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1. INTRODUCTION

Our growing dependence on networks has inspired a burst of re-
search activity in the field of network science. One focus of this
research is to derive network models capable of explaining common
structural characteristics of large real networks, such as the Internet,
social networks, and many other complex networks [1]. A particular
goal is to understand how these characteristics affect the various pro-
cesses that run on top of these networks, such as routing, information
sharing, data distribution, searching, and epidemics [1]. Understand-
ing the mechanisms that shape the structure and drive the evolution
of real networks can also have important applications in designing
more efficient recommender and collaborative filtering systems [2],
and for predicting missing and future links—an important problem
in many disciplines [3].

Krioukov et al. [4] have shown that there are intrinsic connec-
tions between complex network topologies and hyperbolic geometry,
since the former exhibit hierarchical, tree-like organization, while
the latter is the geometry of trees [5]. Following [4], Papadopou-
los et al. [6], have recently shown that trade-offs between popularity
and similarity shape the structure and dynamics of growing complex
networks, and that these trade-offs in network dynamics give rise to
hyperbolic geometry. The work in [6] introduces a simple model
for constructing synthetic growing networks in the hyperbolic plane,
which simultaneously exhibit many common structural and dynam-
ical characteristics of real networks. We call the model of [6] the
Popularity x Similarity Optimization (PSO) model.

Given the ability of the PSO model to construct synthetic grow-
ing networks that resemble real networks across a wide range of
structural and dynamical characteristics, an interesting question is
whether one can reverse the synthesis, and given a real network, map
(embed) the network into the hyperbolic plane, in a way congruent
with the PSO model. Our main contribution in this work is an affir-
mative answer to this question and a systematic framework that ac-
complishes this task, by replaying the network’s geometric growth.
The proposed framework, called HyperMap, is quite simple and it is
supported by theoretical analysis. We apply this framework to the
Autonomous Systems (AS) topology of the real Internet and show
that it produces meaningful results, identifying communities of ASs
that belong to the same geographic region. Further, we show that
the proposed framework has a remarkable predictive power, demon-
strated by its ability to predict missing links with high precision.
While we consider here the AS Internet topology and the prediction
of missing links [3], there are also other interesting areas where the
proposed framework could find applications, e.g., in community de-
tection [1], and in the prediction of future links [3].

2. PRELIMINARIES: THE PSO MODEL

The PSO model [6] constructs a growing network up to ¢t > 0
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nodes as follows: (1) initially the network is empty; (2) at time
1 <4 < t, new node 4 appears having coordinates (r;, 8;), where
r; = 21In4, while 6; is uniformly distributed on [0, 27|, and every
existing node 7, j < %, moves increasing its radial coordinate ac-
cording to r;(¢) = Br; + (1 — B)r; with parameter 8 € [0, 1]; and
(3) node 7 looks at every existing node j, j < 4, and connects to it
with probability p(xj;) = — (11~ — where x;; is the hyper-
14e2T \Fii
bolic distance between nodes j and ¢, cosh zj; = coshr; coshr; —
sinh r; sinh ; cos 0;;, with 6;; = 7 — |w — |0; — 65|, and R; =
1 .

ri — 21In[ 2 1—em(21<_1 ﬁ)ﬁm ]. Model parameter m is the average
number of existing nodes that a new node connects to, defining the
average node degree in the network & = 2m. Parameter 8 € [0, 1]
is a function of the exponent v > 2 of the target power law de-
gree distribution P(k) ~ k™7, 3 = le Finally, model parameter
T € [0,1) is called temperature, and controls the average clustering
in the network: clustering is maximized at 7' = 0, and it decreases
to zero as T — 1. To construct a network up to ¢ nodes we need to
specify m, 3, and T'.

It has been proven in [6] that the expected degree k;(t) of a node
born at time ¢ by time ¢ > 4 is k; (t) ~ (f)ﬁ This equation says
that the earlier a node appears the higher is its expected degree. We
use this observation in HyperMap in the next section. In Figure 2(a)
we use real data [7] to validate that this equation indeed describes the
trend in the evolution of the average degree of an AS in the Internet
as a function of the time the AS appeared. To draw Figure 2(a)
we took the historical data of the twelve-year (1998-2010) evolution
of the AS Internet from [7], and for each AS we found the time ¢
(number of nodes present in the network) when the AS first appeared
in the data. Then, for all ASs that appeared at time ¢, and which were
present at the end of the measurement period (where t = 33796
nodes) we calculated their average degree k;(t). For the theoretical
formula we used v = 2.1, i.e., the y of the AS Internet [1].

