
Internet Topology Data Comparison

Bradley Huffaker, Marina Fomenkov, kc claffy
{bradley,marina,kc}@caida.org

CAIDA, University of California, San Diego∗

ABSTRACT
Internet topology maps are an important tool for those who
seek to describe, analyze, or model various aspects of the
Internet’s structure, behavior, and evolution. While differ-
ent methods of measuring topology yield substantially dif-
ferent views of the Internet, many studies rely on only a sin-
gle data source, sometimes outdated or incomplete, or mix
fundamentally different data sources into a single topology.
These compromises may undermine the fidelity of derived
models and integrity of analysis results. We report on the
results of our systematic comparison of Internet topologies
derived from different data sources and characterizing the
Internet at three granularities relevant to research as well as
operations of network infrastructure: IP address (interface),
router, and Autonomous System (AS).

1. INTRODUCTION
Topology maps of the Internet are indispensable for char-

acterizing this critical infrastructure and understanding its
properties, dynamics, and evolution. They are also vital
for developing the theory of large-scale complex networks.
These maps can be constructed for different layers (or gran-
ularities), e.g., fiber, IP address, router, Points-of-Presence
(PoPs), autonomous system (AS), ISP/organization. Router-
level and PoP-level topology maps can powerfully inform
and calibrate vulnerability assessments. ISP-level topolo-
gies, sometimes called AS-level or interdomain routing topolo-
gies (although an ISP may own multiple ASes so an AS-
level graph is a slightly finer granularity) provide insights
into technical, economic, policy, and security needs of the
largely unregulated peering ecosystem.

Over the last decade, many studies have focused on the
structure of observable Internet topologies [19, 40, 16, 24,
20, 42] including considerable controversy over the quality
of data and associated inferences [17, 28, 41]. Substantially
different views of the Internet result from different meth-
ods of measuring topology. Relating particulars of measure-
ments to artifacts and specifics of collected data is neces-
sary for objective evaluation of the scope and the validity
of the resulting Internet maps. In our 2006 study [32], we
∗Support for this work is provided by DHS N66001-08-C-2029 and
NSF CNS-0958547.

compared AS topology graphs generated from three differ-
ent data sources: traceroute (using skitter, CAIDA’s previ-
ous active measurement infrastructure), BGP (Routeviews),
and IRR data (RIPE’s WHOIS registry). Here we extend the
scope of this comparative analysis to include two additional
types of graphs (IP-interface and router level graphs) and
five additional data sources (RIPE-RIS, Ark-IPv4-traceroute,
iPlane, DIMES, and IRL). We provide what we believe is the
most comprehensive systemic study thus far comparing and
interpreting structural characteristics of topologies inferred
from the best available data sources.

Section 2 describes ourdata sources. Section 3 defines
the metrics we use for graph comparison. Section 4 dis-
cusses background and methodology for how we process the
data to derive correspondingInternet topology graphs at
three granularities: IP, router, and AS. Section 5 presentsour
comparative analaysis framed around the metrics described
in Section 3. Section 6 summarizes key results.

2. DATA SOURCES

2.1 Traceroute data
Underpinning many Internet topology studies are data sets

collected by traceroute-based measurements. Traceroute prob-
ing methodologies [7] infer the IP-level forward path through
the network by sending a series of packets to the same des-
tination, each with incrementing TTL values, and record-
ing the IP addresses of the intermediate routers that return
ICMP time-exceededmessages.1 The most prevalent prob-
ing technique uses ICMP packets, although UDP- or TCP-
based probing is also used [29]. Traceroute probing from
multiple vantage points to many destinations reveals a multi-
tude of IP interfaces and links between them. AnIP-interface
or IP-levelgraph results from merging the results of tracer-
oute measurements across many vantage points (Section 4.1).

In order to construct a more realistic map of actual physi-
cal devices (routers) from this raw traceroute data, we must
estimate which pairs (sets) of IP addresses in the traceroute

1Sometimes the source IP address in these ICMP response packets
is that of the outgoing interface for the return path rather than the
interface on the forward path, but it is always an IP address on the
router where the TTL expired.
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graph level vantage points
date interval type IP Rtr AS points ASes ctries

DIMES 2011.04.04 - 2011.04.17 14 days traceroute X X 947
iPlane 2011.04.06 - 2011.04.20 15 days traceroute X X X 517 190 40
Ark IPv4 All Prefix /24 2011.04.01 - 2011.04.15 15 days traceroute X X X 54 54 29
RouteViews2 2011.01.16 - 2011.01.20 4 days BGP X 1 33 11
BGP Full 2011.01.16 - 2011.01.20 4 days BGP X 19 336 21
IRL 2011.04.01 - 2011.04.15 15 days BGP X N/A1

RIPE WHOIS 2009.04.20 - 2011.04.20 2 years IRR X 1 20,905 183
1 The IRL documentation does not specify how many sources were in the dataset we used.

Table 1: Datasets listed by type, date, and derivable graphs.

paths belong to the same router, a process known asIP ad-
dress alias resolution. A router by definition has at least two
interfaces, with Internet core routers having possibly hun-
dreds of interfaces. The process of alias resolution yields
router-level topology (Section 4.2).

One can also create AS-level graphs from traceroute-derived
IP-level data. The first step in this process is mapping IP ad-
dresses to ASes as follows. Each IP address belongs to an
address prefixthat is originally announced by an indepen-
dent routing entity in the global routing system, called an
Autonomous System (AS). Converting IP-level data to an AS-
level graph requires determining the origin AS for each pre-
fix from BGP data, annotating each IP address with its origin
AS, and inferring AS links corresponding to each traceroute-
observed IP link. Alternatively, one can start with a router-
level topology derived through alias resolution, annotateeach
router with the AS that owns it, and infer AS links corre-
sponding to each link in the router-level topology. We de-
scribe AS graph construction in Section 4.4.

For this study we used traceroute data from three sources
(see Table 1):DIMES , iPlane, andArk IPv4 All Prefix /24 .
DIMES is a distributed scientific research project run by Tel
Aviv University. Traceroute measurements are executed in
parallel by volunteers who have deployed the netDIMES
measurement software on their personal computers (1065
vantage points shown in Table 1, although we could not
find out how many vantage points were active in the sub-
interval we compared).iPlane is a topology collection re-
search project run by the University of Washington on Plan-
etLab [3], a global network of academic research servers.
During the interval we studied, there were 251 vantage points
with 517 monitors, most vantage points having multiple mon-
itors. iPlane constructs an annotated map of Internet topol-
ogy focusing on “core” Internet backbones that contain most
used paths.Ark IPv4 All Prefix /24 is traceroute data col-
lected by CAIDA’s Ark [1] measurement infrastructure which,
during the period used in this report, consisted of 54 dedi-
cated PCs acting as vantage points and controlled by a cen-
tral server at CAIDA. The Ark monitors attempt to probe a
single random address in each globally routed IPv4 /24 pre-
fix, with a complete cycle through the routed IPv4 address
space taking approximately 48 hours.

