
Analysis of Unidirectional IP Traffic to Darkspace with an
Educational Data Kit

Tanja Zseby
Fraunhofer FOKUS

and CAIDA
tanja@caida.org

Alistair King
CAIDA

alistair@caida.org

Marina Fomenkov
CAIDA

marina@caida.org

kc claffy
CAIDA

kc@caida.org

ABSTRACT
This tutorial describes methods for analyzing unsolicited

one-way Internet Protocol (IP) traffic destined to unassigned
address space. We provide an educational dataset curated
from data collected by the UCSD Network Telescope [6] and
detailed step-by-step analysis instructions including the out-
come of each of the steps. Our exercises target engineering
or computer science undergraduate and graduate students fa-
miliar with the concept of IP addresses and port numbers,
and IP header fields.

1. INTRODUCTION
Practical experience is essential for learning how to

perform Internet data analysis and computer science
students should have opportunity and be encouraged
to work with the real Internet data. While traffic data
from operational Internet links is difficult to obtain due
to privacy constraints, we are able to collect samples of
darkspace traffic that is more readily amenable to cap-
ture and analysis since it does not result from meaning-
ful bidirectional communications.

A darkspace is a segment of globally routable Inter-
net address space that has no active hosts. All traffic
arriving to such IP darkspace is unsolicited and uni-
directional, sometimes also called Internet Background
Radiation (IBR). Observing and analyzing darkspace
traffic can facilitate study of security-related Internet
phenomena such as denial-of-service attacks from ran-
domly spoofed sources, the automated spread of Inter-
net worms and viruses, scanning of address space by at-
tackers or malware looking for vulnerable targets, and
various botnet activity. Darkspace traffic has also been
used to analyze macroscopic Internet events unrelated
to malware, such as country-level censorship of Internet
communications, and natural disasters affecting reach-
ability of significant regions of Internet infrastructure.
The fact that darkspace traffic is less sensitive from a
privacy standpoint, but still highly relevant to many
Internet research questions, makes these data ideal for
educating students on Internet data analysis methods,
tools, and issues.

2. EDUCATIONAL DATA KIT

2.1 UCSD Network Telescope data
The UCSD Network Telescope is monitoring instru-

mentation that collects traffic destined to a large seg-
ment of dark (unassigned) address space (also known
as an Internet darkspace, darknet, or blackhole). The
UCSD Telescope’s darkspace is a globally routed /8
network (approximately 1/256th of all IPv4 Internet
addresses) that carries almost no legitimate traffic be-
cause most IP addresses in this prefix are not assigned
to any hosts. After discarding traffic to the few hosts
with assigned IP addresses, the remaining packets rep-
resent a continuous sample of anomalous unsolicited
traffic [5]. (Active hosts also receive unsolicited traffic
but we choose not to examine it for privacy reasons.)

We store traffic data captured by the UCSD Network
Telescope in pcap format, each file containing all packets
observed in one hour, each packet timestamped when
the telescope receives it. The timestamps stored in the
pcap files are in the epoch time format representing the
number of seconds elapsed since January 1, 1970 mid-
night (UTC).

2.2 Raw Data: Patch Tuesday (PT) Dataset
To teach methods and tools for darkspace traffic anal-

ysis, we built this educational data kit around a spe-
cific activity relevant to global Internet security: “Patch
Tuesday” (PT) [3]. Microsoft releases accumulated se-
curity patches on the second Tuesday of each month
at 10:00 AM local time in Redmond, WA, which cor-
responds to either 17:00 UTC (when daylight saving
time is in effect) or 18:00 UTC (otherwise). After Patch
Tuesday, attackers sometimes use the released patch in-
formation to exploit vulnerabilities on unpatched ma-
chines, or they may check whether previously exploited
security holes remain open. In general, launching new
malware immediately after Patch Tuesday maximizes
the potential duration of the malware’s effectiveness be-
fore the next patch release. Our proposed exercises aim
to investigate the impact of patching strategies on the
observable characteristics of unsolicited traffic.

Filename Description size
example.pcap.gz one hour long compressed raw pcap data from the PT data set 4.6 GB
example.flowtuple.cors.gz compressed F lowTuple data generated from the example pcap file 12 MB
ucsd.[epoch time].flowtuple.cors.gz 720 compressed hourly F lowTuple files generated for the whole PT dataset (30 days

of April 2012, 24 files per day)
390 GB

example ftlist.txt a short list of three F lowTuple files from the PT dataset (to be used as an example) 279 B
apr2012 ftlist.txt complete list of the 720 F lowTuple files generated for the whole PT dataset 65 kB
apr2012 pkt count.txt timestamp of the beginning of an hour and the number of packets per hour for the

whole month April 2012
16 kB

apr2012 src count.txt timestamp of the beginning of an hour and the number of unique source IP addresses
per hour for the whole month April 2012

14 kB

apr2012 src types.txt source types analysis data for the whole month April 2012 105 kB

Table 1: Data files comprising the Patch Tuesday educational data kit.

In April 2012, Patch Tuesday fell on April 10 at 17:00
UTC. The raw PT data set from which we curated the
educational data kit consists of 720 pcap files of dark-
space traffic captured by the UCSD Network Telescope
throughout April 2012: 1 file per hour × 24 hours per
day × 30 days. The pre- and post-release data establish
a baseline for studying the effects of this PT update.

2.3 Data Anonymization
We removed the payload from the captured packets

and zeroed out the first eight bits of the destination IP
address to anonymize the address range of the UCSD
Network Telescope darkspace. We also anonymized the
source IP addresses in the data because some packets
originated from victims of DDoS attacks (backscatter
data); we hide the IP addresses of victim hosts to pro-
tect them from further malicious activity.

2.4 Data Kit Curation
Throughout this tutorial, we demonstrate processing

steps on small subsets of the data, and provide com-
puted results for the whole data set for further analysis.

Most of the exercises can be done using the aggre-
gated data in the FlowTuple format1 rather than raw
data in the pcap format. Therefore, we illustrate the
aggregation process on just one hour of the raw pcap
data (pt example.pcap.gz) and provide 720 aggregated
FlowTuple files prepared for the whole PT data set.

Next, we show how to compute statistics of the dark-
space traffic from the aggregated data using a short list
of just three FlowTuple files in the file example ftlist.txt
as an example and again, provide the computed statis-
tics for the whole PT data set.

Table 1 shows all the files comprising the educational
data kit. The files with the suffix .txt are in ASCII for-
mat and can be viewed with any standard text editor
or viewer. The pcap file example.pcap.gz and FlowTu-
ple file example flowtuple.cors.gz can be displayed using

1Described in Section 4.1, this format retains only a certain
subset of fields from the captured packets, greatly reducing
the data volume and the associated bandwidth, storage, and
processing requirements.

tcpdump and cors2ascii, respectively, described in Sec-
tion 4.1.

