transit providers is stabilizing.
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Fig. 8. Evolution of the population of AS types.

Geographical trends for each AS type:To classify ASes
into broad geographical regions, we use the “registry” field
of the corresponding WHOIS entries. Figure 9 shows the
fraction of ASes of each AS type that were registered to
ARIN (North America) and RIPE (mostly Europe). The other
registries (APNIC, LACNIC and AFRINIC) account for the
remaining small fraction, and are not shown here. Interestingly,
we see that the population of ECs in the two continents (NA
and Europe) converges. It is likely that in the next few years
there will be more ECs registered in Europe than in North
America. This has already happened in the case of STPs, and
the number of STPs is now higher in Europe. LTPs, though,
are mostly still based in North America. On the other hand,
the fraction of CAHPs in Europe has always been higher than
in North America, probably because of the many regional
access providers (several per country) in Europe. These trends
imply that the Internet market, in terms of the number of
access/hosting, transit and content providers will soon be
larger in Europe than in North America.
Rewiring activity for each AS type: The differences in the
business function and incentives of the four AS types could
also appear in their rewiring activity. To measure this quantity
between a pair of snapshots, we calculate the Jaccard distance
for the set of CP links of each AS. We then compute the
average Jaccard distance for all ASes of the same AS type.
The top panel of Figure 10 shows these averages over time.
We see that, clearly,ECs show the lowest rewiring activity
throughout the last 12 years.STPs and LTPs have similar
rewiring activity, while CAHPs exhibit the highest rewiring
especially since 2001.CAHPs rewire their CP links frequently,
as they attempt to minimize their transit costs and provide
good performance/reliability to their customers.
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Fig. 10. Rewiring activity and fraction of inert ASes for each AS type.

A related metric is the fraction of nodes in each AS type
that areinert, meaning that they do not undergo any change
in their set of CP links between two successive snapshots.
The bottom panel of Figure 10 shows the fraction of inert
nodes for different AS types over time. We find that the
fraction of inert ECs increased slightly with time, from 74%in
2001 to just over 80% currently. This implies that ECs at the
network edge are becoming increasingly stable with respect
to the connectivity to their providers. The fraction of inert
STPs and CAHPs has decreased from almost 50% in 1998 to
around 30% in 2001, after which it has stayed almost constant.
We examined the set of STPs that are inert in every pair of
snapshots since 2001, and found that several of the inert STPs
are national monopoly providers or research and educational
backbone networks. Such STPs have a fairly stable customer
base, and do not have the incentive to constantly optimize their
connectivity. As expected, the fraction of inert LTPs is very
low and it approaches zero, because large transit providers
have a constant churn in their customers.

V. EVOLUTION OF CP RELATIONS: CUSTOMER VIEW

Number of providers per AS type: Figure 11 shows the
average number of providers per customer (or the average
multihoming degree) for each AS type. The median number of
providers (not shown) shows similar trends.The multihoming
degree for ECs has increased very slowly over the last decade
(from 1.5 to 1.9), and is almost constant since 2001. On the
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Fig. 11. Evolution of average number of providers for each AStype.
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other hand, the multihoming degree has increased significantly
for STPs (from 1.9 to 4.0), LTPs10 (from 2 to 6.6), and CAHPs
(from 2.1 to 9.0). The dramatic increase in the multihoming
degree of CAHPs, STPs and LTPs is probably the main reason
behind the densification of the Internet, discussed earlier.

We further study thedistributionof the number of providers
of different AS types. We find that the distribution of the
number of providers for ECs has not changed significantly
in the last 12 years. On the other hand, the largest change is
for CAHPs. Figure 12 shows the distribution of the number of
providers for CAHPs in 6 snapshots over the last 12 years. We
see that the distribution has been shifting consistently towards
the right, indicating an increase in the number of providersfor
CAHPs. Further, we find that the median number of providers
for CAHPs has been quite close to the average, and 50% of
CAHPs in the latest snapshot (Jan 2010) have more than 6
providers. This means that the average number of providers
for CAHPs seen in Figure 11 is not biased by a small number
of CAHPs that have many providers.
STPs versus LTPs:We study the differences inthe type of
provider that each AS type connects to when acting as the
customer in a customer-provider relation. Figure 13 shows
the number of links in each transit category over time. In-
terestingly, we find that both EC-LTP links (meaning, the