2.2 BGP data for AS-level topologies
ASes use theBorder Gateway Protocol (BGP) [34] to

exchange routing information on the Internet. Each BGP-
speaking router maintains a table of IP-prefix-to-AS map-
pings that designate reachability to ASes by describing a
”chain” or path vector of ASes. One can derive an AS-level
graph of the Internet directly from this BGP data.

Two repository projects collect and archive BGP routing
tables for research: Route Views [8] run by the University
of Oregon and the Routing Information Service (RIS) col-
lection provided by RIPE NCC [5]. Each peer contributes
a BGP table that stores a set of routed IP prefixes and the
computed best path from that peer to each prefix.

Our first source of BGP data for this study is the single
Route Views server with the largest number of peers,Route-
Views2 (with 33 vantage points). The second source,BGP
Full , is a combination of routing tables from 5 Route Views
servers and 14 RIPE-NCC RIS servers, that is, all servers
available on 1-14 January 2011 (19 vantage points). Creat-
ing a BGP-based AS-level graph using the maximum avail-
able number of collectors for a given time interval is the
same method we use to produce the AS-level graphs under-
lying our AS-ranking project [2]. Our third source of BGP
data is UCLA’s Internet Research Lab (IRL ) [10] compi-
lation, which includes BGP data from Route Views, RIPE-
NCC RIS, Packet Clearing House, traceroute.org, and the
Looking Glass Wiki (http://www.bgp4.net/rs). The IRL doc-
umentation does not specify how many sources contributed
to the dataset we used.

2.3 IRR Data for AS-level topologies
The Regional Internet Registries (RIR) support query ac-

cess to their databases of Internet address assignment infor-
mation via the WHOIS [18] query and response protocol. At
least one RIR database (RIPE) stores voluntarily contributed
and (sometimes) maintained routing policy information such
as the set of announcements an AS accepts from its neigh-
boring ASes. This information is useful for ISPs in the de-
tection of AS invalid paths (i.e., paths that do not follow the
advertised policies of the ASes in the path.) One can also
build an AS-level graph of Internet connectivity from these
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Figure 1: Statistics of entries in the RIPE NCC WHOIS
database. The green line shows the fraction of records that
have their changed field set to a value equal or more recent
than the corresponding x value. The red line is the fraction
of ASes and the black line is the fraction of AS links found
in those ”changed after the given date” entries.

AS links.
In 2004, Siganos and Faloutsos [38] analyzed the RIR

databases and found that the RIPE NCC maintains the largest
database with the most accurate topological information. They
also found that only 28% of the ASes, almost all of them
registered with the RIPE registry, had registered polices that
were both internally consistent and consistent with observ-
able Route Views BGP routing tables at the time of their
analysis. We thus chose the RIPE NCC WHOIS database as
the source of IRR data for an AS-level graph [11]. A major
problem with this data source is that the WHOIS databases
are manually and voluntarily maintained, with no require-
ment to update registered information. Thus many records
are likely obsolete, and we must decide how to filter out stale
or unreliable information.

We obtained the RIPE-NCC WHOIS database dump on
20 August 2011 and used the following approach to retain
sufficiently fresh entries. A WHOIS recordchangedfield
typically shows the date a change was made, although it does
not specify whether routing policy information was updated.
But a recent date in thechangedfield at least means that
somebody reviewed the entry then, increasing the likelihood
that the routing policy information is still current. The green
line in Figure 1 shows the fraction of records in RIPE-NCC’s
WHOIS database that have theirchangeddate field set to a
value equal to or greater than the date given on the x-axis.
The red line shows the fraction of ASes and the black line
shows the fraction of AS links (i.e., listed as peers of the
recorded AS) found in those ”changed after the given date”
entries.

The older the change date, the larger the fraction of ASes
and AS links in these ASes’ records that changed after this

date. The inflection point is at about June 2009, with only
25% of ASes and AS links having change dates in the pre-
ceding 13 years vs. 75% in the following two years. Consid-
ering this tradeoff reasonable, we retained all entries with
changed dates less than two years old as the data source
for our analysis, which includes IRR connectivity data for
20,905 ASes (out of more than 39 thousand ASes total).
Since database records only show links from each AS to
its immediate neighbors, each AS acts as a vantage point
(hence, 20,905 vantage points in Table 1) providing a local
view of the network 1-hop away.

3. TOPOLOGICAL METRICS
We selected the following four basic statistical character-

istics for comparison between available Internet topology
graphs. Mahadevanet al. [31] showed that reproducing
these metrics is sufficient to capture all essential topological
characteristics of Internet AS- and router-level topologies.

Average Node Degree. The two most basic graph prop-
erties are thenumber of nodesn (also referred asgraph
size) and thenumber of links m. The ratio of links to nodes
defines theaverage node degreek = 2m/n. Average node
degree is the coarsest connectivity characteristic of a given
topology. Networks with higher k are better connected on
average and consequently, all other things equal, likely tobe
more efficient and robust, as well as potentially vulnerable,
since diffusion of malware is also more efficient.

Degree Distribution. Letn(k) be the number of nodes of
degreek (k-degree nodes). Thenode degree distribution
is the probability that a randomly selected node isk-degree:
P (k) = n(k)/n. In this report we analyze and compare the
complementary cumulative distribution function (CCDF) of
node degree, which shows the fraction of nodes that have a
a degree equal to or greater then the argument value. Most
network researchers agree that the degree distributionP (k)
for the AS level graphs of the Internet follows a power law
functionP (k) = k−γ with exponentγ near 2 [19, 16, 24,
32]. We check whether this power-law approximation fits
our data and report the values of the exponentγ.

Average Neighbor Degree. Leta(i, k) be the average de-
gree of the immediate neighbors of thei-th node of degree
k. Then theaverage neighbor degreefor degreek is the
average for all nodesi = 1...Ik with degreek: ann(k) =
∑k

i=1
a(i, k)/n(k). The average neighbor degree is a sum-

mary statistic of the joint degree distribution. It shows whether
ASes of a given degree preferentially connect to high- or
low-degree ASes. In a full mesh graph,ann(k) reaches its
maximal possible valuen− 1. Therefore, for uniform graph
comparison we plot normalized valuesann(k)/(n− 1).

