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Abstract—Our goal is to understand the evolution of the Au-
tonomous System (AS) ecosystem over the last 12 years. |resdeof
focusing on abstract topological properties, we classify 8es into
a number of types depending on their function and business fe.
Further, we consider the semantics of inter-AS links — custmer-
provider versus peering relations. We find that the availabé
historic datasets from RouteViews and RIPE are not sufficiento
infer the evolution of peering links, and so we restrict our bcus to
customer-provider links. Our findings highlight some important
trends in the evolution of the Internet over the last 12 yearsand
hint at what the Internet is heading towards. After an exponential
increase phase until 2001, the Internet has settled into a®her
exponential growth in terms of both ASes and inter-AS links.The
growth is mostly due to enterprise networks and content/acess
providers at the periphery of the Internet. The average path
length remains almost constant, mostly due to the increasm
multihoming degree of transit and content/access provides. The
AS types differ significantly from each other with respect totheir
rewiring activity; content/access providers are the most etive.
A few large transit providers act as “attractors” or “repell ers”
of customers. For many providers, strong attractiveness gcedes
strong repulsiveness by 3-9 months. Finally, in terms of regnal
growth, we find that the AS ecosystem is now larger and more
dynamic in Europe than in North America.

I. INTRODUCTION

The Internet, as a network of Autonomous Systems (ASe

resembles in several ways a natural ecosystem. ASes of

ferent sizes, functions, and business objectives form abeum
of AS specieshat interact to jointly form what we know as
the global Internet. ASes engage in competitive transit (
customer-provider) relations, and also in symbiotic pegri
relationd. These relations, which are represented as int
AS logical links, transfer not only traffic but also economi
value between ASes. The Internet AS ecosystem is hig

dynamic, experiencingrowth (birth of new ASes)rewiring
(changes in the connectivity of existing ASes), as well

deaths(of existing ASes). The dynamics of the AS ecosyste

are determined both by external “environmental” factote(s

as the state of the global economy or the popularity of ne

Internet applications) and by complex incentives and obje _ .
bp ) y P Jegumal to understand how the existing Internet has evolved

tives of each AS. Specifically, ASes attempt to optimizerth

utility or financial gains by dynamically changing, directl

The AS topology data wused in this
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or indirectly, the ASes they interact with. For instances th
objective of a transit provider may be to maximize its profit,
and it may approach this goal through competitive pricing an
selective peering. The objective of a content provider, fon t
other hand, may be to have highly reliable Internet access
and minimal transit expenses, and it may pursue these goals
through aggressive multihoming and an open peering policy.

Our study is motivated by the desire to better understand
this complex ecosystem, the behavior of entities that toret
it (ASes), and the nature of interactions between thoséiesnti
(AS links). How has the Internet ecosystem been growing? Is
growth more important than rewiring in terms of the formatio
of new links? Is the population of transit providers inciegs
(implying diversification of the transit market) or decrieas
(consolidation of the transit market)? Given that the Imétr
grows in size, does the average AS-path length also inc?ease
Which ASes engage in aggressive multihoming? What is the
preferred type of transit provider for AS customers? Which
ASes tend to constantly adjust their set of providers? Aeegth
regional differences in how the Internet evolves? These are
some of the questions we ask in this paper.

Understanding the evolution of the Internet ecosystem is
important for several reasons. First, there is a need toloeve

ttom-upmodels of Internet topology evolution that capture
5?;9 interactions between autonomous agents (ASes). As such
we need to study the differences in the business function and
incentives of AS types that form this ecosystem. Second, un-

Prstanding the evolution of the Internet is critical fardsting

the performance of protocols and applications over time. Fo

Jdnstance, to answer the question “How will BGP perform 10
years from now?” we first need to answer the question “How
HW' the Internet look 10 years from now?”. Third, there is

a’ need to generate synthetic AS graphs for simulation and

aaé'lalysis. A study of the evolution of the Internet can previd

puts to such topology generators, e.g., the types of ASes i
the Internet and their topological properties (both statid
%/namic) over time. Finally, in light of the recent interést
%e-designing the Internet with “clean-slate” approactliess

oing so could help us design new architectures that have
an intrinsic capability to evolve towards desirable ecoimm

is available di€liability and performance conditions.

There is an extensive literature on AS-level topology mea-
surement and modeling (reviewed in detail in Section V).
large portion of that literature, however, takes a grapgothtic
perspective, viewing all ASes as nodes in a graph and altinte



AS relations as edges, without considering the type ofimlat We collected BGP AS-paths from BGP table dumps ob-
(customer-provider versus peering) or the role of the partitained from the two major publicly available repositorids a
ipating ASes (customer versus provider). Viewing all ASeRouteViews [33] and RIPE [30]. The RouteViews collection
as the same type of node ignores the major differences in fir@cess started in November 1997, providing an invaluable
function and objectives of different ASes. Further, evesutfth resource in the past 12 years. The first RIPE collector became
most of the previous work on AS-level topology modelingctive in October 1999. We rely only on these two reposigorie
mentions the terms ‘evolution” or “dynamics”, the main fecubecause no other source of topological/routing data (nguti
has been on measurements and modeling of growth, ignoriegistries, traceroutes, looking glass servers, etc.yiges
rewiring. The latter is very important, however, as it reqanets historical information. Note that the use of AS-paths has
the attempt of individual ASes to optimize their connedjivi been shown to be inadequate to exposecthmplete Internet
Finally, most of the earlier work on AS-level topologies hatopology[10, 11, 18]. In particular, even though most ASes are
focused on macroscopic properties and metrics, such as detected, a significant fraction of peering and backup liaiks
degree distribution, the clustering coefficient or the frapghe edges of the Internet are missed [9, 18, 41]. In fact,st ha
diameter, without considering the local policy and senwantibeen estimated that there are at least 40% more peeringrinks
of inter-AS relations. The latter are very important as thethe Internet than those obtained from AS-paths [9, 11]. Ve ar
control the flow of traffic and value in the AS ecosystem. well informed of these limitations, which are further expds

In this paper, we attempt to measure and understand thter in this section. There are, however, three importairitp
evolution of the Internet ecosystem during the last twelie consider. Firstwe do not aim to detect backup linksstead,
years (1998-2010). We propose a method to classify ASes are only interested in primary Internet links, used mdst o
into a number of types depending on their function anthe time (as opposed to backup links that are only used upon
business type, using observable topological propertigisasfe failures or overload conditions). We describe later hovwimich
ASes. The AS types we consider are large transit providebsckup links in the data filtering process. Secotid main
small transit providers, content/access/hosting pragidend focus of this evolutionary study is customer-provider sink
enterprise networks. We are able to classify ASes into tA&se recent study [22] showed that peering links are growing in
types with an accuracy of 75-80%. We focusmimaryinter- importance as more traffic now flows on such links, as opposed
AS links, meaning links that are used under “normal opegatitto traditional transit paths. However, as we show later ia th
conditions”, to distinguish with backup links that appeadar section, the available monitors from RouteViews and RIPE
failure conditions or routing convergence. We also comnsideannot detect all peering links or the births and deathsadeh
the semantics of inter-AS links, in terms of customer-pdevi links. Third, even though missing links can be detrimental f
(CP) versus peering (PP) relations, and distinguish betwemmplex inference applications (such as AS path prediaion
the customer, provider and peering role of an AS in ea®GP root-cause analysis), it has been shown recently thgt th
relation. Unfortunately, we find that the available histati areless critical in topology inferencpt2].
datasets from RouteViews and RIPE au sufficient to infer Filtering of backup and transient links: Next, we describe
the population and evolution of peering linkSo we restrict how to detect primary links, avoiding backup links and false
the focus of this study to the evolution of the population oAS-paths that often appear during BGP convergence. Short-
AS types and of customer-provider links. term failures and transient routing events can “confuse” an