10Tier-1 ASes are commonly attributed as not having any providers. Recall,
however, that we define LTPs as the top-30 providers in terms of average
number of AS customers. This set includes ASes that have providers.
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Fig. 13. Evolution of CP links between different pairs of AS types.

customer is an EC and the provider is an LTP) and EC-
STP links show an exponential increase up to 2001, followed
by a slowdown from 2001 up to the present time. We find
that until 2004 the number of EC-STP links was almost the
same as the number of EC-LTP links. After 2004, the growth
rate of EC-STP links has been higher than that of EC-LTP
links (217 links/month vs 111 links/month), meaning that ECs
increasingly prefer to connect to smaller, regional providers.
There are several possible reasons why ECs may prefer STPs
over LTPs. One possibility is that STPs are cheaper than LTPs.
Another possibility is that ECs connect to STPs due to regional
factors such as national monopolies and regulations, or region-
specific marketing by STPs. The middle panel of Figure 13
shows the evolution of provider links for CAHP customers,
while the bottom panel shows the number of provider links for
STP customers. The numbers of CAHP-LTP and CAHP-STP
(also STP-STP and STP-LTP) links have been increasing at
roughly the same rate. Unlike ECs, CAHP and STP customers
do not prefer one type of provider over the other.
Rewiring activity of AS customers: Next, we investigate
the rewiring activity of AS customers according to the broad
geographical region in which they belong. We first find the
set of active customers (customers that changed their set of
providers) between pairs of successive snapshots. Then, we
calculate the fraction of those active customers that belong to
each geographical region. Figure 14 shows these trends. The
fractions for Asia-Pacific (APNIC), Latin America (LACNIC)
and Africa (AFRINIC) are practically constant and signif-
icantly lower than for Europe (RIPE) and North America
(ARIN). Interestingly, we find that after 2004-2005, there are
more active customers based in Europe than in North America.
In Section IV, we showed that Europe is catching up with
North America in terms of the population of ECs, and the
population of STPs is already larger in Europe. We conjecture
that this has created a more competitive market in Europe than
in North America, with European customer ASes being more
active in adjusting their upstream connectivity.

VI. EVOLUTION OF CP RELATIONS: PROVIDER VIEW

Preferential attachment and preferential detachment:First,
we measure the total number of CP links that were born
and died between two consecutive snapshots. We define the
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Fig. 14. Fraction of active customer ASes in each geographical region.
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Fig. 15. Attractiveness and repulsiveness versus customerdegree.

attractivenessAp of a provider p as the fraction of CP
links born in the second snapshot that connected to provider
p. Similarly, the repulsivenessRp of a provider p is the
fraction of CP links that died in the second snapshot and
that belonged to providerp. These two metrics, attractiveness
and repulsiveness, associate a business property (the ability
to attract and retain customers) with a topological property
(number of customer links of a provider AS).

Figure 15 shows the scatter plots of attractiveness and repul-
siveness versus the number of customers, for a recent pair of
snapshots in 2007. The left plot shows thatthe likelihood with
which a provider gains a CP link shows positive correlation
with the customer degree of that provider, as one would
probably expect from the “rich get richer” principle. However,
there are several outliers, and the correlation coefficientis
only 64%. The low correlation indicates that a simple model
in which the attractiveness of a node is proportional to its
customer degree would not be very accurate. The graph at the
right is also interesting because it showsan equally strong
positive correlation between the repulsiveness of a provider
and its customer degree.Thus, when we consider the rewiring
of CP links, we observe not only “preferential attachment”,
but an equally strongpreferential detachment. Preferential
detachment has been largely ignored in the earlier literature,
with the exception of a brief mention [35].
Attractors and repellers: Figure 15 also shows thatthere are
a few providers that have very large attractiveness and repul-
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siveness.We are interested in the properties of theseattractors
andrepellersof AS customers, and use the following approach
to identify them. For each pair of snapshots, we calculateAp

andRp for each providerp. We find that in all snapshot pairs,
around 50-100 providers account for more than 60% of the
total number of CP link births in the Internet.11 Henceforth,
we identifyattractorsof a snapshot pair as the set of maximum
attractiveness providers that account for at least 60% of the
total CP link births. Similarly, we identifyrepellersas the set
of maximum repulsiveness providers that account for at least
60% of the total CP link deaths.12