Clustering. Let mnn(k) be the average number of links
between the neighbors ofk-degree nodes.Local clustering
is the ratio of this number to the maximum possible number
of such links:C(k) = 2mnn(k)/(k − 1). If two neighbors
of a node connect, then these three nodes together form a
triangle (3-cycle). Therefore, by definition, local clustering
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is the average number of 3-cycles involvingk-degree nodes.
Mean local clustering is the average ofC(k) over all val-
ues of node degreesk : C̄ =

∑
C(k)P (k). Clustering

expresses local robustness in the graph: the higher the local
clustering of a node, the more interconnected are its neigh-
bors, thus increasing path diversity locally around the node.

4. CONSTRUCTING INTERNET TOPOLOGY
GRAPHS FROM THE AVAILABLE DATA

In this section we describe our procedures for construc-
tion topology graphs at the three analyzed granularities: IP,
router, and AS. The data processing techniques are exten-
sive and due to space constraints we refer the reader to the
extended technical report version of this paper [14] for de-
tails, so that we can focus on analysis of the resulting graphs
in this paper.

4.1 IP-level graphs
An Internet Protocol (IP) interface-level graph is constructed

by extracting IP links directly from the traceroute output:
two IP addresses are inferred to form a link if they were ob-
served adjacent to each other in a traceroute output. The
DIMES project does not publish the complete traceroute
paths measured by the netDIMES clients, but rather extracts
from these measurements a set of such inferred IP links,
yielding an IP-level graph we will refer to asDIMES IP .
In contrast,iPlaneandArk IPv4 All Prefix /24 data include
a complete set of observed IP forward paths. In order to ob-
tain an IP-level graph from these data, a researcher has to
parse the raw paths into IP links. Although it is conceptu-
ally straightforward to enumerate every pair of adjacent IP
addresses in a collected path, the simplicity evaporates in
the face of millions of real-world traceroutes. Raw paths
may contain nonresponsive hops, loops, private [35] or bo-
gon [6] addresses, and other irregularities. Different meth-
ods of handling these anomalies will induce different effects
on the resulting topology. For example, a nonresponsive hop
appears in a traceroute path when a router forwards pack-
ets, but does not generate atime exceededmessage when it
drops a packet. In this case, the resulting trace will have a
gap between two known IP addresses on either side of the
non-responding router. In traceroute output these hops are
typically represented by an asterisk (“*”).

We used a simplified trace processing procedure to create
theArk IPv4Pref IP andiPlane IP graphs from theArk All
Prefix /24 andiPlane data sets. For consistent comparision
with the router-level graph and ground truth (Section 4.3),
we ignore all responses from destinations and build a topol-
ogy from transit addresses. If a repeated address appears in
a path, we assume a loop and truncate the path just before
the repeated address. We treat private addresses as nonre-
sponsive (see Section 4.2.4), since they can not be uniquely
mapped, and we discard IPs with no adjacent hops, since
they add nothing to the resulting topology. After we process
each trace, we generate IP links between the remaining ad-

jacent hops with IP addresses, but create no links to or over
nonresponsive hops.

4.2 Router-level graphs

4.2.1 Related work on alias resolution techniques

The process of mapping IP addresses to routers is known
as alias resolution. A variety of techniques have been de-
veloped and implemented for this task. Here we briefly re-
view the techniques relevant to processing the data sets in
this study. A survey of other existing alias resolution tech-
niques and implementations is available in [25].

The earliest alias resolution techniques, Mercator and Mercator-
like ones [33, 21, 9, 36], attempt to identify aliases by send-
ing a probe packet to an unused port on an interface and
collecting the resulting error messages. Probing one inter-
face and getting this error from a different interface is a
strong suggestion that the two interfaces belong to the same
router. However, when applied to Internet-scale topologies,
this method generates a high rate of false positive alias pairs,
for example due to middleboxes in the path responding [26].

Other techniques employ different properties of existing
Internet protocols to resolve interfaces into routers. Ally
[39] infers that two addresses are aliases if probe packets
sent to them produce responses with increasing but appro-
priately proximate IP ID values, since the IP ID field incre-
ments with each packet sent from the router. RadarGun [15]
further refined this technique by looking for similarities in IP
ID time series collected from many addresses. Sherry [37]
describes iPlane’s recent use of the IP prespecified times-
tamp option to infer aliases.MIDAR, CAIDA’s Monotonic
ID-Based Alias Resolution tool [26], expanded on the IP
velocity techniques of RadarGun by implementing an ex-
tremely precise ID comparison test based on monotonicity
rather than proximity, integrating multiple probing methods
from multiple vantage points, and employing a novel sliding-
window probe scheduling algorithm that increased scalabil-
ity to the Internet scale of millions of IP addresses.

APAR [22] and kapar [25] use sophisticated graph analy-
sis techniques to infer subnets linking routers, and from that,
aliases.

4.2.2 Alias Resolution techniques applied to our com-
pared data sets

According to their 2005 paper [36],DIMES uses a Mercator-
like technique [21] for alias resolution. Due to the high rate
of false positives of this older method, we did not use the
DIMES-provided alias resolution data in our comparisons.

iPlane implements a two-phased approach to alias resolu-
tion, first generating a list of alias candidate pairs and then
testing them. It generates candidate pairs using a combina-
tion of Mercator-like [21] and APAR-like [22] techniques.
It tests the resulting list of candidate pairs using additional
probing and inferences based on similar IP-ID values (the
Ally method [39]) and timestamp values [37]. Further de-
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tails of the alias resolution methodology used by iPlane are
available in [30] and [37].2

The resultingiPlane alias resolution data show which in-
terfaces are inferred to be on the same router, but links be-
tween routers are not included. To create the router links
for the iPlane router graph, we started with theiPlane IP
graph and usediPlane’s router aliases to merge aliased IP
nodes and corresponding links into router nodes and links.

To collapse IP addresses inArk IPv4 All Prefix /24 data
into routers, we employed CAIDA’s alias resolution tools
iffinder[9], kapar[25], andMIDAR[26]. Router-level topolo-
gies produced fromArk IPv4 All Prefix /24 traceroutes us-
ing combinations of the three tools are the core of the In-
ternet Topology Data Kit (ITDK) datasets regularly released
by CAIDA [12]. The process of constructing these ITDK
topologies involves the following steps. First,kaparbreaks
the observed IP paths into IP links (Section 4.2.3), which
become the input for further alias resolution measurements
and analysis byMIDARandiffinder. The result is a MIDAR-
iffinder topologyArk ITDK R mi . kapar can also heuristi-
cally infer the set of IP addresses that belong to the same
router, and the set of two or more routers on the same “IP
link” (either a point-to-point link, or LAN, or shared medium
with multiple attached IP addresses) producing a more-aggressively
inferred MIDAR-iffinder-kapar topologyArk ITDK R mik .
We elucidate the differences between these topologies in Sec-
tion 4.3.