The rest of this paper is structured as follows. In Section kvolutionary study, misinterpreting link disappearaness
we describe the data collection and filtering methodology. hppearances due to transient failures as link deaths atis bir
Section Ill, we study the evolution of the global Internet. I respectively. For instance, suppose that the primary link
Section 1V, we present a classification scheme of ASes intetween AS-x and AS-y fails at timig, causing the activation
four AS types based on their business function. Then, weé a backup link/, between AS-x and AS-Z,, is repaired at
examine the evolution of each AS type at a global scale gsand the connectivity returns to its original state. Since we
well as regionally. In Sections V and VI, we investigate théocus on primary links, our goal is to ignore the transiergrav
evolution of customer-provider relations in the Interrfedm  during (¢4, ¢2) and tonotdetect,,. On the other hand, a change
the perspective of the customer and provider, respectivedy routing policy that exchanges the role of linksand!, (so
In Section VII, we present some results on the evolution dfat /, becomes the primary link) should be detected as the
the Internet peering ecosystem. We discuss related workdeath ofi,, and the simultaneous birth &f.

Section VIII and conclude in Section IX. To achieve the previous objective we follow the “majority
filtering” approach described next. Note thatreapshatin the
Il. DATASETS AND METHODOLOGY following discussion, does not refer to a time instant buato

A study of the evolution of the Internet ecosystem neegriod of 21 days. During a certain snapshot, we collecY at
frequent snapshots of the AS-level Internet topology, anndifferent times the unique AS-paths that are exported frdm a
tated with policy information for each link. Given that suclactive RouteViews and RIPE monitors. The period between
historical information is not available, we have to rely omhese successivdampless T, with N T,=21 days.We keep
measurement and inference, collecting data from multiptaly those AS-paths that appear in the majority of the sasple
sources and considering the limitations of each datases. Tand ignore the restThis process is designed to filter out links
section describes the datasets we use and the subseqtieitappear due to routing transient events, as well as due to
filtering and validation processes. “hard” failures of interdomain links (e.g. due to router shas



or fiber cuts). Routing transients typically persist forsléisan derive an upper bound for the latter, we do the following.
a few hours, while we expect that hard failures are repairedFirst, determine the set of link&), that would be observed
within 10 days. In each of these cases, the majority filterireg T, using the set of monitors that were common betweéen
rule will successfully filter out the transient linksNote that and Mo, i.e., M; N M. The setl}, — £, (whereL), — £, C
if a certain link X-Y is used as primary in one AS path but ag, — £;) includes links that were definitely born betweén
backup in another path, it will be included in our snapshot.and 7%, and hence it gives bwer boundon the number of

To select an appropriate value of, we do the following. actual link births. On the other hand, the number of links in
We collect all visible AS-paths for each day of January £998the set(L, — £,) — (£, — £1) is an upper bound for the error
We divide the month intdV blocks of the same duration, andbetween the estimated and actual number of link births. So,
collect the set of visible AS-paths from a randomly selectatie worst case relative erro WCRE) in the number of link
instant in each of theV blocks. Then, we perform majority births betweerf; and T is:
filtering, considering only AS-paths that appear in the migjo Lo P — (L — 1
of the N samples. Finally, we measure the number of visible WCRE = (£ 1)/| (£ Bl Q)
AS links. We varyN from 1 to 10, and repeat the previous (L5 = L4)]

process multiple times for each value &t As N increases, we measured the WCRE for every pair of snapshots. In 39
the average number of visible links decreases (from 5850d@t of 48 snapshot pairs, the WCRE is less than 10%. For all
5725 during that month) because fewer backup links becopgt one pair, the WCRE is less than 20%. In the remainder of
visible. Additionally, the variability in the number of vide this paper, we omit the pair of Snapshots for which the WCRE
links decreases. We observe th&t5 results in about the sameygg larger than 20% (Jan-Apr 2000). We measured the WCRE
average as higher values of, and low variance (standardseparately for customer-provider (CP) links and peerirg) (P
deviation of 12 links). In the rest of this stud)=5 samples. |inks. Unfortunately, the WCRE is high for peering links and
The trade-off behind the selection of the snapshot duratign 9 out of 48 snapshot pairs it is greater than 100%. A
(21 days in our study) is explained next. If the snapshgfausible reason is that the detection of peering links can
duration is too long (say more than a month), then we ma@pend significantly on the location of monitors. On the pthe
miss several birth-death (or death-birth) transitiondefsame hand, the WCRE for CP links is low, and for all except one
link. On the other hand, if the snapshot duration is too smgjhir of snapshots (Jan-Apr 2000), it is less than 10%.
(say a few days), then the majority filtering mechanism may The previous analysis considers the effect of an increased
not be able to filter out backup links that appear during longgt of monitors on the measurement of link births. A similar
lasting failures such as fiber cuts. Finally, a new snapshotgroplem occurs while measuring link deaths, as some moni-
collected every three months, providing us with 49 snapsh@grs are occasionally disconnected temporarily or permiyne
(more than 12 years) from January 1998 to January 2010.from the RouteViews and RIPE collectors. We performed a
Variations in the number of active monitors: Another issue gjmilar analysis to determine the effect of monitor deaths o
we need to consider is that the number of BGP monitors jRe estimated number of link deaths. We find that the WCRE
both RouteViews and RIPE has been increasing significanfy the estimated number of link deaths is less than 10% for
over the last 12 years, from 14 in 1997 to 352 at the beginning out of the 48 snapshot pairs.
of 2010. The increase in the number of monitors has been lesgpe previous WCRE analysis showed that, even though we
than 20% in 44 out of the 48 pairs of successive snapshots. &%, estimate well (within 10%) the births/deaths of CP ljnks
the number of monitors increases, some previously existigg go not get a reasonable accuracy for PP link births/deaths
links may become visible for the first time at a certaifhis js a negative but significant result, which should be
snapshot. How do we distinguish those first appearancescgfsidered by future studies that rely on RouteViews andERIP
existing links from genuine link births? Similarly, sonme8s  opological data. It also implies that the conclusions oksal
monitors are removeq. How do we distingu_ish t_Jetween t'?)‘?evious topological studies should be re-examined.
disappearance of existing links from genuine link deathszsitivity of population counts to number of monitors: We
Also, can we bound the estimation error in the number of linkayt examine the visibility of CP and PP links, as well as of
births and deaths between each pair of successive sna’pshg§es’ when we vary the number of used monitors. Consider

To answer the last question we perform the followingyst the population of ASes. Let s be the set of visible
analysis. Let the set of monitors at snapstibisand 7> be ases if we use all available monitors at a given snapshot.