The PSO model reproduces not only the degree distribution and
clustering of real networks, but also many other important proper-
ties [6]. Given the ability of the PSO model to construct growing
synthetic networks that resemble real networks, we show that it is
possible to reverse the synthesis, and given a real network, to map
(embed) the network into the hyperbolic plane, in a way congruent
with the PSO model.
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3. THE MAPPING METHOD (HYPERMAP)

Given a scale-free network with ¢ nodes, average node degree k,
power law exponent v > 2, temperature 7' € [0, 1), and adjacency
matrix {a;; }—as; = aj; = 1 if there is a link between nodes ¢
and 7, and a;; = a;; = 0 otherwise—HyperMap computes radial
and angular coordinates ;(¢), 0;, for all nodes ¢ < ¢ as shown in



1: Sort node degrees in decreasing order k1 (t) > ka(t) > ... > ke(t) with

ties broken arbitrarily.
2: Callnode i, i = 1,2, ..., t, the node with degree k; (t).

W

angular coordinate 61 € [0, 27].
fori =2totdo
Node ¢ is born, assign to it initial radial coordinate r; = 21n <.

(1) = Brj + (1 — B)r;.

®* Uk

end for

Node 7 = 1 is born, assign to it initial radial coordinate r1 = 0 and random

Increase the radial coordinate of every existing node j < ¢ according to

Assign to node ¢ angular coordinate 6; maximizing L; given by Eq. (1).

Figure 1: The HyperMap Embedding Algorithm.

Figure 1.

Specifically, HyperMap first estimates the order by which the nodes
of the network are born. Since, according to the PSO model, the ear-
lier a node appears the higher its expected degree, HyperMap first
computes the degree of every node in the network and then sorts
the node degrees in the decreasing order ki (t) > kao(t) > ... >
ki(t) > ... > k¢(t), with ties broken arbitrarily, thus creating a se-
quence of node birth times ¢ = 1,2,...,t, corresponding to nodes
with degrees k1(t), k2(t),...,ki(t), ..., ki(t). We call the node
born at time ¢ node ¢. Having a sequence of node birth times, Hyper-
Map replays the geometric growth of the network in accordance with
the PSO model as follows. When a node is born at time 1 < ¢ < ¢,
it is assigned an initial radial coordinate r; = 2In ¢, and every exist-
ing node j < ¢ moves increasing its radial coordinate according to
r;(1) = Bry + (1 — B)rs, with 8 = 'ylj To compute the angular
coordinate 6; of a new node 4, we first define likelihood L;:

Li= [T plzs)® (1= plaso)]' =, )

1<j<i

where x;; is the hyperbolic distance between node ¢ and existing
node j, p(z;;) is the connection probability defined in the previous
section, and ¢; is the network adjacency matrix. Likelihood L; is
the probability that the given set of connections between new node
¢+ and existing nodes j < ¢ take place in the PSO model. This like-
lihood is a function of 6;, since x;; depends on 6;, p(z;;) depends
on x;;, and L; depends on p(x;;). The best value for 6; is then the
value that maximizes L,;. The maximization can be performed nu-
merically, by sampling the likelihood L, at different values of 6 in
[0, 27] separated by intervals A§ = O(%), and then setting 6; to
the value of @ that yields the largest value of L;. Since to compute
L; for a given 6 we need to compute the connection probability be-
tween node 4 and all existing nodes j < i, we need a total of O(i?)
steps to perform the maximization. We note that since L; is sam-
pled at 0 values separated by O(%) intervals, the maximization is
approximate and becomes more precise as ¢ increases.

Since the PSO model can construct growing synthetic networks
that resemble real networks, we expect HyperMap to be able to ac-
curately map a given real network into the hyperbolic plane, in a
way congruent with the PSO model. In the next section we use the
AS Internet topology to show that this is indeed the case. We note
that HyperMap uses the current network adjacency matrix in Equa-
tion (1) to find the best estimate for the angular position of each node,
and does not require any knowledge about whether nodes/links were
departing while the network was evolving, or whether connections
between some nodes might have been internal (i.e., took place some
time after the nodes appeared). More details related to these remarks
and to the method will appear in a longer version of this paper.