4.2.3 kaparprocessing of IP paths into IP links

We refined the basic approach of extracting IP links from
paths described for IP graphs (Section 4.1) to the two-phase
procedure implemented inkaparfor constructing router-level
graphs, so that we more fairly compare the IP-level and router-
level graphs.3 The first phase involves cleaning and splitting
IP paths into segments. Similar to the trace processing for
IP-level graph construction, we ignore responses from the
target destination, and treat private addresses as nonrespon-
sive. We make more conservative choices with respect to re-
moving potential loops and dealing with multiple responses
at a given hop, to avoid false positives in alias resolution.To
minimize the presence (and problem) of nonresponsive hops
in traces, we discard 3-hop segments containing nonrespon-
sive hops in the middle if we have a 2-hop segment with the
same two edge IP addresses of the 3-hop segment.

In the second phasekapar infers IP links from the seg-
ments as follows. For each path segment (A,B), it postulates
a link between the router (node)R1 containing interfaceA
and the routerR2 containing interfaceB, and assumes that
unlessnode R2 is already linked tonode R1, this link con-
nects the interfaceB on node R2 and animplied unknown
interface ? on node R1 [A ?] ↔ [B]. We use a construct
called ahyperlink(or “link cloud”) to represent connectivity

2The technical report [14] also expands on this process.
3We provide greater detail on the algorithm in the extended techni-
cal report [14]; a complete description ofkapar is in [25].

between more then two nodes in the case of multiple non-
aliased predecessors to an address (see Figure 3).

4.2.4 Dealing with nonresponsive hops

If there is no path that would resolve a triplet with a non-
responsive hop in the middle, then we include the triplet into
the final graph assuming a provisional placeholder node be-
tween the two known nodes. This approach allows us to
maintain information about the connectivity without knowl-
edge of the intermediate hop. Note that if a known node has
more than one placeholder node as its immediate neighbor,
then we cannot distinguish whether it is in reality a single
nonresponsive node or a different nonresponsive node for
each next hop observed in the traces. 7.8% of nodes (inferred
routers) in our ITDK data set have only non-responding hops
as neighbor(s). Some of these inferred routers could possibly
further collapse into higher-degree routers with additional
data that we do not have.

We considered three scenarios for dealing with inferred
routers that have nonresponsive hops as neighbors, essen-
tially assuming their adjacent missing connectivity as zero,
one, or more than one unknown neighbors. Each scenario
trades off accuracy and completeness of the resulting graph.
Discussion and analysis of the effects of these three assump-
tions on the degree distribution of the inferred graphs are
available in the technical report [14]. We concluded that the
most consevative approach was to remove the links to miss-
ing neighbors altogether. Since 7.8% of nodes in the router-
level graph had only nonresponsive neighbors, removing their
links meant also removing these nodes from the graph.

4.3 Comparison of IP- and router- level graphs
with the ground truth

Since IP addresses in an IP-level graph represent inter-
faces on the actual routers, IP-level graphs are an approxi-
mation of what we ideally would like—a map of how each
router is connected, identifying (the IP addresses of) as many
IP interfaces on each router as possible. We compared all IP-
and router-level graphs available for this study to a ground
truth dataset provided by a Tier 1 ISP for their backbone AS
(2420 routers). That ISP gave us a complete listing of the do-
main names of their core routers and the heuristic they use
to map router interfaces into domain names. Unfortunately,
this ground truth dataset does not indicate actual links be-
tween the routers, only the presence of interfaces on routers,
making it impossible to assess the accuracy of clustering or
average neighbor degree of the inferred topologies.

Figure 2(a) illustrates the coverage of each methodology,
showing the fraction of real routers that: (i) could not be
mapped to any router in the inferred topology (the black
segments); (ii) is mapped to a single router (the red seg-
ments) - these are the correct answers that we seek to max-
imize; and (iii) is mapped to 2 or more routers (all other
color segments) - the routers that are undercollapsed in the
inferred topologies. The black segments are the shortest for
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Figure 2: Comparison between a Tier 1 ISPs set of (2420)
core routers and the corresponding inferred topologies
derived from three traceroute datasets.

the topologies derived from theArk IPv4 All Prefix /24
dataset, which fails to capture 27% of this ISP’s routers. The
DIMES dataset misses 37% of the true routers for this ISP,
andiPlane is the least complete at 62%. That Ark detected
a larger fraction of the real topology’s routers is somewhat
suprising given thatArk has the fewest vantage points. We
surmise that because each Ark monitor sends significantly
more probes than the other platforms, it captures a larger
number of IP addresses and, in turn, this larger view of the
overall topology enables detection of a greater fraction ofthe
ground truth routers.

The red segment of each bar shows the fraction of real
routers that correctly had their interfaces mapped to a sin-
gle router. It does not mean that the dataset captured every
interface on a given router, only that all the interfaces cap-
tured did map to the same router. IP-level graphs treat ev-
ery observed IP address as a separate router, which means
a real router will be mapped to as many routers as it has IP
interfaces. This inference is clearly wrong, as reflected by
the short red segments in bars for all of the IP-level graphs
in Figure 2(a):DIMES IP , iPlane IP, andArk IPv4Pref
IP. The process of resolving IP aliases (i.e., merging inter-
face addresses) into common routers increases the fraction
of correct one-to-one mappings. For theiPlane data, the
fraction of real routers that map to a single inferred router
increases from 4.6% in their IP-level graph to 17.4% in their
router-level graph. For the router-level topologies in the
Ark-derived ITDK, this fraction rises from 10% to 40% for
the MIDAR-iffinder topology and to 51% in the MIDAR-
iffinder-kapar topology.

At the same time, alias resolution can overcollapse routers
by assigning interfaces from multiple distinct real routers to
the same inferred router (i.e., a false positive). Figure 2(b)
illustrates the prevalence of such false inferences for a single
backbone ISP (with 2420 routers). Here the red segment of
each bar shows the fraction of inferred routers that correctly
contain only IP addresses from a single real router. Since IP
level graphs always interpret a single IP address as a separate
inferred router, for these graphs the red segments are triv-
ially 100% by definition. iPlane’s alias resolution process
creates falsely inferred routers for 3% of the real routers in
this ISP’s ground truth data. Alias resolution using MIDAR-
iffinder results in a tiny fraction of false inferences (0.2%of
the actual routers for this ISP), while MIDAR-iffinder-kapar
processing overcollapses 2.6% of the ISP’s actual routers.
The fractions of false inferences in all router-level topolo-
gies seem small, but Figure 2(c) shows that they may have a
dramatic effect on the resulting node degree distributions.