M, and M, respectively. LetC, and £, be the set of links \yg randomly select a fractiofi of available monitors, and
observed ally andT5, respectivelyL, — L, is the set of new getermine the population of ASes that is visible using that
link appearances betwedh andT:. This is our estimate for gypset of monitors. We repeat this experiment 100 times for
the set of new link births. This set includes the links thateve g5cp fractionn.as(f). Figure 1 shows the median, 10th and
genuinely born betweeff; and 75, but it may also include goy percentile values of the rati:=) for the snapshot Jan
an error term that is the set of links that were preserifiat 5047, and the corresponding ratios for the populations of CP
but became visible &l due to the monitor set increase. Tqinks and PP links. The results are quantitatively simitznoas
shapshots, without any noticeable trends.

2A similar process was used by Dimitropoulos et al. [12], bansidering
an AS-path only if it appears iall N samples.

SWe repeated this experiment using data from the latest boajrsJanuary “We calculate WCRE for every pair of snapshots, and so it dags n
2010, with qualitatively similar results. accumulate over time.



Notice that the number of visible ASes is strongly inserf-urther, Zhang et al. [42] showed that the inferences from
sitive to the number of available monitors. Even with 10%ao’s algorithm are quite stable with respect to variations
of the monitors we practically see the same set of ASes ttthe observed AS paths. The algorithm infers four types of AS
is visible with all monitors. The fraction of CP links is alsorelationships: Customer-Provider (CP), Peering (PP)irgjb
insensitive to the number of available monitors, as long asd Unknown. We ignore the last two types, as they account
we use more than 60-70% of the available monitors in tHer less than 2% of links in any snapshot.
given snapshot. So, we expect that a 10-20% increase in th&inally, the AS topology and relationship matrix provide an
number of available monitors across successive snapslibts annotated graph for each snapshot. The differences between
not cause a significant variation in the number of visible C8uccessive snapshots show the evolutionary events of tidk a
links. The situation is very different with PP links howevemode births and deaths, which form the core of the analysis in
The fraction of visible PP links increases roughly linearlyhe following sections. Note that if a certain link has chedig
with the fraction of used monitors. This means that if we hawdle at some snapshot (say from CP to PP), we view that
more monitors we would probably see significantly more P& ent as the death of a CP link and the simultaneous birth of
links. So,the estimated population size of PP links should ee PP link between the corresponding ASes. The reader may
viewed as lower bound on the actual population s&enilar be wondering about the frequency of link type changes, from
observations were recently reported by Oliveira et al..[27] CP to PP or the opposite. Even though we cannot answer this

The previous observations have two major implicationguestion in a definite manner (due to the visibility problem
First, on the positive sidat appears that the RouteViews andwvith PP links), we measured that 8.6% of the PP links in a
RIPE historical datasets contain enough monitors to defteet snapshot become CP links in the next snapshot (This number
ASes and CP links in a robust manneven though we cannot is the average over all pairs of snapshots). The fractionff C
be certain that we sea&l ASes or CP links, we at least havdinks that become PP links appears to be much less (1%) but
evidence that these populations would not differ by a largeat is probably due to the poor visibility of PP links. Also,
number if we had more monitors. Second, on the negatitteese changes are not cumulative, as we run the relationship
side, it is clear that the RouteViews and RIPE datasets araference algorithm separately for each snapshot.
not sufficient to detect the population or the birth/deattesa
of PP links.Consequently, in the rest of the paper we focus on IIl. GROWTH AND REWIRING TRENDS
the evolution of CP links. When we present some results for ) ) ) ) o
PP links, the reader should recall that those figures arerlowe Ve first examine the evolution of some major characteristics

bounds on the actual number of PP links. of the global Internet. _ _
Growth of ASes and inter-AS links: Figure 2 shows the

N — number of ASes and inter-AS links in each snapshot. Due to
I o0 the previously discussed issues with measuring PP links, we
Pl o only count the number of CP links in each snapshot. A first
08 1 T 1 observation is that, despite the economic recession of-2G01
: : and the well documented turmoil in the telecom markie¢,
061 P 1 Internet AS-level topology has been increasing in size over
the last 12 yearsSecond, it appears that the Internet has gone
0.4 ¢ ;o 1 through two distinct growth phases so fan initial phase,
up to mid-2001, in which the Internet grew exponentially
L ASes ot ] in terms of the number of ASes and linksf the form
: Chlimks o y=a * e*®). Then, the growth process switched doslower
0 01 02 03 04 05 06 07 08 09 1 exponential growth for both the number of ASes and links.
fraction of monitors We find that the number of ASes from 1998 to mid-2001
Fig. 1. Visibility of ASes, CP and PP links as a function of tiember of _Can be modeled ag:(3226:|:153)*6(0.09&0'004)1' where o
monitors used in a snapshot. is the snapshot numbexz£0,1, ..). After 2001, the number
of ASes can be modeled ag=(8200+203)¢(0-0340.001)z,

Policy inference: After collecting and filtering the data asRegarding the number of CP links, the corresponding
described earlier, the final data processing step is to use fHnctions are 92(546&434)*6(0'102i0'006_)z and
AS-paths in each snapshot (those that passed the majoyi_ﬁﬁl526&550_)*6(0'034#0'_001)96- These regression formulae
filtering process) to infer the relationships between afjac 9Ve @ correlation coefficient that is at least 99%. Th.ough ou
ASes. For this purpose we use the well-tested algorith@@al iS not to study the exact nature of the exponential growt
described by Gao in [16]. Despite the significant follow-uff&jectories (the small exponent in the second exponential
work on AS relationship inference [12, 37], we use Gao@@akes it quite close to linear growth), we emphasize that a
algorithm because of its ability to infer relationshipsngsonly ~dualitative change in the growth trajectory did occur abun
observed AS paths, without additional information suchata d 2001. To eliminate the possibility that this trend shift is a

from routing registries or active probes. Comparisons ef th _ _ _ ,
,°In an earlier version of this paper, we reported a linear gndinom 2001

accur.acy pf these algorithms_ [16, 37] have _Shown th"’.‘t GaQoslate 2007. Based on an additional two years of data untly €910, we
algorithm is more accurate in identifying peering relagbips. find that the exponential models yield better regression fits
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Fig. 2. Evolution of the number of ASes and CP links. The regjen curves Fig- 3. Evolution of CP and PP links in absolute numbers and fraction
are also shown. of the total number of links.

artifact of the measurement infrastructure (e.g. the cimangand PP links, as well as their fractions, over time. Both link
set of monitors), we measured the number of visible AS&es have been increasing in absolute numbers. As shown
and CP links with a set of monitors that remained the samee&arlier, the number of CP links shows an initial exponential
the last 12 years. The results, even though revealing a lov@ggewth followed by a slower exponential growth after 2001.
number of links, still show a trajectory change in mid-200Modeling the growth of PP links is difficult with the given
Huston [19] observed a similar trend shift in the number dheasurements. It appears, however, that that growth @oces
ASes (but not CP links) around mid-2001. has followed a different trajectory than that of CP links.

We determine the time at which the growth shifted from the The bottom panel in Figure 3 shows the fraction of CP and
initial to the slower exponential as follows. We assume th&P links.The fraction of PP links has been increasing steadily
the number of CP links and ASes can be modeleg=ase®®  after 2001 even though the growth rate of CP links is larger
whenz <z andy=ce®* whenz>z. We then compute the valuethan that of PP links. The reason is that the relative inereas
Zmin that minimizes the total sum-of-squares error (SSE) foate of PP links is larger than that of CP links. Given that we
the above regression formula,,;, is our estimate for the probably underestimate the number of PP lintke fraction
snapshot where the growth changed to the slower exponen@IPP links at the beginning of 2010 is at least 20%.

