
Named Data Networking (NDN) Project

2013 - 2014 Report

Principal Investigators

Van Jacobson, Jeffrey Burke, and Lixia Zhang
University of California, Los Angeles

Beichuan Zhang
University of Arizona

Kim Claffy and Dmitri Krioukov
University of California, San Diego

Christos Papadopoulos
Colorado State University

Tarek Abdelzaher
University of Illinois at Urbana-Champaign

Lan Wang
University of Memphis

Edmund Yeh
Northeastern University

Patrick Crowley
Washington University

Contents

Executive Summary 1

1 Architecture Overview 2
1.1 Names . 3
1.2 Data-Centric Security . 4
1.3 Adaptive Routing and Forwarding . 5
1.4 In-Network Storage . 5
1.5 From Transport to Distributed Synchronization . 6

2 Research Plan and Progress 7
2.1 Intended Outcome of the NDN Project . 7
2.2 Path and Progress . 8
2.3 Progress: Year 4 . 8

3 Architecture Research 11
3.1 Applications . 11

3.1.1 Summary of Objectives . 11
3.1.2 Technical Approach . 11
3.1.3 Progress - Applications . 11
3.1.4 Progress - Libraries . 15
3.1.5 New Architectural Findings from Application Development 18
3.1.6 Values in Design . 19

3.2 Routing . 21
3.2.1 Named-data Link State Routing Protocol (NLSR) . 21
3.2.2 Hyperbolic Routing . 23
3.2.3 Dynamic Interest Limiting for NDN Congestion Control 25

3.3 Scalable Forwarding . 27
3.3.1 Scalable Name-Based Forwarding . 27
3.3.2 Scalable Pending Interest Table Design . 27
3.3.3 Forwarding Engine Development . 28

3.4 Security . 30
3.4.1 Security Library . 30
3.4.2 Testbed Certificate Deployment . 32
3.4.3 Web-of-Trust . 33
3.4.4 Content Poisoning Mitigation . 33

3.5 Fundamental theory for NDN . 34
3.5.1 Objectives . 34
3.5.2 Progress for Theory Activities . 34

i

4 NFD Development and NDN Testbed 36
4.1 New Packet Format Design . 37
4.2 New NDN Forwarder: NFD . 38

4.2.1 Development Overview . 38
4.2.2 Major Components and Functionality . 39

4.3 NDN Testbed: Deployment, Management, Expansion . 41

5 Impact: Education 43
5.1 Education Philosophy and Objectives . 43
5.2 Biweekly NDN Seminars . 43
5.3 Education Efforts . 44
5.4 Educational Screencasts . 45

6 Impact: Expansion of NDN Community 46
6.1 First NDN Community meeting . 46
6.2 Establishment of NDN Consortium . 47
6.3 The First ACM Information Centric Networking Conference 47
6.4 Reaching Out: NDN Presentations . 48

7 Publications 50

ii

FIA: Collaborative Research: Named Data Networking (NDN) 2014 Report

Executive Summary

This report summarizes the NDN project team’s fourth year of research achievements supported by FIA
supplemental funding. Chapter 1 reviews the NDN architectural model. Chapter 2 gives an overview of the
NDN project objectives and the milestones achieved in our fourth year effort. Chapter 3 describes activities
and findings in our five main research areas. Chapter 4 details one of our major achievement in 2014, the
design of a new NDN packet format and the development of a new NDN Forwarding Daemon (NFD). areas.
Chapters 5 and 6 review efforts in education and community outreach, respectively.

The heart of the Internet architecture is a simple, universal network layer (IP) which implements all the
functionality necessary for global interconnectivity. This thin waist was the key enabler of the Internet’s
explosive growth but one of its design choices is also the root cause of today’s many persistently unsolved
problems: IP was designed to create a communication network, therefore the only entities that can be
named in its packets are communication endpoints. Recent growth in e-commerce, digital media, social
networking, and smartphone applications has resulted in the Internet primarily being used as a distribution
network. Distribution networks are fundamentally more general than communication networks, and solving
distribution problems via a point-to-point communication protocol is complex and error prone.

NDN retains the Internet’s hourglass architecture but evolves the thin waist to enable the creation of
completely general distribution networks. The core element of this evolution is removing the restriction that
packets can only name communication endpoints. As far as the network is concerned, the name in an NDN
packet can be anything – an endpoint, a data chunk in a movie or a book, a command to turn on some lights,
etc. This conceptually simple change allows NDN networks to use almost all of the Internet’s well-tested
engineering properties to solve not only communication problems but also digital distribution and control
problems. Our research challenge is to turn the above vision into an architectural framework capable of
solving real problems, particularly in application areas poorly served by today’s Internet protocol stack.
Solving real problems forces us to fill in architectural details, and most importantly, verifies and shapes the
architectural direction.

We achieved our major milestones for the fourth year of the project. Highlights include:

• The design of a new NDN packet format, which uses a type-length-value (TLV) pattern to support
efficient processing and flexibility for future extension.