Canonically, a node degree is the number of neighbors
connected to each node (see Figure 3, left column), but our
ground truth data provides only the number of active inter-
faces on each router (Figure 3, center column). The presence
of hyperlinks (described above) in a router-level graph can
cause these two numbers to differ. The right column of Fig-
ure 3 shows the number of links attached to each node in our
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Figure 3: Degree inferred from different sources of data:
the actual graph, the ground truth data (in the format) we
were provided, and our inferred router-level graph. Our
ground truth data does not provide the actual number of
neighbors, but only the number of interfaces per router.

inferred router-level graph, which more closely matches the
number of interfaces in the ground truth data than it matches
the number of neighbors in the actual graph. Therefore, to
compare the inferred graphs with the ground truth data avail-
able to us (Figure 2(c)), we use the number of links rather
then the number of neighbors. If we correctly infer the hy-
perlinks, the number of links and the number of interfaces
should match, whereas counting the number of neighbors in
the hyperlink (cloud) construct will overestimate the number
of neighbors.

We first extract the set of routers from the inferred topol-
ogy with at least one interface matching an interface in the
ground truth data and compare (Figure 2(c)) the CCDFs of
the number of links connecting to each such extracted router
against the number of interfaces on a router in the ground
truth data (the red symbols) as proxies for the CCDFs of
node degree distributions. BothiPlane-derivedgraphs (the
green symbols) significantly overestimate the number of routers
(in this ISP) with degrees> 10: 40% in the ground truth data
set vs. 70% and 74% in theiPlane topologies. TheDIMES
IP (the yellow circles) and theArk IPv4Pref IP (the blue
circles) topologies yield reasonable approximations of the
degree distribution for the 60% of the ground truth routers
that have degrees< 10, but begin to diverge for degrees be-
tween 10 and 60, which represents about 37% of routers in
the ground truth data. TheDIMES IP graph is the closest
to the ground truth in the large degrees (> 100) range, but
this range represents only 1% of the ground truth routers.
DIMES’ much larger number of edge vantage points will
naturally capture a larger number of interfaces entering core
routers from the periphery. Both ITDK-derived router-level
topologies (the light blue diamonds and squares) underes-
timate the degrees of small degree (< 20) nodes, which is
84% of ground truth routers, yet theArk ITDK Router mi

topology that uses only MIDAR-iffinder processing (the light
blue squares) matches the ground truth perfectly in the range
of node degrees between 20 and 100, or 15% of our ground
truth routers. In contrast, the MIDAR-iffinder-kapar topol-
ogy (Ark ITDK Router mik , the light blue diamonds) con-
tains unrealistically super-high degree nodes that appearwhen

two (or more) routers are merged into a single super-router:
4.6% of Ark ITDK Router mik routers have degrees> 100
vs. only 1.2% of the corresponding ground truth routers.
Adding kapar inferences to the MIDAR-iffinder results in-
creases the completeness of alias resolution (cf. Figure 2(a)),
but this additional processing also overcollapses the routers
(cf. 2(b)) skewing the node degree distribution toward unre-
alistically large degrees. To avoid the false positives andas-
sociated distorted statistics, we use the more conservatively-
inferredArk ITDK Router mi topology (publicly released as
part of each ITDK package) in the rest of this report.

4.4 AS-level graphs
AS-level graphs represent the topology of the Internet at

the level of Autonomous Systems (ASes), which are approx-
imately network(s) under a single administrative control.ASes
peer with each other to exchange traffic, and these peer-
ing relationships define the high-level global Internet topol-
ogy. For the purposes of analysis, these peering relation-
ships are represented with an AS graph, where nodes rep-
resent ASes and links represent peering relationships. This
section focuses on the construction of AS-level graphs from
three available data sources: raw traceroute data, BGP (Bor-
der Gateway Protocol) inter-AS routing table dumps, and
RIPE’s WHOIS routing registry database entries voluntarily
contributed by some ISPs to RIPE’s Internet Routing Reg-
istry (IRR).

4.4.1 Traceroute-based AS-level graphs

A typical starting point for constructing AS-level Internet
topologies from traceroute data uses BGP table dumps from
the Route Views Project [8] and RIPE-NCC RIS [5] to map
IP addresses found in the collected traces to the origin ASes
of their corresponding prefixes routable in the global rout-
ing system. A small percentage of IP prefixes maps to an
AS set, i.e., a set of ASes any of which could be announcing
the prefix. We leave the origin of those IP prefixes unre-
solved and discard such AS sets.4 Some prefixes originate
from multiple ASes, in which case we select the AS most
frequently seen in the BGP tables as the origin AS. Out of
366,294 prefixes found in Routeviews BGP tables in the first
half of April 2011 (the period of Ark data collection used in
this report), 2,299 prefixes (0.6%) originated from AS sets,
and 18 prefixes (0.005%) had multiple origin ASes.

Once we have a mapping between the IP address space
and the AS space, the simplest method of constructing an
AS-level graph entails mapping each IP address in the traces
to its origin AS, and inferring AS links corresponding to
observed IP links. We used this technique to generate the
iPlane ASand theArk IPv4Pref AS AS links files. We also
used this method in our previous paper [32] comparing AS-
level Internet topologies. Note that DIMES provides their
own set of AS linksDIMES AS, which we used directly.

For theArk ITDK Router mi topology, we examined two

4IETF is in the process of deprecating AS sets [27].
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methods to create AS-level Internet graphs:router-observed,
androuter-inferred. In both cases, the first step is to assign
router ownership to ASes. Knowing the origin AS for each
interface IP address on a given router, we assign the router to
the AS that originates the most interface IP addresses. In the
case of a tie between two ASes, we assign the router to the
AS with the smallest degree. Further details of router-to-AS
assignment algorithms are in [23].

Router-observed AS links. This method starts with the
observed IP interfaces in the path, uses the alias resolution
data to map these interfaces to routers, and then uses router-
AS assignment data to map these routers to ASes [23]. This
mapping results in an AS path, which we then split into AS
links. We call the AS graph derived by this methodArk
ITDK AS ro .

Router-inferred AS links. This method starts with the
ITDK graph, uses the same router-AS assignment data as
above to map these routers to ASes, resulting in an AS graph,
which we then split into AS links. The conceptual distinc-
tion between the two methods is that an AS-graph constructed
using therouter-observedmethod contains only AS-links
that correspond to IP links that were directly observed via
measurement, while a graph constructed by therouter-inferred
method also includes links that were not actually output of
the measurement process, but can be inferred from the router-
level graph. We name this graphArk ITDK AS ri .

Although we excluded the destination addresses when con-
structing IP- and router-level graphs (since these graphs fo-
cus on routers, not edge hosts), we retained these addresses
when building AS-level graphs, for the following reason.
Although the router just before the destination may be man-
aged by the same AS as the destination, we often see only its
provider-facing address in the collected traceroute output. In
this case, retaining the destination address provides a wayto
capture additional AS connectivity; dropping the destination
addresses would decrease the size of the resulting AS-level
graph by 29%.