Next, we examine the number of attractors and repellers
between each pair of snapshots over time. Figure 16 shows
the evolution of the total number of attractors and repellers,
distributed among AS types. A decreasing trend in the number
of attractors would imply that the customer gains are shared
by a decreasing set of providers, indicating a shift towardsan
oligopoly or even monopoly. What we see, however, is that
the number of attractors and repellers shows an increasing
trend.This is significant because it implies that the gains and
losses of customers are increasingly shared by a larger set of
providers. In other words, the Internet is not heading towards
an oligopoly or consolidation of providers; instead, the market
of competing providers is increasing in size. We find that since
2001, the increase in the number of attractors and repellers
is mainly due to an increasing number of STPs in these sets.
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Fig. 16. The number of attractors and repellers (total and among AS types).

Figure 17 shows the number of attractors and repellers in
different geographical regions. Initially, it was the casethat
most attractors and repellers were in North America. Since
2003-04, however, providers from Europe have outnumbered
those from North America in the attractor and repeller sets.In
addition to the number of attractors and repellers, we examine
the total attractiveness and repulsiveness in different geograph-
ical regions. The total attractiveness (repulsiveness) ofa set
of providers is the fraction of CP link births (deaths) that are
contributed by providers in that set. The top (bottom) panelof
Figure 18 shows the total attractiveness (repulsiveness) of the
attractors (repellers) in each geographical region. From 1998

11We note that link “births/deaths” that cause the attractor/repeller effect
could also be due to customers that change their preferred providers, and not
always due to the creation/termination of business relationships.

12Different values of this threshold yield qualitatively similar results.

 0
 20
 40
 60
 80

 100
 120
 140

10090807060504030201009998

nu
m

be
r 

of
 a

ttr
ac

to
rs

year

total
arin
ripe

apnic

 0
 20
 40
 60
 80

 100
 120
 140
 160

10090807060504030201009998

nu
m

be
r 

of
 r

ep
el

le
rs

year

total
arin
ripe

apnic

Fig. 17. The number of attractors and repellers in each geographical region.

until 2003-04, the attractors in North America had a greater
total attractiveness than those in Europe (during this period the
number of attractors in North America was larger than that in
Europe). After 2003-04 the attractors in Europe and North
America had similar similar total attractiveness until 2007.
After 2007, the total attractiveness of attractors in Europe is
larger than that in North America. We see similar trends for
the total repulsiveness in Europe and North America.
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Fig. 18. Total attractiveness (repulsiveness) of attractors (repellers) in each
geographical region.

Correlation of attractiveness and repulsiveness for the
same AS:We have seen that providers can act as attractors
or repellers of AS customers. Here, we examine whether a
correlation exists between these two properties of the same
provider. If so, how do these correlations vary at different
time lags? To answer these questions, we calculate the cross
correlation of the attractivenessAp(t) and repulsivenessRp(t)
timeseries of the same provider at different lags. Instead of
examining all providers, we restrict this analysis only to those
providers that were classified as either attractors or repellers
(according to the 60% rule described earlier) at some point in
their lifetime. We refer to this set of providers asAR, where
|AR|=737. For each provider inAR, we compute the cross
correlation at different lags, and also the confidence bounds
at 99% significance level. The confidence bounds are used to
determine whether there is a significant correlation between
the attractiveness and repulsiveness time series at a particular
lag. We find 403 providers for which a significant correlation
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Fig. 19. Lag of maximum absolute correlation for each AS provider in AR.

exists at some lag. For each of those providers, we determine
the lag that shows the maximum absolute correlation.