4. VALIDATION

After mapping a network with ¢ nodes, we have the radial and an-
gular coordinates r;(t), 6;, for all nodes ¢ < ¢, and therefore, we can
compute the hyperbolic distance between every pair of nodes. To
evaluate how well HyperMap maps the network we use two metrics:
(i) the connection probability p(x(¢)), which is the probability that
there is a link between a pair of nodes given their hyperbolic distance
z(t) at time ¢; and (ii) the distance distribution d(z, t), which is the
percentage of node pairs whose hyperbolic distance at time ¢ is x.
After mapping a network we compute these two metrics and juxta-
pose them against our theoretical predictions for networks growing
according to the PSO model, given below:
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AS Internet. We use the AS Internet topology [8] of December
2009, available at [9]. The connections in this topology are not phys-
ical but logical, representing AS relationships [9]. We consider the
topology consisting of all nodes (ASs) with degree greater than 2.
There are ¢ = 8220 such nodes, and the topology has a power law
degree distribution with exponent v = 2.1, average node degree
kE = 9.45 and average clustering ¢ = 0.60. We map the topology
using HyperMap with different values of the temperature 7', and
show the results in Figures 2(b),(c). From the figures we observe
that HyperMap is remarkably accurate. Further, different T values
give approximately the same results. In particular, all the 7" values
give a connection probability that is best matched theoretically (us-
ing Eq. (2)) with T' = 0.8. These results are interesting as they imply
that in practice HyperMap is not very sensitive to the exact value of
the input parameter 7'. As mentioned in Section 2, ¢ is controlled by
T. But given ¢ and the network topology there is no formula that can
be used to infer 7. However, our results above suggest that we can
find 7T for a real network experimentally, by embedding the network
using different values for 7', and then use Equation (2) to find the T’
value that best matches the empirical connection probability.

In Figure 3, we demonstrate that HyperMap produces meaningful
results. The figure shows the angular distribution of ASs that belong
to the same country, for 13 different countries. The AS-to-country
mapping is taken from the CAIDA AS ranking project [10]. We ob-
serve that even though HyperMap is completely geography-agnostic,
it discovers meaningful groups or communities of ASs belonging to
the same country. The reason for this is that ASs belonging to the
same country are usually connected more densely than the rest of
the world, and HyperMap correctly places all such ASs in narrow
regions, close to each other. However, as expected, due to signifi-
cant geographic spread in ASs belonging to the US, these ASs are
widespread in [0°,360°]. We note that other reasons besides geo-
graphic proximity may affect the connectivity between ASs, such as
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Figure 2: AS degree evolution, connection probability, and distance distribution.
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Figure 3: HyperMap yields meaningful results.

economical and/or political reasons. HyperMap does not favor any
specific reason but relies only on the connectivity between ASs in
order to place the ASs at the right angular (and consequently hyper-
bolic) distances.

5. APPLICATION TO THE PREDICTION OF
MISSING LINKS

Topology measurements of many real networks, not only of the
Internet [11], may miss some links. The prediction of missing links
is a fundamental problem that attempts to estimate the likelihood
of the existence of a missing link between two nodes in a network,
based on the observed links and/or the attributes of nodes [3]. The
standard way to evaluate a link prediction technique is to randomly
remove a percentage of links from a given network topology, and
then work with this incomplete data using the technique to see how
well these missing links can be predicted. The standard metrics used
to quantify the accuracy of a link prediction technique is the Area
Under the Receiver Operating Characteristic Curve (AUC) and Pre-
cision [3]. A link prediction algorithm gives to each non-observed
link (¢, j) a score s;; to quantify its existence likelihood. The pre-
diction algorithm then orders all the non-observed links according
to their scores, from the best score to the worst score. The AUC is
the probability that a randomly chosen missing link is given a better
score than a randomly chosen nonexistent link. If we consider only
the top-L links from the ordered list, among which L, links turn out
to be right (i.e., indeed missing), then the Precision is the ratio %
Below, to compute Precision we use L = 100 (as used in [3]).

Performance of HyperMap. To check how effective HyperMap is
in predicting missing links, we first remove 30% of links from the
AS Internet topology and then embed the resulting topology using
the method with 7" = 0.8. After the embedding, the score s;; be-
tween a disconnected pair of nodes i, j, i.e., the score of each non-
observed link (i, ), is the hyperbolic distance x;; between the nodes
¢ and j. The smaller this score, i.e., the smaller the hyperbolic dis-
tance between the two nodes, the more likely it is that a link between
these two nodes is missing, since the connection probability p(z;;) is
a decreasing function of x;;. Both AUC and Precision in HyperMap
are remarkably high, AUC = 0.95, Precision = 0.71, indicating
that the method has a strong predictive power.

6. FUTURE WORK

There are several directions for future work. One is to further ex-
plore and understand HyperMap’s ability to predict missing links.
Another, is to find efficient ways to expedite the running time of Hy-
perMap without compromising the embedding accuracy. Finally, it
would be interesting to explore the efficiency of HyperMap for other
tasks, such as community detection (see Figure 3), or the challenging
problem of predicting future links in different evolving networks.
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