4.4.2 BGP-based AS-level graphs

In order to generate an AS-level graph from BGP data,
we start with the AS paths found for each prefix and break
these AS paths into individual AS links. We discard links
that contain private ASes. For theRouteViews2andBGP
Full data sets we collect a RIB on five consecutive days, and
extract AS links only from the persistent paths (paths seen in
the majority of RIB tables) during this interval.

TheIRL data set used BGP data from active Route Views,
Internet2 [13], RIPE RIS servers, and some looking glass
servers (at bgp4.net), although the IRL documentation was
not sufficient to explain exactly which parts of which data
resources they were using.

4.4.3 WHOIS AS-level graph

To derive an AS-level graph from theRIPE WHOIS IRR
data, we use the import and export fields that list ASes reg-

istered as BGP neighbors of a given AS (represented by its
autonomous system number, oraut-numin the IRR record).
We create links between theaut-num’s AS and the ASes
listed in these import and export fields, excluding ASes that
only appear as neighbors but do not have their ownaut-num
lines. Such ASes are external to the database and we cannot
correctly estimate their topological properties (e.g., node de-
gree). We also filter out private ASes.

5. STATISTICAL COMPARISON OF RESULT-
ING INTERNET TOPOLOGY GRAPHS

5.1 IP- and Router- Level Graphs
Table 2 compares the basic statistics of three IP-level graphs

and two router-level graphs. The number of links observed
in the IP-level graphsDIMES IP and Ark IPv4Pref IP data
are similar, with only 4% more links inDIMES IP , despite
having 27% fewer nodes. TheiPlane IP graph has only a
fraction ( 11-15%) as many nodes and 40% as many links
as the other two graphs. The smaller size of theiPlane IP
graph is consistent with its focus on capturing only the In-
ternet core topology, which also explains its larger average
degree. TheiPlane IP graph does have a smaller maximum
node degree, perhaps because it has so many fewer nodes.
TheiPlane IP graph has an order of magnitude higher mean
local clustering than theArk IPv4Pref IP graph , but this
disparity disappears after alias resolution: theArk IPv4Pref
Routermi graph has 13% higher mean local clustering than
the iPlane Router graph. TheArk ITDK Router mi graph
created by our alias resolution process has 23% less nodes
and 31% less links than the corresponding IP level graph
Ark IPv4Pref IP . In comparison, the iPlane alias resolution
reduces the number of nodes in theiPlane IP graph by 7%
and and the number of links by 8%. It appears that the alias
resolution methods used by theiPlane project are less ag-
gressive and/or efficient than CAIDA’sMIDAR/iffinder/kapar.

Figure 4(a) reveals that the node degree distribution in
bothiPlanegraphs is skewed toward high-degree nodes: 30%
of nodes have a degree larger than 10, compared to 10% or
fewer for both Ark-derived (the blue lines) and theDIMES
IP (the red line) graphs. We have already noted this effect in
the ground truth comparison (cf. Figure 2(c)).

Figure 4(b) plots normalized average neighbor degrees.
Unlike the degree distributions, which describe nodes in iso-
lation, average neighbor degree captures how nodes of dif-
ferent degrees interconnect. We see two types of behavior.
For bothiPlane graphs, the average neighbor degree is ini-
tially increasing as the node degree increases, but high de-
gree nodesk > 100 tend to connect to smaller degree nodes
and the average neighbor degree decreases. TheDIMES IP
graph has similar behavior, but the average neighbor degree
starts decreasing fork > 10. In contrast, the average neigh-
bor degree remains nearly constant (within a factor of 3) for
bothArk -derived graphs across all node degrees.

Considering local clustering as a function of node degree
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number of degree normalized avg avg mean local
nodes edges avg max neighbor degree clustering

Ark IPv4Pref IP 2,111,019 4,073,080 3.860 4,772 5.53e-05 0.012
DIMES IP 1,543,320 4,230,578 5.480 4,742 6.31e-05 0.065
iPlane IP 233,996 1,661,041 14.200 1,586 2.16e-04 0.120
Ark ITDK Router mi 1,633,126 2,729,618 3.340 3,439 8.48e-05 0.150
iPlane Router 218,399 1,531,736 14.030 1,600 2.38e-04 0.130

Table 2: Basic statistics of IP and router topology graphs.
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Figure 4: Statistical characteristics of the IP- and router-level graphs.

(Figure 4(c)), we notice the ITDK Router graph generally
has the largest clustering, followed, in turn, by bothiPlane
data sets,DIMES , andArk IPv4Pref IP . Alias resolution,
i.e., aggregating IP addresses into a router-level graph, in-
creases clustering since it decreases the number of nodes but
makes them densely connected.

5.2 Characteristics of AS-Level Graphs
Due to the large number of data sources used for AS-level

graph comparison, we first analyze AS-graphs within each
subgroup: Ark, traceroute, BGP – and then select a represen-
tative from each subgroup for our overall comparison which
also includes an AS graph derived from WHOIS data.

5.2.1 Differences between Ark-based AS graphs

First, we compare AS-graphs constructed directly from
Ark data (Ark IPv4Pref AS ) and from the router-level graph
in ITDK (Ark ITDK AS ro andArk ITDK AS ri ).

Figure 5 illustrates the similarity of our three topological
metrics for the three Ark/ITDK-derived AS graphs, although
theArk ITDK AS ri graph (the black lines) exhibits higher
degrees and higher local clustering than the other two graphs
due to the inclusion of the additional links inferred in the
process of IP-to-router and router-to-AS mappings.

Degree distributions of theArk IPv4Pref AS (the purple
line) andArk ITDK AS ro (the blue line) graphs are notice-
ably different for the largest nodes withk > 1000 (Figure
5(a)). We select theArk ITDK AS ro graph as the repre-
sentative of our Ark/ITDK-derived group of AS-level Inter-
net graphs for comparison with other traceroute-derived AS-
level graphs. This graph is likely more accurate than theArk
IPv4Pref AS graph because the former is derived from the

router-level graph of the Internet which is a more faithful
representation of the real connectivity of the Internet than
the IP-level graph. Among the two router-based AS-level
graphs, therouter-observedone more closely reflects ob-
served paths, and thus captures some policy restrictions not
conveyed in therouter-inferredgraph.

5.2.2 Differences between Traceroute-based AS graphs

Figure 6 compares theArk ITDK AS ro AS-level topol-
ogy (the blue line) with the two other traceroute-based AS
graphs,DIMES AS (the red line) andiPlane AS (the green
line). The CCDFs of node degree (Figure 6(a)) and local
clustering (Figure 6(c)) are similar for all three graphs. For
each value of node degree, the average neighbor degree is
the highest for theiPlane AS graph and the lowest for the
Ark ITDK AS ro graph (Figure 6(b)).