3. WORK ENVIRONMENT AND TOOLS
Exercises described in this tutorial require three tools

to be installed on a local host: Corsaro [9] (with the
libtrace library); Octave [2] (we used v3.6.1); and tcp-
dump [4]. We recommend a Linux system with at least
4 GB memory, although we have tested the tools on
other platforms (FreeBSD, OSX, etc.) as well.

3.1 Corsaro
CAIDA developed the pcap-trace processing software

Corsaro in order to analyze darkspace traffic, although
it would work on other types of passive traffic trace
data. CAIDA has published a complete description of
Corsaro features [9] and installation instructions [11].
To use the FlowTuple data provided, Corsaro should
be configured using the following command:

./configure --with-flowtuple --with-smee
--with-slash-eight=0

3.2 Octave Scripts
Octave is a high-level interpreted language, primarily

intended for numerical computations and also providing
extensive graphics capabilities. Octave normally works
through its interactive command line interface, but can
also be used to write non-interactive programs. Its lan-
guage is quite similar to Matlab so that most programs
are easily portable. This software is distributed under
the terms of the GNU General Public License.

All Octave instructions shown in our exercises are
available as small scripts that one can start from the
Octave command line. The option -q prevents Octave
from displaying its startup message. Table 2 gives an
overview of the scripts.

4. GENERAL DATA PRE-PROCESSING
Exercises in this Section teach the necessary data pre-

processing steps (schematically shown in Figure 1): ag-
gregating pcap data into FlowTuple format, computing

Scriptname Description Exercise
plot pktcnt.oct read in PT data, plot overall packet count for PT data PT-1
calc pkt stats.oct calculate statistics for the overall packet count for PT data PT-1
plot srccnt.oct read in PT data, plot overall source count for PT data PT-2
calc src stats.oct calculate statistics for the overall source count for PT data PT-2
proto dist.oct analyze protocol distribution, print top 10 protocols, plot protocol distribution for PT data PT-3
dport dist.oct analyze TCP destination port distribution, print top 10 TCP destination ports, plot TCP destination

port distribution for PT data
PT-4

source types.oct analyze source types PT-5
spectrum.oct calculate spectrum for time series of number of packets and spectrum for time series of number of

sources
PT-6

Table 2: Octave scripts

Figure 1: Corsaro Processing Steps

hourly counts of: packets, number of unique source IP
addresses, and distributions of packets by source types.

4.1 Exercise G-1: From pcap to FlowTuple
Raw telescope data are stored in hourly files in pcap

format. To get acquainted with the data, one can dis-
play the content of a pcap file as ASCII text charac-
ters using the tcpdump command with the -r option.
Other useful options, rendering the output much faster,
are: -n which prevents tcpdump from converting IP ad-
dresses to domain names, and -t which prevents print-
ing a timestamp for each packet2. So, if the pcap file is
compressed, the command:

$ zcat example.pcap.gz | tcpdump -t -nr -

will create the following output:

IP 150.26.54.148.2546 > 0.9.4.169.445: Flags [S], seq
2112083767, win 65535, options [mss
1380,nop,nop,sackOK], length 0

IP 74.40.194.245.55760 > 0.63.210.28.3544: UDP, length
56

IP 153.242.252.91.80 > 0.72.61.72.22792: Flags [S.], seq
2275567357, ack 2034702177, win 65332, options
[mss 1460,nop,nop,sackOK], length 0

IP 141.13.71.196.4805 > 0.99.104.95.445: Flags [S], seq
689364122, win 65535, options [mss
1452,nop,nop,sackOK], length 0

...

2The tcpdump man page describes all available options.

Our first exercise is to aggregate raw pcap data into
a FlowTuple format. The FlowTuple format retains
only selected fields from captured packets instead of the
whole packet, enabling a more efficient data storage,
processing, and analysis. The FlowTuple consists of
eight fields: source IP address; destination IP address;
source port; destination port; protocol; TCP Flags;
TTL; and IP length. For ICMP packets (protocol=1),
the source and destination port fields represent the ICMP
Type and Code fields3.

Corsaro takes the pcap file as input and writes an
aggregated FlowTuple file as output (cf. Figure 1). In
the FlowTuple output file, the data is broken into inter-
vals, each representing 60 seconds of data. Within an
interval, each unique key (unique combination of the
FlowTuple fields) observed in the raw pcap data is re-
ported on a separate line in the following format:

<src_ip>|<dst_ip>|<src_port>|<dst_port>|<protocol>|
<tcp_flags>|<ttl>|<ip_len>,<value>

The <value> that follows the FlowTuple fields is the
number of packets in the interval whose header fields
match this FlowTuple key.

In our first exercise, we process a file of pcap data
example.pcap.gz into the FlowTuple file:

corsaro -o example.%P.cors.gz example.pcap.gz

The %P in the filename will be substituted with the
plugin names included during the Corsaro installation.
For example, if Corsaro is run with the FlowTuple plu-
gin enabled (the default), Corsaro will create a FlowTu-
ple output file by substituting the %P with the string
flowtuple. In the example given above, Corsaro would
create the output file example.flowtuple.cors.gz. By adding
the extension .gz to the output file name, we ensure that
Corsaro automatically compresses the output file using
gzip, further reducing storage requirements.

Next, the cors2ascii command will display the Flow-
Tuple output in a human-readable ASCII format:4

3See [10] for more details on the FlowTuple format.
4Flowtuple files are sorted into sub-categories, one of which
is backscatter [12], listed first in this table.

$ cors2ascii example.flowtuple.cors.gz
CORSARO_INTERVAL_START 0 1334098800
START flowtuple_backscatter 897162
167.215.128.118|0.20.22.88|3|1|1|33|0x00|86,1
167.214.141.110|0.209.4.107|3|1|1|35|0x00|56,2
167.214.141.110|0.185.166.52|3|1|1|36|0x00|56,2
59.83.224.172|0.176.14.199|3|3|1|36|0x00|86,1
59.83.224.172|0.176.14.199|3|3|1|36|0x00|144,1
194.19.32.187|0.252.229.185|3|3|1|36|0x00|86,1
194.19.32.187|0.252.229.185|3|3|1|36|0x00|144,1
...

Each line in this output corresponds to the format in
Listing 4.1 and shows the eight FlowTuple fields sepa-
rated by |. As explained in Section 2.3, the first octet
of the destination IP address is set to 0. The last value
on each line shows how many packets with this unique
combination of fields were in the input pcap file.