We find that the initial exponential phase lasted for the fir§tvolution of AS-path length and multihoming trends: Next,

16 snapshots for ASes and 15 snapshots for CP lieding we investigate the evolution of the average AS-path length
in mid/late 2001.Figure 2 shows the exponential regressio(after removing AS-path prepending). We do so by calcuatin
curves for the number of ASes and CP links. the average length of the AS-paths observed in each snapshot

We study the number of advertised ASNs allocated frofhe upper panel in Figure 4 shows tlia¢ average path length
different regional registries, using WHOIS to determine thhas remained practically constant (at 4.2 AS hops) over the
registry for each ASN. We find that the number of advertisdast 12 yearsThis is interesting, given the significant growth
ASes from ARIN (North America) and RIPE (Europe) shovwef the underlying network. The fact that the average AS-path
different growth after 2001 (both grew exponentially beforlength has remained constant points tdemsification process
2001). While ARIN shows a linear growth, the growth othat increases the average degree of ASes at a sufficiegtly hi
RIPE changed to a slower exponential in mid-2001. We fouridte to keep the average AS-path length constant. Indeed, th
that the super-linear growth of RIPE ASNs is due to a largépper panel of Figure 4 shows that the average AS degree,
number of requests for ASNs from Eastern Europe. Tig@unting only CP links, has increased consistently oveetim
LACNIC, APNIC and AFRINIC registries have also grownfrom 3.2 links to 4.5 links per AS. The median degree (not
super-linearly since 2001, but they together account fdy orshown) is dominated by small networks that have just 1 or
16% of all ASes as of January 2010. We conclude that tReproviders, and hence it does not show an increasing trend.
super-linear growth of all ASes since 2001 is due mainly fbhis densification process has also been studied by Leskovec
the exponential growth of RIPE since 2001. et al. [23], who observed that the effective diametef the
Evolution of CP link count (and lower bound estimates AS graphslowly decreasewith time. Earlier modeling work,
of PP link count): Next, we distinguish between CP and PBuch as the preferential attachment growth model of Albert
links, and examine the growth trends separately for these t@nd Barabasi [2], predicted an average path length thatggrow
link types. We emphasize again that the number of PP links w®wly with the size of the network (O(In In n)), when a newly
report here should be viewed agaaver boundon the actual attached node has at least two edges. Such a growth model
number of peering links. Figure 3 shows the number of CRould result in an increase in the average path length fré@m 4.

6Using data from the ERX project [1] and RIPE NCC's INRDB [3je "The effective diameter of a graph is the minimum valuelafuch that at
found that only 0.5% of the ASes that we study were involvedramsfers least 90% of the connected node-pairs are at distance atdnéssmoothed
between registries. version of this metric is used in [23].
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Fig. 4. Evolution of average AS degree, AS-path length, amttinoming Fig. 5. Evolution of the number of CP link births (and deattiag to node
degree. births (and deaths) versus rewiring.

to 4.72 over the last 12 years, contrary to the constant geergmportant for two reasons. First, most of the literature d& A
path Iength of 4.2 that we observed. It is possible that ASﬁﬁ)obgy mode"ng has focused on growth, ignoring rewiring
choose their providers in a “distance-aware” manner, sb thgecond, rewiring represents an effort by individual ASes to
the AS-path length from/to their major sources/destimeio optimize their performance, profitability or other objees.
remains practically constant with time. An intriguing possibility is that the Internet, as a multjent

A plaUSible eXplanation for the densification of the |ntern%nd Se|f-0rganized System’ attempts to Optimize a certain,
is the increasing popularity ofmultihoming for economic, stjll unknown, global objective in a distributed manner.isTh
reliability and performance reasons. The bottom panel gf Fipossibility has also been discussed by Chang et al. [7].
ure 4 shows the averageultihoming degre@ the number of  Given the increasing significance of rewiring, we next focus
providers of a given AS, for two broad classes of AS®#EDS oy the births and deaths of links between existing nodes
(ASes that never had customers during their observedi®ti iy two successive snapshots. L@t and G, be the graphs
and non-stubs We find thatthe average multihoming degreerepresenting the primary AS topology in two consecutive
has been increasing in both classdson-stubs, however, snapshots. We construct, from G, by removing all nodes
have been increasing their average multihoming degree myght are not present it's; similarly constructG?, from Gs.
faster than stubs (from 1.5 to about 3.6), in particularraft®jgte thatG’, and G/, have the same set of nodes. Ligt and
2003. This may be because non-stubs, which are typica}_l;é be the set of links irG, and G/, respectively. We use the
content/access/hosting/transit providers, attempt tmie  following graph-level metric, referred to daccard Distance

their connectivity and reliability by multihoming to se@r to quantify the rewiring betwee@”, and G5.
upstream transit providers. For many stubs, on the othet,han

one or two (primary) transit providers is often enough. S(ElE) = |(B1 — E3) U (B — E7)| @
Growth versus rewiring: Next, we seek to understand the 2 |E7 U Ej|

relative significance ofjrowth versus rewiringGrowth refers . .
to the addition of new ASes in the network (together Witﬁ(E{,Eé) captures both link births and deaths between the two

their corresponding links), whileewiring refers to changes in snapshots. For example, a Jaccard distance of 0.5 indibaties

the connectivity of existing ASe3pecifically, we focus on the 50:/0 ofﬂt1he links jeen n ;hf tw(cj)_ sgap;tshcitﬁ V‘]f_erf either born

number of CP link births due to AS births (growth) versuge ore the second shapshot or died after the Trst.

CP link births due to rewiring. We also look at the number We calculate the Jaccard (_j|stance separately, first, onfhe C

of CP link deaths due to AS deaths versus CP link deatﬁrsaph where the customer_ is a stub, and_second, on the CP
due to rewiring. The top panel of figure 5 shows, for eaép]raph where the customer is a non-stub. Figure 6 shows these
pair of snapshots, the number of CP link births due to igjetrics for each pair of snapshots. We find that the Jaccard
births and due to rewiring. Initially, the CP link births ducliStance is much smaller when the customer is a stub, as

to AS births and rewiring were comparable in number. Simc@mpared to when the customer is a non-stub, indi_cating th_at
2001, however, we find that the number of CP link birthgon-stubs have been more aggressive than stubs in changing

due to internal rewiring has increased much faster than tﬁg?'r upstream CO””GC,“,V'WVG investigate t,h's further, afte_r
due to AS birth. Currentlyaround 81% of link births are proposing a finer classification of AS types in the next sectio

associated with existing ASes (rewiring) similar analysis,

shown in the bottom panel, shows that the number of CP IV. EVOLUTION OF AS TYPES

link deaths due to rewiring is significantly higher than that = _ _

due to AS deaths. About 86% of the link deaths are due to!t IS important to recognize that not nodes in the Internet

rewiring and this fraction is increasing. These observatiare 9raPh are the same. ASes connect to the Internet with dif-
ferent requirements and business interests, and optiméie t

8Multiple physical links between two ASes count as a singter#hS link. ~ connectivity in different ways [14].
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Note that the difference between LTPs and STPs is quan-
titative, as both AS types have the same business function.
LTPs are basically the major ISPs that are often referred to,
rather informally, as “tier-1” transit providers. The éti-1"
label is often associated with 10-20 ASes. We choose to be
more inclusive, defining as LTRbe top-30 ASem terms of
the average number of customers during the time period in

02 B
" W/\[/\[\/M
oLy ] which an AS was seen in the last decade. That average is
0.5 | 1 larger than 180 AS customers for the LTPs in our datasets.