5.2.3 Differences between BGP-based AS graphs

Next, we consider the three BGP-based graphs:Route-
Views2generated from a single largest BGP collector, Route-
Views2 server,BGP Full derived from all available BGP
servers (5 in Routeviews and 14 in RIPE NCC RIS), and
IRL compiled by IRL from multiple sources. Table 3 shows
that the more contributors to a given data set, the more edges
and the higher average degree and mean clustering of the re-
sulting topology. This result is intuitive: the more vantage
points, the more edges they can observe, in particular tan-
gential links between low- and medium- degree nodes [32]
(cf. also Figure 7(a) below).

Figure 7(a), the CCDF of node degree, confirms thatIRL
AS graph (the cyan line), compiled from the largest num-
ber of diverse contributors (Route Views, RIPE-NCC RIS,
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normalized mean γ
number of degree avg avg local lst-sqr max.-like.

data type nodes edges avg max neig. deg. clust. CCDF deg. seq.
Ark IPv4Pref AS traceroute 27,399 68,685 5.010 3,245 0.019 0.350
Ark ITDK AS ro traceroute 25,578 66,401 5.190 2,607 0.016 0.330 2.190 2.180
Ark ITDK AS ri traceroute 27,797 77,965 5.610 2,815 0.018 0.360 2.110 2.200
DIMES AS traceroute 25,774 78,373 6.080 4,386 0.029 0.430 2.120 2.18
iPlane AS traceroute 17,937 61,218 6.830 3,753 0.042 0.500 2.110 2.22
RouteViews2 AS BGP 37,606 80,051 4.260 3,100 0.016 0.210 2.150 2.12
BGP full AS BGP 36,876 103,481 5.610 2,972 0.014 0.240 2.120 1.97
IRL AS BGP 38,524 125,105 6.490 3,211 0.015 0.300 2.130 1.900
WHOIS RIPE AS WHOIS 22,898 134,448 11.740 3,727 0.027 0.370

Table 3: Basic statistics of AS graphs. All of the data sources other than WHOIS RIPE AS match a model of the AS
degree distribution as a power law function with exponentγ between 2.1 and 2.2. The closer the value of the power law
exponent to 2, the relatively more hubs (high-degree nodes)in the network.
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Figure 5: Statistical characteristics of the AS-level graphs derived from the Ark/ITDK data using three different methods.
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Figure 6: Statistical characteristics of the traceroute-based AS-level graphs.
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Figure 7: Statistical characteristics of the AS-level graphs derived from BGP data sources.
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Packet Clearing House, traceroute.org, bgp4.net), has a slightly
larger percentage of high-degree nodes than the other two
graphs: 0.77% ofIRL AS nodes have degree greater than
100, compared to 0.62% forBGP Full AS and 0.33% for
RouteViews2 ASdata. Although these high-degree nodes
make up only a tiny fraction of the total graphs, they repre-
sent the top of the Internet routing hierarchy, serving a crit-
ical routing function. Notably, AS 3356 (Level3) and AS
174 (Cogent) COGENT are consistently ranked first and sec-
ond, and ASes 7018 (ATT) and 3549 (Global Crossing) are
ranked third and fourth in all data sets except for WHOIS.
However, the fractions of nodes with an order of magni-
tude larger degrees (> 1000) are similar in all three graphs:
0.04%, 0.03%, and 0.02%, forIRL AS , BGP Full AS, and
RouteViews2 AS, respectively. Increasing the number and
diversity of BGP-data contributors seems to reveal additional
connectivity mostly for nodes with medium degrees.

Figure 7(b) shows that for small degrees (k < 10 for the
RouteViews2 ASgraph,k < 70 for the IRL AS andBGP
Full AS graphs) the average neighbor degree is nearly con-
stant, and it becomes a decreasing function of node degree at
larger degrees. AS-level graphs are known [32] to be disas-
sortative: small ASes connect to larger ASes. The flat areas
for BGP full AS andIRL AS for ASes with degrees between
10 and 50 indicate again that the larger number of vantage
points used to collect the raw data, the denser connectivity
between middle-tier ASes they can capture.

Figure 7(c) shows that as the node degree increases, the
local clustering drops much faster forRouteViews2(the black
line) than for the other two graphs. In contrast, for theBGP
Full AS andIRL AS topologies, the local clustering is ap-
proximately constant or even increasing slightly for small
node degrees, and starts decreasing only for degrees above
50. Again, a larger number of vantage points captures more
tangential links between small nodes. TheBGP Full AS
graph, derived from a combination of multiple BGP tables, is
noticeably more complete than theRouteViews2 ASgraph
derived from just a single BGP table, but using a combina-
tion of seven diverse contributors in the case of theIRL AS
graph does not add much to the connectivity already cap-
tured from BGP tables.

All the characteristics of theBGP Full AS (the red line)
and theIRL AS (the cyan line) graphs presented in Figure
7 are similar for all node degrees, suggesting that the com-
bination of BGP tables used in theBGP Full AS data set
is capturing a representative sample of the underlying AS
topology even with fewer contributors than theIRL AS data
set. Therefore, we select theBGP Full AS graph as a rep-
resentative of BGP-derived AS-level graphs for the overall
comparison in the next subsection.

5.2.4 All AS-level graphs

The final comparison includes a single representative AS
topology graph from each of the previous three AS-level
comparisons, and theRIPE WHOIS AS graph, which exists

as a class of its own.
Note that the RIPE NCC service region consists of coun-

tries in Europe, the Middle East and parts of Central Asia [4],
so the AS graph derived from their WHOIS database rep-
resents primarily European connectivity. In [32] when we
compared statistical properties of AS-level graphs derived
from BGP tables, traceroute measurements, and WHOIS data,
we investigated whether the substantial difference in topo-
logical properties between the WHOIS-based graph and the
other two graphs could be explained by the geographical bi-
ases in the data. We confirmed that geographic bias could
not fully explain the disparity, since when we took the sub-
set of topology including only nodes common in both the
BGP and WHOIS graphs, the resulting reduced graphs pre-
served the normalized topological properties of the original
graphs.

Figure 8(a), the CCDF of node degrees, shows that the
BGP full AS (the red line) and theArk ITDK AS ro (the blue
line) graphs have relatively higher fractions of edge ASes
with degrees 1 and 2: 36% and 39% vs. 25% in theRIPE
WHOIS AS graph (the black line) and 23% in theiPlane AS
graph (the green line). In comparison with the other three
graphs, theRIPE WHOIS AS graph has so many nodes
with medium degrees, between 5 and 500, that it does not
fit a power law function.iPlane AShas the largest fraction
of ASes with degree> 1000: 0.07% compared to 0.03% or
fewer for theArk ITDK AS ro , BGP full AS, andWHOIS
RIPE AS graphs.