The exercises in Sections 4.2 and 4.3 use aggregated
FlowTuple files as input. To reduce bandwidth require-
ments for downloading the data kit, we provide 720
FlowTuple files ucsd-nt.anon.[epoch time].flowtuple.cors.gz
precomputed from the 720 original hourly pcap files of
the UCSD Network Telescope Patch Tuesday data col-
lected in April 20125. The [epoch time] field in each file
name shows the starting time of the hour of data in this
file in the epoch format.

4.2 Exercise G-2: Number of Packets per Hour
To compute hourly packet rates for the whole dataset,

we need to sum the packet count values in each hourly
FlowTuple file. We use the Corsaro FlowTuple aggre-
gation tool, cors-ft-aggregate, as follows:

cors-ft-aggregate -i 3600 -v packet_cnt
example_ftlist.txt > example_pkt_count.txt

The option -i 3600 specifies an aggregation interval
of one hour (3600 seconds). The option -v packet cnt

indicates that we want to aggregate the packet count
value. To illustrate how the aggregation tool works, we
input the file example ftlist.txt, which lists 3 of the 720
FlowTuple files comprising the full the PT data set.

The output file example pkt count.txt contains three
lines for each one hour FlowTuple file listed in the input
file. The first line shows the epoch time of the start of
the one hour (3,600 s) interval. The second line shows
the aggregated FlowTuple fields for this interval. All
field values are equal to 0 because we aggregate over all
of them; the only non-zero value (separated by a ‘,’) is
the total packet count per interval. The third line is
shows the end time of the interval in the epoch format.

$ cat example_pkt_count.txt
CORSARO_INTERVAL_START 0 1334001600
0.0.0.0|0.0.0.0|0|0|0|0|0x00|0,143556017
CORSARO_INTERVAL_END 0 1334005199
CORSARO_INTERVAL_START 1 1334005200
0.0.0.0|0.0.0.0|0|0|0|0|0x00|0,135072630

5The volume of the raw data is 3.8TB while the volume of
the aggregated data is only 390GB

CORSARO_INTERVAL_END 1 1334008799
CORSARO_INTERVAL_START 2 1334008800
0.0.0.0|0.0.0.0|0|0|0|0|0x00|0,152169670
CORSARO_INTERVAL_END 2 1334012399

Finally, we invoke the perl script cors-ft-timeseries.pl
(included with Corsaro) to combine the timestamp and
packet count into one line:

cors-ft-timeseries.pl example_pkt_count.txt >
example_pkt_count_ts.txt

The resulting output file example pkt count ts.txt con-
tains discrete time series of packet counts with one data
point per hour:

$ cat example_pkt_count_ts.txt
1334001600,143556017
1334005200,135072630
1334008800,152169670

The first value on each line shows the start of an hour
interval in epoch time format. The second value shows
the number of packets observed in that hour. Since the
input file example ftlist.txt lists three hourly files, the
output file example pkt count ts.txt has three lines.

We pre-processed all 720 hourly FlowTuple files in the
PT dataset by applying cors-ft-aggregate and cors-ft-
timeseries.pl to all PT hourly files in apr2012 ftlist.txt.
The resulting time series of the hourly packet rates for
the whole month of April 2012 is available in the file
apr2012 pkt count.txt.

4.3 Exercise G-3: Number of Unique Source
IP Addresses per Hour

To determine the overall number of unique source IP
addresses seen per hour in the data, we again use the
aggregation tool cors-ft-aggregate, but with different op-
tions. This time we want to aggregate all FlowTuples
using only the source IP address as a key:

cors-ft-aggregate -i 3600 -v src_ip example_ftlist.txt >
example_src_count.txt

Here the option -i 3600 again specifies the desired
aggregation interval of one hour. The option -v src ip

indicates that we want to aggregate over the unique
source IP addresses. Again, we input a small subset
of FlowTuple files listed in the file example ftlist.txt to
illustrate the aggregation process.

The format of the resulting file is similar to the output
in the previous exercise. There are three lines of output
for each input file. These lines show the interval starting
and ending times, and the number of unique source IP
addresses observed during that hour:

$ cat example_src_count.txt
CORSARO_INTERVAL_START 0 1334001600
0.0.0.0|0.0.0.0|0|0|0|0|0x00|0,418961
CORSARO_INTERVAL_END 0 1334005199
CORSARO_INTERVAL_START 1 1334005200
0.0.0.0|0.0.0.0|0|0|0|0|0x00|0,429939
CORSARO_INTERVAL_END 1 1334008799
CORSARO_INTERVAL_START 2 1334008800

Type (column) Proto Dest. IPs Ports Packets
µTorrent (14) any any any µTorrent packets
Conficker-C (15) any any any Conficker-C
1 or 2 packets (16) any any any < 3 packets
TCP Probe (3) TCP one one all
TCP Vert. Scan (4) TCP one multi all
TCP 445 Horiz. Scan (20) TCP multi 445 all
TCP Horiz. Scan (5) TCP multi one all, except to dport 445
TCP Backscatter (17) TCP any any TCP-ACK, TCP-RST
UDP Probe (7) UDP one one all
UDP Vert. Scan (8) UDP one multi all
UDP Horiz. Scan (9) UDP multi one all
DNS Backscatter (18) TCP/UDP any any source port 53
TCP and UDP (13) TCP/UDP any any TCP and UDP
ICMP Backscatter (19) ICMP any any Time Exceeded,

Dest.Unreach.
ICMP Only (11) ICMP any any all
TCP Unknown (6) TCP multi multi all remaining TCP
UDP Unknown (10) UDP multi multi all remaining UDP
Unclassified (2) any any any all remaining

Table 3: Source Types in descending order of classification

0.0.0.0|0.0.0.0|0|0|0|0|0x00|0,649596
CORSARO_INTERVAL_END 2 1334012399

As in Section 4.2, we use the perl script cors-ft-timeseries.pl
to combine the interval start time and the number of
unique sources sending traffic to the UCSD Network
Telescope during that hour onto one line:

cors-ft-timeseries.pl example_src_count.txt >
example_src_count_ts.txt

The resulting example src count.txt file contains:

$ cat example_src_count.txt
1334001600,418961
1334005200,429939
1334008800,649596

The two values per line are the start of an hour in-
terval in epoch format, and number of unique source IP
addresses observed in that hour.

To obtain hourly counts of unique source IP addresses
for the whole PT dataset, we again pre-processed all
720 hourly FlowTuple files using cors-ft-aggregate, cors-
ft-timeseries.pl and the full list of PT hourly files in
apr2012 ftlist.txt. The resulting time series of the num-
ber of unique source IP addresses per hour for April
2012 is available in the file apr2012 src count.txt.