Figure 19 shows, for the previous 403 providers, the lag at
which the maximum (in absolute value) correlation occurred.
Interestingly, we find thatin almost all cases the correlation
is positive. Further, we find that in 84% of the cases, the
maximum correlation occurs at positive lags. In particular,
most of the mass is at lags 1, 2 and 3 snapshots (43.1%,
14.6% and 9.4% of the providers, respectively). Note that
a positive lagl means that we correlate the attractiveness
at time t with the repulsiveness at timet+l, and each lag
corresponds to 3 months. So, for a large number of providers,
strong attractiveness precedes strong repulsiveness by a period
of 3-9 months. There are several possible reasons for this
effect. We conjecture that some providers attract many new
customers due to advertising and promotions. These providers
are not always able to keep their new customers, leading to
significant repulsiveness a few months later. This may be due
to customers that change their primary providers frequently,
or due to follow-up advertising/promotions from competitors.

VII. C ONJECTURES ON THE EVOLUTION OF PEERING

Given that a large fraction of peering links may not be
visible through RouteViews and RIPE routing tables, we do
not study in detail the evolution of peering relations in this
paper. In this section, we only present some tentative results,
which should be viewed as unproven “conjectures” about the
evolution of peering. The following observations need to be
re-examined in a future study, when the research community
obtains sufficient visibility of the peering links in the Internet.

Figure 20 shows the median peering degree for each of the
four AS types. We prefer to use the median degree in this case
because the average peering degree is heavily influenced by
a single LTP provider (AS13237) that appears to have over
200 peers. ECs and STPs have median peering degrees of
zero. It is interesting thatthe median peering degree of CAHPs
has increased significantly since 2003, from 2 to 6.It is not
surprising that LTPs establish many peering links; those links
are needed for global reachability when it is not possible to
directly reach some destinations through customers. CAHPs,
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Fig. 20. Median number of peers for each AS type over time.
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Fig. 21. Number of PP links of the most common types.

on the other hand, have the incentive to create many peering
links to reduce their transit costs.

Figure 21 shows the number of peering links in each
category over time. We see several interesting trends. First, the
number of peering links that involve CAHPs (CAHP-CAHP,
EC-CAHP, STP-CAHP) increased significantly between 2001-
2005, and it shows a persistent growth rate thereafter. The
exception is for the links of type LTP-CAHP, which are almost
constant in number since 2003. The largest number, as well as
the highest growth rate, is for links of the type CAHP-CAHP
and CAHP-STP. This could be because content/hosting/access
providers have the incentive to get as close as possible to the
destinations/sources of their traffic. These destinations/sources
of traffic are other CAHPs or they are networks that are
reachable through STPs. Another interesting observation is
that the number of STP-LTP peering links has remained almost
constant over the last 8 years. We conjecture that this is
due to the “restrictive” peering policy of most large transit
networks. The previous observations confirm the anecdotal
evidence, mentioned in various white papers (see [26] and
related references), that content/access providers are rising in
the peering ecosystem as the dominant players. The underlying
reason is that such ASes mostly have anopen peering policy,
while transit providers haveselective or restrictivepolicies,
peering by necessity rather than by choice.
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VIII. R ELATED WORK

A major research effort during the last decade aimed to
characterize the AS-level topology. One of the most well cited
papers, by Faloutsos et al. [36], argued that the Internet AS-
level topology is “scale-free”. Chen et al. [10], claimed that
the degree distribution, though heavy-tailed, does not obey a
strict power-law distribution due to missing links. They also
argued that the available data does not support preferential
attachment as the growth mechanism in the Internet. Tang-
munarunkit et al. [38] attempted to explain the heavy-tailed
degree distribution, and conjectured that this could simply be
due to the heavy-tailed AS size distribution. Most previous
measurement studies focused on static topological properties
of the Internet, such as degree distribution or clustering,and
did not examine the evolution of the topology over time.

Leskovec et al. measured the average degree and effective
diameter of the Internet AS graph and concluded that the
AS graph is densifying [23]. Siganos et al. [35] observed
the exponential growth of the Internet from 1997-2001, and
showed that a rich-get-richer form of preferential attachment
leads to exponential growth in the number of edges. Magoni
et al. [24] found exponential growth in the number of ASes
and links from 1997-2000.