This leaves us with around 42000 ASes (all ASes that
were seen in the last 12 years) that cannot be classified
manually. Instead, we first pick training set of 50 ASes
Fig. 6. The Jaccard distance for CP links of stub vs non-sustocmers. ~ for each of the remaining four AS types (EC, STP, AHP

and CP) that are definitely of the corresponding type (based

on information obtained from their webpages). For ECs, we
AS classification schemeWe propose a simple classificationpick well-known universities and corporations. For STPs, w
scheme for ASes according to their business type. Thelinitghoose transit providers that are mostly regional in terfns o
classification consists of the following five AS types. their coverage and customer size. For CPs and AHPs, we

Enterprise Customers (EC) represent various organiza-pick well-known content providers, hosting sites, and darg
tions, universities and companies at the network edge tleat Aroadband/dial-up residential/business access ISP<, Wex
mostly users, rather than providers of Internet accesssitra observe the topological properties of the ASes in eachitrgin
or content. Typically, ECs do not have AS customers. set, in terms of thaveragenumber of customer§', providers

Small Transit Providers (STP) are regional ISPs that P, and peersi for that AS in the last decade. We found
provide Internet access and transit services. STPs aimsignificant overlap in the number of providers among the four
maximize their customer base in their geographical area ah8 types, and so we do not rely on that metric. On the other
to reduce their transit costs througklective peeringSTPs hand, the number of customers and pe@rsR) allows us
often peer selectively rather than openly to avoid peeriitg wto distinguish between ECs, STPs and CPs. Unfortunately,
ASes already in their customer tree, or ASes that are likelye are unable to distinguish CPs from AHPs. These two
to become customers at a future time. We count national af8 types, even though have different business roles, kargel
academic/research backbones also as STPs. overlap in terms of botlt’ and R. So, in the rest of the paper

Large Transit Providers (LTP) are international ISPs with we merge these two AS types in what will be referred to as
a large footprint, both in terms of number of AS customers arfepntent/Access/Hosting Providers (CAHPs)Figure 7 shows
geographical presence. LTPs aim to maximize their custontBg¢ average number of customers and peers for ASes in the
base, peering with other ASes only when it is necessary fgur training sets. Most ECs have zero customers and peers,
maintain reachabilityréstrictive peerinj) and do not appear in this graph.

Access/Hosting Providers (AHP)are ISPs that offer In-  The next step is to determine a set of boundaries in the two-
ternet access (e.g., DSL, cable modem, leased lines) andfprensionalC, ) space that separate the training sets of the
server hosting. Their access customers can be resideséis ufour AS types with the minimum number of misclassifications.
or enterprises that do not have AS numbers, while their ser¥¥e apply the well known machine learning technique of
hosting customers are content/service providers that ddso decision treen the training samples to obtain the following
not have AS numbefsAHPs often engage in selective peering and R coordinate boundaries for each AS type:
to minimize the transit costs paid to their upstream pragde EC:C <21, R<=1

Content Providers (CP)are not in the business of offering  sTp: 2.1< ¢ < 180, R <4 and 48< C < 180, R >4
Internet transit or access. Instead, their revenues résuit a LTP: C > 180 -

providing content that users pay for. CPs aim to minimize  cAHP: ' < 2.1, R >1and2.1<C <48, R > 4
transit costs, and so often hawgpen peeringolicies. . )

Similar classifications have been proposed in previous wofk@sed on the previous boundaries, we next use the average
Chang et al. [6] classified ASes (for the purposes of dél :_;de values of each AS_ (measured over the snapshots_m
termining interdomain traffic matrices) into “web hosting”Which that AS was present in the ten-year dataset) to classif
“residential access” and “business access’. Dimitropmgp 't INto one of the four AS types. Note that the AS types we
al. [13] classified ASes into large and small ISPs, customg@nsider are quite distinct from each other in terms of their
networks, universities, Internet exchange points and ortw function and business goals. It is thus reasonable to expect
information centers. We chose the previous five AS typdat ASes do not change from one AS type to another during
based on the terminology used in discussions on the NANG@EIT lifetime. To examine this hypothesis, we performee th

mailing list and in W. Norton’s white papers [26]. following tes_t. We rerun the decision tree algorithm to siBs
each AS using a two-year dataset from 2006 and 2007. We

9A limitation of AS topologies derived from BGP tables is tihgy only then compared the two-year classification with that based on
include organizations that have AS numbers. the 12-year dataset. We found that only 3% of the ASes that

0 . . . . . . . . . . .
98 99 00 O01 02 03 04 05 06 07 08 09 10
year



100¢ . .
g CAHP population, even though much smaller in absolute num-

bers than ECs, has also been growing significantly (incriepse
factor of 1.97 since Jan 2002). ECs and CAHPs represent the
% LTP periphery of the network, where the users and content reside

o PRITTE PR S Judging by the population of this AS typthe Internet edge

i * grows at a significant and stable pa@n the other hand, LTPs
. s and STPs represent the core of the Internet. Even though the
STP STP population was growing significantly before 2001, their
growth rate in the last few years has decreased. This may be

12 10 48 140 1000 an indication that the number of transit providers is sizibiy.
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Fig. 7. Coordinate boundaries for the four AS types we catsid

number of ASes

appear in both datasets were classified differently. In robst oo
these cases, it appears that the classification change was du %% 9 00 01 02 03 04 o5 o6 o7 08 09 10
to a large shift in the customer and peer degrees of that AS. vear
For example, AS-1 has a large average customer degree over
the 12-year dataset and is classified as an LTP. However, in
the two-year dataset it has a customer degree of 0, and is
classified as an EC. AS1 was originally owned by Genuity prodi
Inc., a large global ISP. In 2004, Genuity sold AS-1 to Level3 200
Communications, also a global ISP. Level3 does not use that
AS number for its transit services, and this is why that Agg. 8.
has no customers in the two-year dataset.