4.4 Exercise G-4: Calculating the Source Types
Another plugin provided by Corsaro to aggregate the

raw pcap data, is smee (cf. Figure 1). This plugin is a
Corsaro implementation of the IATmon tool [8] which
classifies sources of observed darknet traffic into 18 mu-
tually exclusive types based on protocol and temporal
patterns across a configured time interval. All packets
observed in this time frame are first aggregated accord-
ing to their source IP address, and then each source IP
address is assigned to one of the 18 source types based
on what type and pattern of packets it generates. Ta-

ble 3 lists attributes of the source types.
Again, we use a small subset of the compressed orig-

inal data in file example.pcap.gz to illustrate the source
type classification with smee:

corsaro -p smee -o example.%P.cors.gz example.pcap.gz

The -p smee option specifies the Corsaro plugin used
that becomes part of the output file name, for example:
example.smee.cors.gz (compressed using gzip).

Note: Corsaro can run with multiple plugins. In
particular, one can generate both the FlowTuple aggre-
gation (see Section 4.1) and the source type classifica-
tion with a single command by including both plugins
(‘-p flowtuple -p smee’) in the command line, pro-
ducing two output files (one for each plugin).

The output file example.smee-sum.cors.gz produced
above contains the source type analysis for the packets
recorded in the one-hour long example pcap file exam-
ple.pcap.gz : the number of source addresses per source
type, the number of packets per source type, and some
additional information.

To save students the effort of running the source type
analysis for all pcap files in the PT dataset, we generated
the file apr2012 src types.txt which contains the time
series of the number of unique source IPs per hour for
each source type. Each line of the file accounts for 1
hour of data and contains 22 values. The first value is
the hour start time in the epoch format while columns
2-19 contain the number of source IPs observed during
this hour and attributed to a given source type. The
number in parentheses in Table 3 shows which position
in the line of file apr2012 src types.txt contains the data
for this source type. For example, the source type ‘TCP
vertical scan’ in the Table is marked with ‘(4)’. In the
following output we see that during the first hour of
the collected data we observed 997 unique IP addresses

classified as the source type ’TCP vertical scan’ (column
4). The last two values in each line are: the date (in
YYYYmmDDHHMM format) (position 21) and the sum of the
counts of source IPs for all types for this hour (position
22, the last value in each line).

$ cat apr2012_src_types.txt
1333238400, 2345, 14557, 997, 34411, 8970, 86019, 2842,

3580, 119332, 9586, 0, 13289, 13807, 11969,
1016813, 314, 61, 0, 71428, 201204010000, 1410320

1333242000, 2183, 14843, 852, 34768, 9592, 95560, 2301,
4722, 127874, 9294, 0, 13858, 13678, 12222,
1002042, 298, 58, 0, 73760, 201204010100, 1417905

1333245600, 2299, 14618, 774, 34729, 8874, 91928, 1856,
4879, 114732, 8830, 0, 13615, 14153, 12286, 930489,
244, 55, 0, 75834, 201204010200, 1330195 $

5. ANALYZING THE PT EFFECTS
The objective of the following exercises is to ana-

lyze whether one can discern any unusual character-
istics of unwanted darkspace traffic during or after the
April 2012 Patch Tuesday. First, we consider the over-
all packet count, the number of sources that contribute
to the unwanted traffic, and the distributions of pro-
tocols and destination ports observed in the captured
packets. Next, we look into the number of packets and
the number of sources per source type to find out if we
observe any unusual behavior attributable to specific
source types. Finally, we analyze the temporal behav-
ior of the two time series formed by the packet count
per hour and the number of sources per hour.

In this section we apply Octave scripts to the pre-
pared files apr2012 pkt count.txt, apr2012 src count.txt
and apr2012 src types.txt for the data analysis and vi-
sualization of the results.

5.1 Exercise PT-1: Analyzing the Number of
Packets

In order to check for unusual patterns in the over-
all amount of traffic, we analyze a discrete time series
formed by the number of packets per hour observed by
our darkspace monitor. In Section 4.2 we showed how
to extract these hourly numbers of packets from the ag-
gregated FlowTuple files. We performed the necessary
calculations for the whole PT darkspace data set of 720
hourly files collected in April 2012 and use the prepared
file apr2012 pkt count.txt for the analysis described in
this section.

We use the Octave software to plot and analyze packet
rates over time. We configure the Octave environment
to enable printing of numbers in a field wider than 10
characters long and also change the default font to Hel-
vetica and font size to 20:

> format long
> set(gca, ’fontname’, ’Helvetica’, ’fontsize’, 20);

Then we load the file apr2012 pkt count.txt into a
matrix apr2012 pkt using the csvread Octave function

with the filename as an argument:

> apr2012_pkt=csvread(’apr2012_pkt_count.txt’);

This command creates the matrix apr2012 pkt in
Octave and reads the comma separated values from the
file apr2012 pkt count.txt into the matrix. Typing the
name of the matrix will display its contents:

> apr2012_pkt
apr2012_pkt =

1333238400 158193818
1333242000 158154053
1333245600 137226309
1333249200 105671679
1333252800 107655723
1333256400 122484762
1333260000 113172621
1333263600 130804718
1333267200 133450608
...

One can also use indices to access different parts of
the matrix. For example, typing apr2012 pkt(2,1)

will print the matrix element in the second row and the
first column. The operator ‘:’ is used to select all ele-
ments of a row or column. We can access the entire first
column containing the timestamps as apr2012 pkt(:,1)

while the second column containing the number of pack-
ets per hour can be accessed by apr2012 pkt(:,2). For
instance, the following command will calculate the total
number of packets observed in April 2012 by summing
up the values in the second column of the matrix:

> apr2012_pktcnt=sum(apr2012_pkt(:,2))
apr2012_pktcnt = 108687558356

Next, we plot the number of packets per hour vs.
time. To make it easier to see when Patch Tuesday took
place, we want to display the timestamps, given in the
epoch format, as the actual dates and hours in a human
readable form. Thus, we apply the function datenum to
convert the epoch time into the datenum format, which
represents the time as the number of days starting from
Jan 1, 0000.

datenum (year, month, day, hour, minute, second)

To convert the epoch time to the datenum format, we
set the values for year, month, day, hour and minute to
Jan 1, 1970 midnight (when epoch time starts) and then
add the epoch time as number of seconds. For the first
element of the matrix apr2012 pkt (row=1, column=1)
the corresponding datenum value is 734960:

> datenum(1970,1,1,0,0, apr2012_pkt(1,1));
ans = 734960

To plot the data over time, we convert the epoch
times in the entire first column apr2012 pkt(:,1) into
the datenum format and then plot the number of pack-
ets stored in the second column apr2012 pkt(:,2):

> stem(datenum(1970,1,1,0,0,apr2012_pkt(:,1)),
apr2012_pkt(:,2)/10^6, ’marker’, ’none’)

0

50

100

150

200

250

01 06 11 16 21 26 01

#p
ac

ke
ts

 [m
illi

on
s]

days in April 2012

Number of Packets per Hour [millions]

Figure 2: Number of packets per hour vs. time

> datetick(’x’, ’dd’, ’keepticks’);
> xlabel(’days in April 2012’)
> ylabel(’#packets [millions]’)
> title(’Number of Packets per Hour [millions]’)

This command stem creates a stem plot, which repre-
sents each value by a vertical line. The datetick func-
tion changes tick labels on the x-axis from the datenum
into a date format specifying day of the month (with
year, month, day, hour and minutes or a combination
of thereof). We name the axes using the xlabel and
ylabel commands and give the graph a title. To plot
the number of packets in millions, we divide the values
in the second column by 106. Figure 2 shows the result-
ing plot, revealing no unusually high volume of packets
on or around Patch Tuesday.