The discovery of power-laws in the degree distribution led
to several “descriptive” topology generation models that could
produce such distributions, e.g., preferential attachment [2, 3].
Several variants of preferential attachment were later pro-
posed [4, 40, 43]. Park et al. [29] compared growth models for
Internet topology with respect to metrics such as the average
diameter and clustering coefficient. More recent work has
attempted to incorporate the effect of economic factors in the
evolution of the Internet topology, most notably [34, 39].

The previous descriptive models received considerable crit-
icism (e.g., [20, 21]) because they mostly focus on graph met-
rics, ignoring important features of the Internet topologysuch
as hierarchy or the presence of links of different types (transit
versus peering). Further, the previous models do not explain
how the Internet topology is evolving. This led to new models
that view the Internet topology as the outcome of optimization-
driven activity of individual ASes. These concepts were first
introduced by Carlson and Doyle [5], and later applied in
the context of the Internet in [15]. Chang et al. [7] used
domain-specific information about the Internet to model AS
interconnection practices. Chang et al. [8] model the behavior
of an AS in two distinct economic roles (customer and peer),
and examines the topological effects of actions of individual
ASes. A recent editorial [17] stresses the need to further
understand the dynamics of the AS topology. Norton [26]
discusses, mainly using anecdotal evidence, how economic and
competitive interests influence peering and transit connectivity
in the Internet. Economides [14] discusses the economics of
the Internet backbone (without looking at topology dynamics).

Several measurement studies have highlighted the incom-
pleteness of topologies inferred from publicly available routing
data [9, 11, 18, 25, 32, 41], while others have focused on col-
lecting as much of the Internet topology as possible [41, 18].
Zhang et al. [42] studied the effect of the set of BGP route

monitors, and found that for applications such as AS rela-
tionship inference, publicly available BGP data is reasonably
accurate, and data from additional monitors is only marginally
useful. Oliveira et al. [28] devise a technique to distinguish
between genuine topology changes versus link appearance and
disappearance during routing transients.

IX. CONCLUSIONS

We measured the evolution of the AS-level topology over
the last 12 years in terms of growth and rewiring, four distinct
economic/business classes of ASes, and customer-provider
links. Our findings highlight some important trends, trend
shifts, and sketch what the Internet may be heading towards.
The main findings are summarized next.

The AS-level Internet has gone through two growth phases:
an initial exponential phase up to mid/late-2001, followed
by a slower exponential growth thereafter. The average path
length, however, remains practically constant, meaning that the
networkdensifies. Currently, 81% of link births are associated
with existing ASes rather than new ASes (rewiring versus
growth); similarly, 86% of the link deaths are due to rewiring.

We classified ASes according to economic considerations
and business types. We find that most of the growth is due to
ASes at the network edge (ECs). The average multihoming de-
gree of ECs has remained roughly constant, but has increased
significantly for STPs, LTPs and CAHPs. The aforementioned
densification process is thus driven by transit providers and
access/hosting/content providers. In terms of rewiring, CAHPs
are the most active, while ECs are the least active.

We introduced two provider metrics – attractiveness and
repulsiveness – to quantify the ability of a provider to attract
and retain customers. We see positive correlations between
the attractiveness and repulsiveness of a provider and its cus-
tomer degree. Also, for many providers, strong attractiveness
precedes strong repulsiveness by a period of 3-9 months.
The total number of providers with large attractiveness and
repulsiveness between successive snapshots is increasing.

With respect to regional growth, we find that the Internet
market, in terms of the number of access/hosting/content and
transit providers will soon be larger in Europe than in North
America. Additionally, since 2004-2005, a larger fractionof
active customers are based in Europe than in North America,
and providers from Europe increasingly feature in the set of
attractors and repellers. Our measurements thus hint at an
increasing European influence on the Internet ecosystem.

We have explained the previous measurement results with
conjectures about the causes of the observed densification,the
high activity of CAHPs, and the incentives that lead certain
AS types to connect to other AS types. It is hard to validate
these conjectures, due to the lack of economic data about
various AS types. Obtaining such data and further explaining
our observations on an economic or optimization basis is a
direction of our future work. Another direction is to study
the dynamics of peering links using the set of full monitors
at RouteViews and RIPE, for which we can observe their
complete connectivity (both transit and peering).
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