• The design, implementation, public release, and testbed deployment of a new NDN Forwarding Daemon
(NFD). The basic NFD design goals are modularity and extensibility to enable experimentation with
new protocol features, algorithms, and applications.

• The re-design and implementation of NLSR, NDN Link-State Routing protocol, to run with the new
packet format and NFD and use ChronoSync for routing database synchronization.

• The development of an NDN security library which supports efficient signing and validation of NDN
packets as well as key management to facilitate secure application development.

• Continued advancement in NDN application developments, including advances in building automation
systems, NDN-IoT toolkit for smart home R&D, the development of ndnRTC, a real-time conferencing
application over NDN, and application of NDN to climate data distribution.

• The establishment of the NDN Consortium to promote a vibrant open source ecosystem of research and
experimentation around Named Data Networking, and the organization of the first NDN Community
meeting to orchestrate the effort from broader community in advancing NDN research and development.

These achievements establishes a platform that facilitates new research experimentations. Our 4-year
effort has produced a range of new applications, a rich set of libraries, a functioning testbed spanning three
continents, a deepened understanding of the NDN architecture as well as its remaining challenges, and most
importantly, a team with skills and experience in future architecture research. These achievements will guide
the project’s next phase, NDN-NP, and lead us to a new level of understanding in naming design, distributed
data synchronization, usable trust management, routing and forwarding—core issues in the Named-Data
Networking architecture.

1

Chapter 1

Architecture Overview

IP
packets

email WWW phone ...

SMTP HTTP RTP ...

TCP UDP ...

ethernet PPP ...

copper fiber radio ...

CSMA async sonet ...

Every node

copper fiber radio ...

Individual apps

Individual links Strategy

Security

File Stream ...

browser chat ...

Content
chunks

IP UDP P2P BCast ...

Figure 1.1: Internet and NDN Hourglass Architectures

NDN is an entirely new architecture, but
its design principles are derived from the
successes of today’s Internet, reflecting
our understanding of the strengths and
limitations of the current Internet archi-
tecture, and one that can be rolled out
through incremental deployment over the
current operational Internet.

Today’s Internet’s hourglass architec-
ture centers on a universal network layer
(i.e., IP) which implements the minimal
functionality necessary for global inter-
connectivity. This thin waist enabled the
Internet’s explosive growth by allowing
both lower and upper layer technologies

to innovate independently without unnecessary constraints. The NDN architecture retains the same hour-
glass shape, but transforms the thin waist to focus on data directly instead of its location. More specifically,
NDN changes the semantic of network communication from delivering a packet to a given destination ad-
dress to retrieving data identified by a given name (Figure 1.1). The design is also guided by the following
principles.

• Security must be built into the architecture. Security functionality in the TCP/IP Internet is layered
with inherent complexity atop a fundamentally too-trusting architecture. NDN provides a fundamental
security building block at the thin waist by signing all named data.

• The end-to-end principle [6] underlying the TCP/IP architecture enabled development of robust ap-
plications in face of unexpected failures. NDN retains and expands this principle by securing data
end-to-end.

• Network traffic must self-regulate. Flow-balanced data delivery is essential to the stability of large
systems. Unlike IP’s open-loop packet delivery, NDN designs a flow-balance feedback loop into the
thin waist.

• The architecture should facilitate user choice and competition wherever possible. Although not con-
sidered in the original Internet design, global deployment has taught us that “architecture is not
neutral.” [2] NDN makes a conscious effort to empower end users and facilitate competition.

Communication in NDN is driven by the receiving ends, i.e., the data consumers, through the exchange of
two types of packets: Interest and Data (see Figure 1.2). Both types of packets carry a name that identifies
a piece of data that can be transmitted in one Data packet. To receive data, a consumer puts the name
of desired data into an Interest packet and sends to the network. Routers use this name to forward the

2

Interest Packet Data Packet
Name Name

(order preference, publisher filter,
exclude filter, …)

Selectors MetaInfo

Nonce

Guiders
(scope, Interest lifetime)

Content

Signature

(content type,
freshness period, …)

(signature type, key locator,
signature bits, …)

Figure 1.2: Packets In the NDN Architecture.

Content
Store

Pending Interest
Table (PIT)

FIB
Interest ✗ ✓ ✗

forward
✓ Data ✓

add incoming
interface

✗

drop or
NACK

Content
Store

Pending Interest
Table (PIT)

✗

Data ✓ forward

discard Data

cache

Downstream Upstream

✗ lookup miss ✓ lookup hit

Figure 1.3: Forwarding Process at an NDN Node.

Interest toward the data producer(s). Once the Interest reaches a node N that has the requested data, node
N will return a Data packet that contains both the name and the content, together with a signature by the
producer’s key which binds the two (Figure 1.2). This Data packet follows in reverse the path taken by the
Interest to get back to the requesting consumer.