Next, we check the maximum and minimum hourly
packet counts in the PT dataset using the functions
max() and min(), correspondingly (shown below). These
functions return the maximum (minimum) value of the
dataset and the index (that is, the row of the matrix)
where the returned value is. So, if the maximum were in
the third row of the dataset we would get the index=3.
Using the index we can then display the whole row (with
a timestamp and a packet count) and therefore find out
when the maximum (or minimum) was observed:

> [max_v max_i]=max(apr2012_pkt(:,2))
max_v = 239613469
max_i = 93
> apr2012_pkt(max_i,:)
ans =

1333569600 239613469
> datestr(datenum(1970,1,1,0,0,1333569600), ‘yyyy-mm-dd

HH:MM’)
ans = 2012-04-04 20:00

> [min_v min_i]=min(apr2012_pkt(:,2))
min_v = 99396882
min_i = 461
> apr2012_pkt(min_i,:)
ans =

1334894400 99396882
> datestr(datenum(1970,1,1,0,0,1334894400), ‘yyyy-mm-dd

HH:MM’)

0

1

2

3

4

5

01 06 11 16 21 26 01

#s
ou

rc
e

IP
s

[m
illi

on
s]

days in April 2012

Number of Unique Source IP Adresses per Hour [millions]

Figure 3: Number of unique source IP addresses
per hour

ans = 2012-04-20 04:00

The maximum packet count per hour is 239,613,469
observed in row 93 of the matrix apr2012 pkt at epoch
time 1333569600, and the minimum hourly packet count
of 99,396,882 is observed in row 461 at epoch time 1334894400.
The datestr function translates epoch times into a
more readable format, revealing that the maximum hourly
packet count in April occurred on April 4, 2012 at 20:00
while the minimum hourly packet count was April 20,
2012 at 04:00. Both dates appear unrelated to Patch
Tuesday (April 10).

Finally, we find the mean value of 150,954,942.16
packets per hour in April 2012 using the following:

> mean=mean(apr2012_pkt(:,2))
ans = 150954942.161111

5.2 Exercise PT-2: Number of Unique Source
IP Addresses

The goal of this exercise is to discover unusual pat-
terns in the number of active sources related to the
Patch Tuesday. We plot the number of sources per hour
vs. time using the same Octave functions as in Section
5.1:

> apr2012_src=csvread(’apr2012_src_count.txt’);
> stem(datenum(1970,1,1,0,0,apr2012_src(:,1)),

apr2012_src(:,2)/10^6, ’marker’, ’none’)
> datetick(’x’, ’dd’, ’keepticks’);
> xlabel(’days in April 2012’)
> ylabel(’#source IPs [millions]’)
> title(’Number of Unique Source IP Adresses per Hour

[millions]’)

Figure 3 shows the resulting stem plot and reveals two
interesting features: a periodical temporal pattern and
an unusually high number of unique sources on April
11, 2012. We will further investigate the apparent pe-
riodicity in the hourly counts of unique sources in Sec-
tion 5.6. To analyze the peak activity, we calculate the
maximum, minimum and mean values of hourly counts

of unique sources and time of their occurrence using the
same Octave instructions as in section 5.1:

> [max_v max_i]=max(apr2012_src(:,2))
max_v = 4240359
max_i = 241
> apr2012_src(max_i,:)
ans =

1334102400 4240359
> datestr(datenum(1970,1,1,0,0,1334102400), ’yyyy-mm-dd

HH:MM’)
ans = 2012-04-11 00:00
> [min_v min_i]=min(apr2012_src(:,2))
min_v = 329835
min_i = 358
> apr2012_pkt(min_i,:)
ans =

1334523600 329835
> datestr(datenum(1970,1,1,0,0,1334523600), ’yyyy-mm-dd

HH:MM’)
ans = 2012-04-15 21:00
> mean(apr2012_src(:,2))
ans = 1101808.702778

The maximum hourly count of active sources, which
exceeded the mean value by almost a factor of 4, oc-
curred on April 11, 2012 at midnight – the first night
after Path Tuesday (April 10). We analyze which types
of sources became active in Section 5.5.

5.3 Exercise PT-3: Analyzing Protocols
In this exercise we analyze which protocols are used

to send packets to the darkspace and, in particular,
whether there are any differences in protocol usage be-
fore and after Patch Tuesday. The protocol specified
in the IP packet header matches one of the fields in
the FlowTuple format. Thus, we use the pre-computed
FlowTuple files to generate the overall distribution of
protocols for the entire month of April 2012, as well as
the protocol distributions for the hour when Microsoft
releases patches (Patch Tuesday 17:00) and for one hour
of the subsequent day (Exploit Wednesday 00:00).

The file apr2012 ftlist.txt contains a list of all Flow-
Tuple files for April 2012. The file PT ftlist.txt contains
the name of the FlowTuple file for April 10, 2012 17:00
(patch release hour) while the file EW ftlist.txt contains
the name of the FlowTuple file for April 11, 2012 00:00.
For each of those files, we aggregate the packet counts
per protocol per hour using the Corsaro aggregation
tool cors-ft-aggregate:

// aggregate according to protocol number
$ cors-ft-aggregate -i 3600 -f protocol -v packet_cnt

apr2012_ftlist.txt > apr2012_proto_dist.txt
$ cors-ft-aggregate -i 3600 -f protocol -v packet_cnt

PT_ftlist > PT_proto_dist.txt
$ cors-ft-aggregate -i 3600 -f protocol -v packet_cnt

EW_ftlist > EW_proto_dist.txt

// get the relevant columns: protocol, packet count
$ sed -e ’/^\#/d’ -e ’s/|/,/g’ apr2012_proto_dist.txt |

cut -f5,9 -d, > apr2012_proto_dist_e.txt
$ sed -e ’/^\#/d’ -e ’s/|/,/g’ PT_proto_dist.txt | cut

-f5,9 -d, > PT_proto_dist_e.txt
$ sed -e ’/^\#/d’ -e ’s/|/,/g’ EW_proto_dist.txt | cut

-f5,9 -d, > EW_proto_dist_e.txt

Option -f specifies that we want to aggregate the pro-
tocol field and option -v specifies that we want to report
the aggregated value of the packet count. The tool cors-
ft-aggregate then sums up all packet counts that have
the same protocol number in the FlowTuple interval.
The corresponding output files are: apr2012 proto dist.txt
for the whole month of data, PT proto dist.txt for the
patch release hour, and EW proto dist.txt for the first
hour of Wednesday following the release. We do some
postprocessing with the standard Unix utility sed to
output only the protocol number and the associated
number of packets as comma separated values.