To evaluate the accuracy of the previous classificati@Beographical trends for each AS type:To classify ASes
scheme, we perform the following. We select a random sampigo broad geographical regions, we use the “registry” field
of 150 ASes (50 ECs, 50 STPs and 50 CAHPs), and mix thesethe corresponding WHOIS entries. Figure 9 shows the
samples to remove any information about the classificatigiaction of ASes of each AS type that were registered to
of these ASes (to avoid any subjective bias in the validatigRIN (North America) and RIPE (mostly Europe). The other
process). Then, we use information from WHOIS servers apggistries (APNIC, LACNIC and AFRINIC) account for the
the webpages of those ASes to infer their main busineggnaining small fraction, and are not shown here. Intarghtj
function. If the actual business function does not match th@ see that the population of ECs in the two continents (NA
classification produced by our algorithm, we count that Agnd Europe) converges. It is likely that in the next few years
as a misclassification. We find that the classification a@yurathere will be more ECs registered in Europe than in North
for ECs is 78%. The errors in this category are due t@merica. This has already happened in the case of STPs, and
some residential access providers or content providetstea the number of STPs is now higher in Europe. LTPs, though,
classified as ECs because they have no AS customers apgl mostly still based in North America. On the other hand,
no peers. The accuracy for STPs is 82%. The errors heke fraction of CAHPs in Europe has always been higher than
are due to ASes that mainly offer content hosting servicas. North America, probably because of the many regional
These providers have few AS customers and a small numbgtess providers (several per country) in Europe. Thesddre
(or none) of peers and hence they get classified as STPs. Thply that the Internet market, in terms of the number of
classification accuracy for CAHPs is 76%. The errors in th'ﬁccess/hosting’ transit and content providers will soon be
case are mostly due to some academic/research backbohesaiger in Europe than in North America
get classified as CAHPs due to their large number of peerewiring activity for each AS type: The differences in the
Dimitropoulos et al. [13] reported 78% accuracy for their Ajusiness function and incentives of the four AS types could
classification; however, the AS classes they define arerdifte also appear in their rewiring activity. To measure this ditgan
from ours, and hence are not directly comparable. between a pair of snapshots, we calculate the Jaccard clistan
Population trends for each AS type: Figure 8 shows the for the set of CP links of each AS. We then compute the
population of each AS type over the last 12 years. These suraverage Jaccard distance for all ASes of the same AS type.
show two distinct phases, similar to the global growth tseend’he top panel of Figure 10 shows these averages over time.
observed in Section Ill, with a change of trajectory aroundle see that, clearlyCs show the lowest rewiring activity
2001. The STP population shows a small growth rate (increabeoughout the last 12 yearSTPs and LTPs have similar
by factor of 1.41 since Jan 2002). The LTP population remairswiring activity, while CAHPs exhibit the highest rewigin
almost 30 by definition. The EC population shows a stroregpecially since 200CAHPs rewire their CP links frequently,
growth trend (increase by factor of 2.86 since Jan 2002)s they attempt to minimize their transit costs and provide
contributing most of the growth in the number of ASes. Thgood performance/reliability to their customers.
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Evolution of the population of AS types.
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A related metric is the fraction of nodes in each AS typether hand, the multihoming degree has increased signifigan
that areinert, meaning that they do not undergo any changer STPs (from 1.9 to 4.0), LTFS(from 2 to 6.6), and CAHPs
in their set of CP links between two successive snapshqfom 2.1 to 9.0). The dramatic increase in the multihoming
The bottom panel of Figure 10 shows the fraction of inetiegree of CAHPs, STPs and LTPs is probably the main reason
nodes for different AS types over time. We find that thgehind the densification of the Internet, discussed earlier
fraction of inert ECs increased slightly with time, from 748  We further study theistribution of the number of providers
2001 to just over 80% currently. This implies that ECs at thef different AS types. We find that the distribution of the
network edge are becoming increasingly stable with respegimber of providers for ECs has not changed significantly
to the connectivity to their providers. The fraction of iherin the last 12 years. On the other hand, the largest change is
STPs and CAHPs has decreased from almost 50% in 199&dp CAHPs. Figure 12 shows the distribution of the number of
around 30% in 2001, after which it has stayed almost constapitoviders for CAHPs in 6 snapshots over the last 12 years. We
We examined the set of STPs that are inert in every pair e that the distribution has been shifting consistentisatds
snapshots since 2001, and found that several of the iners ST right, indicating an increase in the number of providers
are national monopoly providers or research and educatioGA\HPs. Further, we find that the median number of providers
backbone networks. Such STPs have a fairly stable custorf@ CAHPs has been quite close to the average, and 50% of
base, and do not have the incentive to constantly optimiie thCAHPs in the latest snapshot (Jan 2010) have more than 6
connectivity. As expected, the fraction of inert LTPs iswerproviders. This means that the average number of providers
low and it approaches zero, because large transit provid&ss CAHPs seen in Figure 11 is not biased by a small number

have a constant churn in their customers. of CAHPs that have many providers.
STPs versus LTPs:We study the differences ithe type of
V. EVOLUTION OF CPRELATIONS: CUSTOMER VIEW provider that each AS type connects to when acting as the

Number of providers per AS type: Figure 11 shows the customer in a customer-provider relation. Figure 13 shows
average number of providers per customer (or the averd§€ number of links in each transit category over time. In-
multihoming degree) for each AS type. The median number iestingly, we find that both EC-LTP links (meaning, the
providers (not shown) shows similar trend$ie multihoming , _ _

Tier-1 ASes are commonly attributed as not having any pergidRecall,

degree for ECs has inc.reased very slowly Oyer the last decargﬁlever, that we define LTPs as the top-30 providers in terfnaverage
(from 1.5 to 1.9), and is almost constant since 2001. On thember of AS customers. This set includes ASes that havedgnsy
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0.1 ey 0.1

customer is an EC and the provider is an LTP) and EC-
STP links show an exponential increase up to 2001, followed
by a slowdown from 2001 up to the present time. We find R
that until 2004 the number of EC-STP links was almost the 00LE L L o0t ¥
same as the number of EC-LTP links. After 2004, the growth T
rate of EC-STP links has been higher than that of EC-LTP .
links (217 links/month vs 111 links/month), meaning thatsEC 0.001
increasingly prefer to connect to smaller, regional previd z .
There are several possible reasons why ECs may prefer STPs ——
over LTPs. One possibility is that STPs are cheaper than LTPs B —
Another possibility is that ECs connect to STPs due to reajion 0000t e 100 1010000 U1 10 100 1000 10000
factors such as national monopolies and regulations, domeg customer degree customer degree
specific marketing by STPs. The middle panel of Figure 1,3?9. 15,
shows the evolution of provider links for CAHP customers,
while the bottom panel shows the number of provider links for
STP customers. The numbers of CAHP-LTP and CAHP-STfiractivenessA, of a providerp as the fraction of CP
(also STP-STP and STP-LTP) links have been increasing|ks born in the second snapshot that connected to provider
roughly the same rate. Unlike ECs, CAHP and STP customeys simjlarly, the repulsivenessk, of a provider p is the

do not prefer one type of provider over the other. fraction of CP links that died in the second snapshot and
Rewiring activity of AS customers: Next, we investigate that helonged to provides. These two metrics, attractiveness
the rewiring activity of AS customers according to the broaghg repulsiveness, associate a business property (thiey abil
geographical region in which they belong. We first find thg, attract and retain customers) with a topological propert
set of active customers (customers that changed their se{Qimper of customer links of a provider AS).

providers) between pairs of successive snapshots. Then, Wgigyre 15 shows the scatter plots of attractiveness and-repu
calculate the fraction of those active customers that Beton  gjyeness versus the number of customers, for a recent pair of

each geographical region. Figure 14 shows these trends. TRgshots in 2007. The left plot shows tta likelihood with
fractions for Asia-Pacific (APNIC), Latin America (LACNIC) \yhich a provider gains a CP link shows positive correlation
_and Africa (AFRINIC) are practically constant and S'Qr?'fWith the customer degree of that provideas one would
icantly lower than for Europe (RIPE) and North Americgopaply expect from the “rich get richer” principle. Hovezy
(ARIN). Interestingly, we find that after 2004-2005, there a there are several outliers, and the correlation coefficisnt
more active customers based in Europe than in North Ameriggyy 649%. The low correlation indicates that a simple model
In Section 1V, we showed that Europe is catching up witly \which the attractiveness of a node is proportional to its
North America in terms of the population of ECs, and thgysiomer degree would not be very accurate. The graph at the
population of STPs is already larger in Europe. We conjectUignt js also interesting because it shoas equally strong
that this has created a more competitive market in Europe thgysitive correlation between the repulsiveness of a pewvid
in North America, with European customer ASes being motg,q jts customer degre@hus, when we consider the rewiring

attractiveness
repulsiveness

0.001

Attractiveness and repulsiveness versus custdegree.