Considering the average neighbor degree (Figure 8(b)),
we notice that theRIPE WHOIS AS graph (the black line)
has the largest average neighbor degree for ASes with a de-
gree of 1. In all four graphs, the average AS neighbor degree
decreases as the AS degree increases (i.e., the AS-graphs are
disassortative), although for theRIPE WHOIS AS graph it
remains nearly constant for degrees between 2 and 200 and
only starts decreasing at larger degrees. This behavior re-
flects a relative excess of medium-degree nodes in this graph.
Among the other three graphs,iPlane AS(the green line) has
the highest average neighbor degree across all degree ranges
while the values of this metric for theBGP Full AS and the
Ark ITDK AS ro graphs are lower and distributed similarly.

TheRIPE WHOIS AS graph (the black line) also stands
apart from the other graphs in Figure 8(c), which depicts lo-
cal clustering as the function of node degree. For this graph,
local clustering remains nearly constant (and mostly higher
than for the other three graphs) for node degrees< 200.
Comparing the blackRIPE WHOIS AS lines in Figures
8(b) and 8(c), we see that the inflection points in both plots
occur at around node degree of 200. This coincidence could
mean that as the average neighbor degree decreases, these
neighbors do not have a high enough degree to form clusters
by connecting to other (too numerous) neighbors of a given
high-degree node.

For the other three graphs in Figure 8(c), we notice that
the local clustering in theiPlane ASgraph (the green line)
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Figure 8: Statistical characteristics of the AS-level graphs derived from different types of data sources.
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formed by nodes with degrees within 25% of each other.
As the degree increases so does the local clustering coef-
ficient, indicating that nodes of a similar size tend to be
interconnected.

is slightly higher or the same as in theArk ITDK AS ro graph
(the blue line) at each degree value. The local clustering of
the BGP-basedBGP Full AS graph (the red line) is lower
than that of the traceroute-basediPlane ASandArk ITDK
ASro graphs for small degrees< 10, but is higher in the
medium degree range of10 < k < 800. Consistent with
how BGP vs traceroute data is collected, BGP graphs shed
more light on higher-degree ASes than on the periphery;
conversely, traceroute infrastructures with vantage points scat-
tered at the periphery capture relatively more low-degree
nodes.

When studying AS relationships in the real world, we of-
ten assume that ASes that are at similar levels in the AS hi-
erarchy enter into peering relationships to decrease transit
costs. The manifestation of this assumption in the AS-level
graphs is a tendency to form cliques between ASes of a simi-
lar size. Figure 9 examines the behavior of local clusteringif
we include only nodes of roughly the same size into the clus-
tering calculations, specifically, neighbors that have degrees
within ±25% of each other. In contrast to Figure 8(c) where
local clustering is a decreasing function of node degree, lo-

cal clustering becomes an increasing function of node degree
in Figure 9. This simulation supports the clique-forming hy-
pothesis between ASes of similar sizes. Notably, in this plot,
the RIPE WHOIS AS clustering is similar to that of the
other graphs. SoRIPE WHOIS AS ’s higher clustering val-
ues seen for nodes with degrees between 100 and 600 in 8(c)
is the result ofRIPE WHOIS AS having fewer small nodes
over all, thus fewer links to lower degree nodes and so do
not have their overall clustering lowered.

6. CONCLUSIONS
Researchers need topology maps to describe, analyze, or

model Internet structure. Unfortunately, many studies use
single, inconsistent, incomplete, or undocumented data sources,
which can undermine integrity of research and analysis re-
sults. Our objective with this study is to enable more in-
formed selection of topology datasets, by taking a rigor-
ous approach to systematically comparing the topologies in-
ferred from the best available data sources and typically used
inference techniques. Following up on our 2006 study [32],
we compared topology graphs at three granularities (IP inter-
face, router, and AS) derived from seven different topology
data sources: CAIDA’s traceroute data, BGP (Routeviews
and RIPE NCC RIS), IRR data, RIPE’s WHOIS registry,
iPlane, DIMES, and IRL. As far as we know, this the most
comprehensive study thus far of this type, based on with pub-
lished sources of data and processing methodologies.

Like many Internet data analysis projects, what seemed
like a conceptually straightforward proposition at the begin-
ning turned into an extended struggle with incongruent, in-
complete, and underdocumented data sets. For example, be-
fore we could even begin to use WHOIS data, which is in-
consistently volunteered and maintained by ISPs, we had to
heuristically estimate the maximum age of data we would
still trust to accurately reflect peering topology. Other chal-
lenges included determination of specific processing applied
to the traceroute data for each topology granularity, simu-
lating and evaluating different techniques for handling non-
responsive hops, applying our best understanding of alias
resolution techniques to the processing and interpretation of
the data sources, and comparing the results to a moderately
sized and limited ground truth data set – a Tier1 backbone
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ISP (with 2420 routers).
We used three definitive statistical metrics to compare topol-

ogy data sets: CCDF of node degree distribution, and aver-
age neighbor degree and local clustering as functions of node
degree. When compared to ground truth, none of the topolo-
gies perfectly reflect reality, nor do they claim to. Since
iPlane focuses on capturing the backbone topology not the
edge, it has an order of mangitude less nodes than theDIMES
andArk data sets, but of higher degree.Iplane’s alias res-
olution methods appear to be less aggressive (more conser-
vative) than those we implement to derive our router-level
graphs (ITDKs). Even a small fraction of false inferences
can substantially affect statistical properties of the graph. To
avoid false positives and associated distorted statistics, we
use the more conservatively-inferred Ark router-level topol-
ogy (of the two in each ITDK) in our comparisons.

We also learned that a “full” BGP table derived from a
combination of multiple BGP tables is noticeably more com-
plete than just using one BGP table, but the seven diverse
contributors in the case of the IRL AS graph did not change
the connectivity characteristics significantly from the “full”
BGP graph.

All of the data sources other than WHOIS RIPE AS match
a model of the AS degree distribution as a power law func-
tion with exponent between 2.1 and 2.2, reflecting an abun-
dance of high-degree (hub) nodes in the network. We also
confirmed that ASes of similar size tend to interconnect,
while the graph is also disassortative, i.e., low-degree ASes
tend to connect with high-degree ASes.

The same four ASes (of Level 3, Cogent, ATT, and Global
Crossing) are consistently ranked in the top four in our data
sets, and the fractions of ASes with peering degree over 1000
is less than 0.04% in all three BGP-based graphs. Consistent
with how BGP vs traceroute data is collected, BGP graphs
shed more light on higher-degree ASes than on the periph-
ery; and conversely, traceroute infrastructures with vantage
points scattered at the periphery capture relatively more low-
degree nodes. Increasing the number and diversity of BGP
data contributors seems to reveal additional connectivitymostly
for nodes with medium degrees.
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