Next, we input the results into Octave (using the
csvread function described in Section 5.1) and com-
pute packet counts per month and for the two special
hours.

> proto_all=csvread(’apr2012_proto_dist_e.txt’);
> proto_PT=csvread(’PT_proto_dist_e.txt’);
> proto_EW=csvread(’EW_proto_dist_e.txt’);

>apr2012_pktcnt=sum(proto_all(:,2))
apr2012_pktcnt = 108687558356

> EW_pktcnt=sum(proto_EW(:,2))
EW_pktcnt = 141186833
> PT_pktcnt=sum(proto_PT(:,2))
PT_pktcnt = 150272386

Finally, we plot the different protocol distributions
using the subplot function to create three subgraphs of
the percentage of packets associated with each protocol
(Figure 4):

> subplot(3,1,1)
> stem(proto_all(:,1),

proto_all(:,2)*100/apr2012_pktcnt, ’marker’,’x’,
’markersize’,4)

> xlim([0,256])
> title(’Distribution of Protocols’)
> legend(’Whole Month April 2012’)
> axis(’labely’)

> subplot(3,1,2)
> stem(proto_PT(:,1), proto_PT(:,2)*100/PT_pktcnt,

’marker’,’x’, ’markersize’,4)
> xlim([0,256])
> ylabel(’packets/total packets [%]’)
> legend(’Patch Tuesday 17:00’)
> axis(’labely’)

> subplot(3,1,3)
> stem(proto_EW(:,1), proto_EW(:,2)*100/EW_pktcnt,

’marker’,’x’, ’markersize’,4)
> xlim([0,256])
> xlabel(’Protocol Number’)
> legend(’Exploit Wednesday 00:00’)

% limit number of ticks in graph
> numticks=5
> L=get(gca,’YLim’)
> set(gca, ’YTick’, linspace(L(1),L(2),numticks));

The last three lines in the script limit the number of
ticks on the y-axis to 5 for better readability.

0
20
40
60
80

100

Distribution of Protocols

Whole Month April 2012

0
20
40
60
80

100

p
a
c
k
e
ts

/t
o
ta

l
p
a
c
k
e
ts

 [
%

]

Patch Tuesday 17:00

0
20
40
60
80

0 50 100 150 200 250

Protocol Number

Exploit Wednesday 00:00

Figure 4: Distribution of Protocol Numbers.
All three panels show that the most frequently
used protocols are: 6 (TCP), 17 (UDP) and
1 (ICMP). In the top panel, the x-axis looks
like a thick line because in a whole month of
data, most protocol numbers are observed at
least once and the corresponding cross symbols
overlap. In contrast, the other two panels each
shows only one hour of data and the distribu-
tions of observed protocols are sparse.

As expected, the three most common protocol num-
bers stand out: there are maxima in the plotted distri-
butions at protocol numbers 6 (TCP), 17 (UDP), and
1 (ICMP). Yet the distributions are different: during
the patch hour on patch Tuesday we observe 84% TCP,
12% UDP and 3% ICMP traffic while for the hour on
Exploit Wednesday midnight the fraction of UDP traf-
fic almost doubles: 76% TCP, 21% UDP and 3% ICMP
traffic.

5.4 Exercise PT-4: Analyzing Destination Port
Numbers

We compare TCP and UDP destination port num-
bers in packets collected over the month, and during
the two specific hours on Patch Tuesday and Exploit
Wednesday.

We use the same commands as in Section 5.3, al-
though this time we aggregate the data by looking at
two different fields: protocol number and destination
port. That means that each row in the result file aggre-
gates all packets with the same protocol number and
destination port. The commands to perform analysis
for the TCP packets are shown below. These same steps
apply to analyzing UDP packets, but filtering with grep
should be for protocol number 17 (UDP) instead of 6

(TCP).

// aggregate based on protocol and destnation port
$ cors-ft-aggregate -i 3600 -f protocol -f dst_port -v

packet_cnt apr2012_ftlist >
apr2012_proto_dport_dist.txt

$ cors-ft-aggregate -i 3600 -f protocol -f dst_port -v
packet_cnt EW_ftlist > EW_dport_dist.txt

$ cors-ft-aggregate -i 3600 -f protocol -f dst_port -v
packet_cnt PT_ftlist > PT_dport_dist.txt

// get columns for port,proto, packetcount
$ sed -e ’/^\#/d’ -e ’s/|/,/g’

apr2012_proto_dport_dist.txt | cut -f4,5,9 -d, >
apr2012_proto_dport_dist_e.txt

$ sed -e ’/^\#/d’ -e ’s/|/,/g’ EW_dport_dist.txt | cut
-f4,5,9 -d, > EW_dport_dist_e.txt

$ sed -e ’/^\#/d’ -e ’s/|/,/g’ PT_dport_dist.txt | cut
-f4,5,9 -d, > PT_dport_dist_e.txt

// get only the TCP data
$ grep ’,6,’ apr2012_proto_dport_dist_e.txt >

apr2012_TCP_dport_dist.txt
$ grep ’,6,’ PT_dport_dist_e.txt > PT_TCP_dport_dist.txt
$ grep ’,6,’ EW_dport_dist_e.txt > EW_TCP_dport_dist.txt

We now process and plot this data in Octave:

% read in data for TCP ports
> tcp_dport_all=csvread(’apr2012_TCP_dport_dist.txt’);
> tcp_dport_PT=csvread(’PT_TCP_dport_dist.txt’);
> tcp_dport_EW=csvread(’EW_TCP_dport_dist.txt’);

% get total number of tcp packets for the whole month
> tcp_pktcnt=sum(tcp_dport_all(:,3))
> tcp_pktcnt = 88227584302

% get total number of tcp packets for Exploit Wednesday
00:00

> EW_tcp_pktcnt=sum(tcp_dport_EW(:,3))
> EW_tcp_pktcnt = 107461474

% get total number of tcp packets for Patch Tuesday
17:00

> PT_tcp_pktcnt=sum(tcp_dport_PT(:,3))
> PT_tcp_pktcnt = 126622374

% plot data

> subplot(3,1,1);
> stem(tcp_dport_all(:,1),

tcp_dport_all(:,3)*100/tcp_pktcnt, ’marker’,’x’,
’markersize’,1);