active in adjusting their upstream connectivity. of CP links, we observe not only “preferential attachment”,
but an equally strongreferential detachmentPreferential
VI. EVOLUTION OF CP RELATIONS: PROVIDER VIEW detachment has been largely ignored in the earlier litezatu

Preferential attachment and preferential detachment:First, with the exception of a brief mention [35].
we measure the total number of CP links that were boAttractors and repellers: Figure 15 also shows th#ttere are
and died between two consecutive snapshots. We define #hfew providers that have very large attractiveness and Irepu
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sivenessWe are interested in the properties of thatteactors o o[ om 1
andrepellersof AS customers, and use the following approach & 100} fipe = ]

. - . i 8o | apnic o i
to identify them. For each pair of snapshots, we calculgje 5 el N R

. . . . 5 . W \_ ',-' o '7
and R, for each providep. We find that in all snapshot pairs, 2 o fatutag Y n gooeh PR aytinoote Rng0ney T s,

H 2 T e e Log ; ";:-a 0 0..%00.,0._ 00 e 09 ]
around 50-100 providers account for more than 60% of the = og;%;;o SElate g effosadtats Setetiestaccalen
total number of CP link births in the Intern®¥t.Henceforth, year
we identifyattractorsof a snapshot pair as the set of maximum 160 ——

attractiveness providers that account for at least 60% ef th
total CP link births. Similarly, we identifyepellersas the set

of maximum repulsiveness providers that account for attleas oo ogaly gt .
60% of the total CP link deatHs. A e e SosE R ] g s 00970090, ° 20000000,

Next, we examine the number of attractors and repellers % 99 0 o 0z 03 y’:‘; 05 06 07 08 09 10

between each pair of snapshots over time. Figure 16 shows

the evolution of the total number of attractors and repgllerFig. 17. The number of attractors and repellers in each gpbgpal region.
distributed among AS types. A decreasing trend in the number

of attractors \.NOUId imply th.at the.cu.s tor_ner gains are Sharﬁﬂtil 2003-04, the attractors in North America had a greater
by a decreasing set of providers, indicating a shift towals

oligopoly or even monopoly. What we see, however, is thgpal attractiveness th_an those in Eu_rope (during thisoothie _
. . number of attractors in North America was larger than that in
the number of attractors and repellers shows an increasi

C T . rope). After 2003-04 the attractors in Europe and North
trend. This is significant because it implies that the gains an . S S ) .
merica had similar similar total attractiveness until Z00

Iossc_as of customers are increasingly S.h ared by allargerf -\ 2007, the total attractiveness of attractors in Eer@p
providers. In other words, the Internet is not heading tolwar : . o
larger than that in North America. We see similar trends for

an oligopoly or consolidation of providers; instead, therkea . . .
. . o LT : . _the total repulsiveness in Europe and North America.
of competing providers is increasing in size. We find thatein

2001, the increase in the number of attractors and repellers
is mainly due to an increasing number of STPs in these sets.
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Fig. 18. Total attractiveness (repulsiveness) of attractepellers) in each
geographical region.

Fig. 16. The number of attractors and repellers (total andranAS types). Correlation of attractiveness and repulsiveness for the
same AS:We have seen that providers can act as attractors
Figure 17 shows the number of attractors and repellersan repellers of AS customers. Here, we examine whether a
different geographical regions. Initially, it was the cabat correlation exists between these two properties of the same
most attractors and repellers were in North America. Singeovider. If so, how do these correlations vary at different
2003-04, however, providers from Europe have outnumbertithe lags? To answer these questions, we calculate the cross
those from North America in the attractor and repeller dets. correlation of the attractiveness, () and repulsivenesB,, (t)
addition to the number of attractors and repellers, we emamitimeseries of the same provider at different lags. Instefad o
the total attractiveness and repulsiveness in differeogggph- examining all providers, we restrict this analysis onlylioge
ical regions. The total attractiveness (repulsivenessd set providers that were classified as either attractors or leysel
of providers is the fraction of CP link births (deaths) the¢ a (according to the 60% rule described earlier) at some paint i
contributed by providers in that set. The top (bottom) panfiel their lifetime. We refer to this set of providers a&R, where
Figure 18 shows the total attractiveness (repulsivendsleo |.AR|=737. For each provider iR, we compute the cross
attractors (repellers) in each geographical region. Fr@®81 correlation at different lags, and also the confidence bsund
” o . at 99% significance level. The confidence bounds are used to
We note that link “births/deaths” that cause the attramtpeller effect jatermine whether there is a significant correlation betwee
could also be due to customers that change their prefer@dders, and not . . . . .
always due to the creation/termination of business reiatiips. the attractiveness and repulsiveness time series at @yarti
12Different values of this threshold yield qualitatively sian results. lag. We find 403 providers for which a significant correlation
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Fig. 19. Lag of maximum absolute correlation for each AS mtewin AR.  Fig. 20. Median number of peers for each AS type over time.

exists at some lag. For each of those providers, we determine
the lag that shows the maximum absolute correlation.

Figure 19 shows, for the previous 403 providers, the lag at
which the maximum (in absolute value) correlation occurred
Interestingly, we find thain almost all cases the correlation
is positive Further, we find that in 84% of the cases, the
maximum correlation occurs at positive lags. In particular
most of the mass is at lags 1, 2 and 3 snapshots (43.1%,
14.6% and 9.4% of the providers, respectively). Note that
a positive lagl means that we correlate the attractiveness
at time ¢t with the repulsiveness at time+/, and each lag T I
corresponds to 3 months. So, for a large number of providers, 9 99 00 01 02 03 04 05 06 07 08 09 10
strong attractiveness precedes strong repulsiveness byiado e
of 3-9 months There are several possible reasons for thigg. 21. Number of PP links of the most common types.
effect. We conjecture that some providers attract many new
customers due to advertising and promotions. These pnevide
are not always able to keep their new customers, leading to
significant repulsiveness a few months later. This may be d@@ the other hand, have the incentive to create many peering
to customers that change their primary providers freqyentinks to reduce their transit costs.