> xlim([0,500]); % limits x-axis to first 500 ports
> set(gca,’TickDir’,’out’)
> title(’Distribution of TCP Destination Ports’);
> legend(’Whole Month April 2012’,’location’,’north’);
> axis(’labely’);

> subplot(3,1,2)
> stem(tcp_dport_PT(:,1),

tcp_dport_PT(:,3)*100/PT_tcp_pktcnt, ’marker’,’x’,
’markersize’,1)

> xlim([0,500])
> set(gca,’TickDir’,’out’)
> ylabel(’packets/total packets [%]’)
> legend(’Patch Tuesday 17:00’,’location’,’north’)
> axis(’labely’)
> numticks=5
> L=get(gca,’YLim’)
> set(gca, ’YTick’, linspace(L(1),L(2),numticks));

> subplot(3,1,3)

0
10
20
30
40
50

Distribution of TCP Destination Ports

Whole Month April 2012

0
15
30
45
60

p
a
c
k
e
ts

/t
o
ta

l
p
a
c
k
e
ts

 [
%

]

Patch Tuesday 17:00

0
10
20
30
40

0 100 200 300 400 500

Destination Port

Exploit Wednesday 00:00

Figure 5: Distribution of Destination Ports.
There is one prominent peak at the same des-
tination port value in all three panels, and a few
smaller peaks at varying positions.

> stem(tcp_dport_EW(:,1),
tcp_dport_EW(:,3)*100/EW_tcp_pktcnt, ’marker’,’x’,
’markersize’,1)

> xlim([0,500])
> set(gca,’TickDir’,’out’)
> label(’Destination Port’)
> legend(’Exploit Wednesday 00:00’,’location’,’north’)
> numticks=5
> L=get(gca,’YLim’)
> set(gca, ’YTick’, linspace(L(1),L(2),numticks));

Figure 5 shows the resulting graph. The x-axis is
limited to show only the first 500 destination ports using
the xlim([0,500]) Octave command. One can zoom
in to see less common ports using the ylim[0,limit]

command, e.g., ylim([0,5]) will show only x-values
that have y-axis values below 5% of the total packet
count.

Each panel exhibits several peaks. To determine the
exact port numbers at which those peaks occur, i.e.,
the most frequent TCP destination ports, we first sort
the rows in the matrix according to the third column
(number of packets) in descending order and then look
at the top five port numbers in the sorted data:

> tcp_dport_all_sorted=sortrows(tcp_dport_all,-3);
> tcp_dport_PT_sorted=sortrows(tcp_dport_PT,-3);
> p_dport_EW_sorted=sortrows(tcp_dport_EW,-3);

> tcp_dport_all_sorted (1:5,:)
ans =

445 6 37785558992
1433 6 3651108893
3389 6 3450635362
80 6 2888150337
22 6 1988126660

> tcp_dport_PT_sorted (1:5,:)
ans =

445 6 69100424
3389 6 4144063
80 6 4000496
139 6 1688069
8080 6 1575357

> tcp_dport_EW_sorted (1:5,:)
ans =

445 6 38787557
3306 6 11750422
3389 6 3534629
80 6 2744440

8080 6 2505147

The destination port 445 received the largest number
of TCP packets for the whole month of April as well
as during the individual hours on Patch Tuesday and
Exploit Wednesday. TCP scans to port 445 are com-
mon, in large part due to scanning activity of Conficker-
infected hosts [7].

5.5 Exercise PT-5: Analyzing the Source Types
Since we observed an unusually high hourly number

of sources at midnight following Patch Tuesday, we want
to analyze what types of darknet traffic sources became
active. Pre-computed results of the source type analy-
sis for the whole month of April are stored in the file
apr2012 src types.txt. Again, we use Octave and read
the whole file into one matrix. We can look at the num-
ber of sources for different source types by varying the
column that we select for the y-axis in the plots. In the
following example, we plot the data in the fifth column,
which contains the number of sources per hour of the
type ‘TCP horizontal scans’ (see Table 3 in Section 4.4
to map columns to source types).

> src_types=csvread(’apr2012_src_types.txt’);
> stem(src_types(:,1), src_types(:,5), ’marker’, ’none’)

To find out which source types were unusually active
during the first hour of the Exploit Wednesday 00:00,
we compare the number of sources of each type during
that hour with this type’s mean hourly count. To do
this analysis, first we need to check where in the matrix
src types we can find the data for the hour of Exploit
Wednesday 00:00. We know that this hour coresponds
to an epoch time of 1334102400. The Octave command
find takes the epoch time as input and returns the
corresponding index (the row number):

> index=find(src_types(:,1)==1334102400)
ans=241

The EW hour data is stored in the 241st row.
We then use a for loop in Octave to calculate the

mean and ratio for each of the columns (each source
type). We store the mean value for each source type
i into a vector mean v(i) and the ratio of the number
of sources during the EW hour to the mean number of

0

100

200

300

400

500

600

700

01 06 11 16 21 26 01

#s
ou

rc
e

IP
s

[th
ou

sa
nd

s]

days in April 2012

Source IP Adresses for Source Type UDP Unknown

Figure 6: Unique Source IP Addresses per Hour
for Source Type UDP Unknown

sources in the vector ew mean ratio(i).

> for i = 1:columns(src_types)
> mean_v(i)=mean(src_types(:,i));
> ew_mean_ratio(i)= src_types(index,i)/mean_v(i);
> endfor

When displaying the values stored in ew mean ratio,
we find the highest values in columns 10 (6.26) and
16 (4.58). Column 10 contains the source type ‘UDP
unknown’ and column 16 the source type ‘1 or 2 packets’
(cf. Table 3). So, these two source types contribute
significantly to the increase in the overall number of
sources. Figure 6 produced by the following Octave
code illustrates this behavior.

> stem(src_types(:,1), src_types(:,10), ’marker’,
’none’)

> stem(datenum(1970,1,1,0,0,src_types(:,1)),
src_types(:,10)/10^3, ’marker’, ’none’)

> datetick(’x’, ’dd’, ’keepticks’);
> xlabel(’days in April 2012’)
> ylabel(’#source IPs [thousands]’)
> title(’Source IP Adresses for Source Type UDP

Unknown’)
> grid on

5.6 Exercise PT-6 (Advanced): Analyzing Tem-
poral Patterns

This exercise is advanced since it requires basic knowl-
edge of signal processing.

Time series of hourly counts of packets (Figure 2)
and of unique source addresses (Figure 3) both seem to
exhibit periodic variations, the temporal pattern being
more noticeable for the latter. In this Section, we show
how to analyze the temporal behavior of these darknet
traffic characteristics by using the frequency spectrum
of the time series signal.

The frequency spectrum represents the time series
signal as a superposition of multiple sinusoidal signals.
Each sinusoidal signal is defined by its amplitude, fre-
quency, and phase shift. The Fourier transform is a
mathematical procedure used to calculate the frequency

spectrum and convert the signal from the time domain
into the frequency domain.

The signal in our time series signal is discrete as it
contains one packet count (or source count) value per
hour. For transforming the discrete finite time signal
we use the Discrete Fourier Transform (DFT). For a
time series of N data points x0...xn...xN−1, the DFT
calculates a set of N complex numbers X0...Xk...XN−1:

Xk =

N−1∑

k=0

xne−i2πk n

N

where each complex number Xk represents a sinu-
soidal signal that contributes to the time series. Our
time series has one data point per hour and contains
data from 30 days. In total we have N = 24× 30 = 720
data points, which means N = 720 complex numbers in
the frequency domain.

A fast way to calculate the DFT is the Fast Fourier
Transform (FFT) algorithm. Octave provides the func-
tion fft(x) for calculating the FFT from a discrete
time signal with values stored in the vector x:

> N=length(apr2012_pkt(:,2))
> pkt_fft=fft(apr2012_pkt(:,2));
> pkt_amp=abs(pkt_fft);

The packet counts per hour are stored in the second
column of the matrix apr2012 pkt; the resulting com-
plex spectrum values are in pkt fft. The Octave func-
tion abs() yields the amplitudes (the absolute values)
of the complex numbers calculated by the FFT.

We plot the amplitudes of the calculated spectrum
with the index k on the x-axis and the vertical line
showing the signal amplitude at the corresponding k:

> k=(0:N-1);
> stem(k(2:(N/2)+1),pkt_amp(2:(N/2)+1)/10^6, ’marker’,

’none’)
> xlabel(’k’)
> ylabel(’Amplitude [millions of packets]’)
> title(’Amplitude Spectrum for Number of Packets

[millions]’)

We only need to plot the first N/2 coefficients because
the spectrum repeats itself. Also, since the first value
X0 at k = 0 represents the signal offset, we exclude
it from the plot of the frequency spectrum in order to
make the other frequencies more visible. Note that Oc-
tave indexing always starts at 1, whereas k in the DFT
formula starts at 0. So, to plot the data from k = 1 to
k = N/2 we need to use the indices ind = k + 1 = 2 to
ind = k + 1 = (N/2) + 1.

Figure 7 shows the resulting plot. Each k corre-
sponds to the number of cycles for the sinusoidal signal
within the whole duration of the analyzed time series
(720 hours). Therefore, the period of the k-th signal
is pk = 720 hours

k cycles
and the corresponding frequency is

fk = 1

pk

= k cycles

720 hours
.

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

 [m
illi

on
s

of
 p

ac
ke

ts
]

k

Amplitude Spectrum for Number of Packets [millions]

Figure 7: Spectrum for number of packets per
hour

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

 [m
illi

on
s

of
 s

ou
rc

e
IP

s]

k

Amplitude Spectrum for Number of Source IPs [millions]

Figure 8: Spectrum for number of source IPs
per hour

In the diagram we see a high amplitude for the sinu-
soidal signal with k = 30. The period for this signal
is p30 = 720 h

30 cycles
= 24 hours, which corresponds to a

diurnal pattern in the data. Diurnal patterns are com-
mon in Internet traffic data since many hosts are turned
off at night.

We perform the same steps to calculate and plot the
spectrum of hourly counts of unique source addresses
(Figure 8):

> src_fft=fft(apr2012_src(:,2));
> src_amp=abs(src_fft);
> stem(k(2:(N/2)+1),src_amp(2:(N/2)+1)/10^6, ’marker’,

’none’)
> xlabel(’k’)
> ylabel(’Amplitude [millions of source IPs]’)
> title(’Amplitude Spectrum for Number of Source IPs

[millions]’)

k and N values remain the same. Again, we see a
strong spectrum amplitude at k = 30 that corresponds
to a 24-hour pattern. We also observe a peak at k = 60,
which indicates a 12-hour pattern. One behavior that
could generate this traffic pattern is using 12-hour time
format for some internal functions.

6. CONCLUSION
We have described an educational data kit curated

from darkspace traffic observed by the UCSD Network
Telescope in April 2012, and presented a set of exer-
cises developed for this data. After completing the ex-
ercises, the students will be familiar with the raw format
used to store the captured traffic packets (pcap), var-
ious aggregations of the raw data, and basic statistics
commonly used for traffic characterization. They will
acquire hands-on experience in using specialized traf-
fic analysis software Corsaro and a scripting high-level
computational language Octave. The students should
be able to apply this knowledge to analyze other packet
trace data available in (pcap) format, including bi-directional
data. One can find additional relevant reading in CAIDA’s
online papers directory [1] by filtering for keyword “net-
work telescope”.

Acknowledgments
The work was supported by U.S. NSF grants II-EN-1059439

and CNS-1228994, DHS S&T Cyber Security Division (DHS

S&T/CSD) Cooperative Agreement FA8750-12-2-0326 (PRE-

DICT project) and by Fraunhofer FOKUS. This material

represents the position of the authors and not of the spon-

soring agencies.

7. REFERENCES
[1] CAIDA research papers.

http://www.caida.org/publications/papers/.
[2] GNU Octave. www.gnu.org/software/octave/.
[3] Patch Tuesday.

http://en.wikipedia.org/wiki/Patch Tuesday.
[4] tcpdump. http://www.tcpdump.org/.
[5] UCSD Network Telescope Global Attack Traffic.

http://www.caida.org/data/realtime/telescope/.
[6] The UCSD Network Telescope, 2001.
[7] Emile Aben. Conficker/Conflicker/Downadup as

seen from the UCSD Network Telescope.
Technical report, CAIDA, February 2009.

[8] Nevil Brownlee. iatmon.
http://www.caida.org/tools/measurement/iatmon/.

[9] Alistair King. Corsaro.
http://www.caida.org/tools/corsaro/, October
2012.

[10] Alistair King. Corsaro file formats.
http://www.caida.org/tools/corsaro/docs/formats.html,
October 2012.

[11] Alistair King. Corsaro quick-start guide.
http://caida.org/tools/corsaro/docs/quickstart.html,
October 2012.

[12] David Moore, Colleen Shannon, Douglas J Brown,
Geoffrey M Voelker, and Stefan Savage. Inferring
Internet denial-of-service activity. ACM Trans.
Comput. Syst., 24(2):115139, May 2006. ACM ID:
1132027.