or due to follow-up advertising/promotions from compe®to  Figure 21 shows the number of peering links in each
category over time. We see several interesting trendd, Hies
number of peering links that involve CAHPs (CAHP-CAHP,
EC-CAHP, STP-CAHP) increased significantly between 2001-
2005, and it shows a persistent growth rate thereafter. The
Given that a large fraction of peering links may not bexception is for the links of type LTP-CAHP, which are almost
visible through RouteViews and RIPE routing tables, we depnstant in number since 2003. The largest number, as well as
not study in detail the evolution of peering relations insthithe highest growth rate, is for links of the type CAHP-CAHP
paper. In this section, we only present some tentative tsesuand CAHP-STP. This could be because content/hosting/acces
which should be viewed as unproven “conjectures” about tipeoviders have the incentive to get as close as possiblesto th
evolution of peering. The following observations need to hdestinations/sources of their traffic. These destinatimnsces
re-examined in a future study, when the research communitfy traffic are other CAHPs or they are networks that are
obtains sufficient visibility of the peering links in the &mhet. reachable through STPs. Another interesting observation i
Figure 20 shows the median peering degree for each of tihat the number of STP-LTP peering links has remained almost
four AS types. We prefer to use the median degree in this casmstant over the last 8 years. We conjecture that this is
because the average peering degree is heavily influenceddiog to the “restrictive” peering policy of most large transi
a single LTP provider (AS13237) that appears to have ovweetworks. The previous observations confirm the anecdotal
200 peers. ECs and STPs have median peering degreegwiflence, mentioned in various white papers (see [26] and
zero. Itis interesting thahe median peering degree of CAHPselated references), that content/access providers sing fin
has increased significantly since 2003, from 2 tdt6is not the peering ecosystem as the dominant players. The unagrlyi
surprising that LTPs establish many peering links; thosksli reason is that such ASes mostly haveogen peering policy
are needed for global reachability when it is not possible while transit providers haveelective or restrictivepolicies,
directly reach some destinations through customers. CAHRgering by necessity rather than by choice.

0
9000 [CAHP-CAHP —*—
8000 | LTP-CAHP —a-—
7000 | EC-CAHP -—o--

A ,aq{.----—-—“—H-gjgg-;&..s§goﬂ

98 99 00 01 02 03 04 05 06 07 08 09 10

year
N

number of peering links
o
o
o
o

; T T
5000 [STP-CAHP —x—
LTP-LTP -
4000  STP-LTP =
STP-STP -0

number of peering links

VII. CONJECTURES ON THE EVOLUTION OF PEERING
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VIIl. RELATED WORK monitors, and found that for applications such as AS rela-
] _ ) tionship inference, publicly available BGP data is reasbna
A major research effort during the last decade aimed fcyrate, and data from additional monitors is only maiina
characterize the AS-level topology. One of the most wedctit |,saf,1. Oliveira et al. [28] devise a technique to distirsui
papers, by Faloutsos et al. [36], argued that the Internet AGsveen genuine topology changes versus link appearadce an
level topology is “scale-free”. Chen et al. [10], claimeditth disappearance during routing transients.
the degree distribution, though heavy-tailed, does noy @be

strict power-law distribution due to missing links. Thegal

argued that the available data does not support prefefentia IX. CONCLUSIONS

attachment as the growth mechanism in the Internet. Tang-

munarunkit et al. [38] attempted to explain the heavy-thile We measured the evolution of the AS-level topology over
degree distribution, and conjectured that this could sjntyal  the last 12 years in terms of growth and rewiring, four distin
due to the heavy-tailed AS size distribution. Most previougconomic/business classes of ASes, and customer-provider
measurement studies focused on static topological prieperiinks. Our findings highlight some important trends, trend
of the Internet, such as degree distribution or clusteramg] shifts, and sketch what the Internet may be heading towards.
did not examine the evolution of the topology over time.  The main findings are summarized next.

Leskovec et al. measured the average degree and effectivéhe AS-level Internet has gone through two growth phases:
diameter of the Internet AS graph and concluded that ti@ initial exponential phase up to mid/late-2001, followed
AS graph isdensifying[23]. Siganos et al. [35] observedby a slower exponential growth thereafter. The average path
the exponential growth of the Internet from 1997-2001, arléingth, however, remains practically constant, meaniagttie
showed that a rich-get-richer form of preferential attaechin networkdensifiesCurrently, 81% of link births are associated
leads to exponential growth in the number of edges. Mago#ith existing ASes rather than new ASes (rewiring versus
et al. [24] found exponential growth in the number of ASegrowth); similarly, 86% of the link deaths are due to rewgrin
and links from 1997-2000. We classified ASes according to economic considerations

The discovery of power-laws in the degree distribution le@nd business types. We find that most of the growth is due to
to several “descriptive” topology generation models tlamtld ASes at the network edge (ECs). The average multihoming de-
produce such distributions, e.g., preferential attachirfgsr8].  gree of ECs has remained roughly constant, but has increased
Several variants of preferential attachment were later pr@ignificantly for STPs, LTPs and CAHPs. The aforementioned
posed [4, 40, 43]. Park et al. [29] compared growth models fgensification process is thus driven by transit providers an
Internet topology with respect to metrics such as the aeeragccess/hosting/content providers. In terms of rewiringies
diameter and clustering coefficient. More recent work ha&se the most active, while ECs are the least active.
attempted to incorporate the effect of economic factorhent We introduced two provider metrics — attractiveness and
evolution of the Internet topology, most notably [34, 39].  repulsiveness — to quantify the ability of a provider to axtr

The previous descriptive models received considerable cand retain customers. We see positive correlations between
icism (e.g., [20, 21]) because they mostly focus on graph méfe attractiveness and repulsiveness of a provider andists ¢
rics, ignoring important features of the Internet topoleggh tomer degree. Also, for many providers, strong attracgesn
as hierarchy or the presence of links of different typesgita precedes strong repulsiveness by a period of 3-9 months.
versus peering). Further, the previous models do not expldihe total number of providers with large attractiveness and
how the Internet topology is evolving. This led to new modekepulsiveness between successive snapshots is increasing
that view the Internet topology as the outcome of optim@ati  With respect to regional growth, we find that the Internet
driven activity of individual ASes. These concepts weret firenarket, in terms of the number of access/hosting/contesht an
introduced by Carlson and Doyle [5], and later applied itvansit providers will soon be larger in Europe than in North
the context of the Internet in [15]. Chang et al. [7] usedmerica. Additionally, since 2004-2005, a larger fractioh
domain-specific information about the Internet to model A8ctive customers are based in Europe than in North America,
interconnection practices. Chang et al. [8] model the bieihavand providers from Europe increasingly feature in the set of
of an AS in two distinct economic roles (customer and peegitractors and repellers. Our measurements thus hint at an
and examines the topological effects of actions of indiglduincreasing European influence on the Internet ecosystem.
ASes. A recent editorial [17] stresses the need to furtherwe have explained the previous measurement results with
understand the dynamics of the AS topology. Norton [2@onjectures about the causes of the observed densifictimn,
discusses, mainly using anecdotal evidence, how econamdic &igh activity of CAHPs, and the incentives that lead certain
competitive interests influence peering and transit colivic  AS types to connect to other AS types. It is hard to validate
in the Internet. Economides [14] discusses the economicsthése conjectures, due to the lack of economic data about
the Internet backbone (without looking at topology dynasjic various AS types. Obtaining such data and further explginin

Several measurement studies have highlighted the incoowr observations on an economic or optimization basis is a
pleteness of topologies inferred from publicly availaldating direction of our future work. Another direction is to study
data [9, 11, 18, 25, 32, 41], while others have focused on ctiie dynamics of peering links using the set of full monitors
lecting as much of the Internet topology as possible [41, 1&t RouteViews and RIPE, for which we can observe their
Zhang et al. [42] studied the effect of the set of BGP routmplete connectivity (both transit and peering).
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