To execute Interest and Data packet forwarding functions, each NDN router maintains three data struc-
tures: a Forwarding Information Base (FIB), a Pending Interest Table (PIT), and a Content Store (Fig. 1.3).
The FIB is populated by a name-prefix based routing protocol and guides Interests toward data producers.
The PIT stores all Interests that are not yet satisfied, recording the Interest’s name, incoming interface(s)
and outgoing interface(s). When a router receives multiple Interests with the same name from downstream
consumers, it forwards only the first one upstream toward the data producer. The Content Store is a tem-
porary cache of Data packets that the router has received. Because an NDN Data packet is meaningful
independent of where it comes from or where it is forwarded to, it can be cached to satisfy future Interests.

When an Interest packet arrives, an NDN router first checks the Content Store for matching data; if
it exists the router returns the Data packet on the interface from which the Interest came. Otherwise the
router looks in its PIT, and if a matching entry exists, it records the Interest’s incoming interface in the
PIT entry. In the absence of a matching PIT entry, the router will look in its FIB and forward the Interest
toward the data producer(s).

When a Data packet arrives, an NDN router finds the matching PIT entry and forwards the data to all
downstream interfaces listed in the PIT entry. It then removes that PIT entry, and caches the Data in the
Content Store. Data packets always take the reverse path of Interests, and one Interest packet results in
one Data packet on each link, providing flow balance. Neither Interest nor Data packets carry any host or
interface addresses (such as IP addresses); Interest packets are forwarded toward data producers based on
the names carried in them, and Data packets are forwarded to consumers based on the PIT state information
set up by Interests at each hop.

1.1 Names

NDN names are opaque to the network, i.e., routers do not know the meaning of a name, although they
know the boundaries between components in a name. This decoupling allows each application to choose
the naming scheme that fits its needs and allows the naming schemes to evolve independently from the
network. NDN by design assumes hierarchically structured names, e.g., a video produced by UCLA may be
named /ucla/videos/demo.mpg, where ‘/’ delineates name components in text representations, similar to
URLs. This hierarchical structure allows applications to represent relationships between data elements. For
example, segment 3 of version 1 of the video might be named /ucla/videos/demo.mpg/1/3. It also allows
name aggregation, e.g., UCLA could correspond to the autonomous system originating the video. Flat names
can be accommodated as a special case and useful in local environments, however hierarchical name spaces
are essential in scaling the routing system. Naming conventions among data producers and consumers, e.g.,

3

to indicate versioning and segmentation, are specific to applications but opaque to the network.

To retrieve dynamically generated data, consumers must be able to deterministically construct the name
for a desired piece of data without having previously seen the name or the data. This construction can be
enabled either by a deterministic algorithm shared by the producer and consumer to arrive at the same name
based on information available to both, or by the combined effort of NDN’s Interest selectors and the stack’s
longest prefix matching to retrieve the desired data through one or more iterations. Our experience so far sug-
gests that a simple set of selectors is quite powerful for retrieving data with partially known names. For exam-
ple, a consumer wanting the first version of the demo.mpg video may request /ucla/videos/demo.mpg/1 with
the Interest selector “leftmost child”, in order to receive a data packet named /ucla/videos/demo.mpg/1/1

corresponding to the first segment. The consumer can then later request segments using a combination of
information revealed by the first data packet and the naming convention of the publishing application to
request subsequent packets.

Data that may be retrieved globally must have a globally unique name, however names used for local
communications may be heavily based on local context, and require only local routing (or local broadcast)
to find corresponding data. In fact, individual data names can be meaningful in various specific scopes and
contexts, ranging from “the light switch in this room” to “all country names in the world”. How to develop
efficient strategies to fetch data within the intended scope is a new research area.

Name space management is not part of the NDN architecture, just as address space management is not
part of the IP architecture. However, naming is the most important part of the NDN design. Naming
data enables natural support for functionality such as content distribution, multicast, mobility, and delay-
tolerant networking. We are learning through experimentation how applications should choose names that
can facilitate both application development and network delivery. As we develop and refine our principles for
naming, we convert these principles and guidelines into naming conventions and implement them in system
libraries to simplify future application development. Fortunately, the opaqueness of names to the network
allows architecture development to proceed in parallel with research into namespace structure and navigation
in the context of application development.

1.2 Data-Centric Security

In contrast to TCP/IP’s approach where security (or lack thereof) is a function of where or how the data is
obtained, NDN builds security into data itself by requiring data producers to cryptographically sign every
piece of data with its name [5]. The publisher’s signature enables determination of data provenance, allowing
the consumer’s trust in data to be decoupled from how (and from where) the data is obtained. It also supports
fine-grained trust, allowing consumers to reason about whether a public key owner is an acceptable publisher
for a particular piece of data in a specific context.

Historically, security based on public key cryptography has been considered inefficient, unusable and
difficult to deploy. Besides efficient digital signatures, NDN needs flexible and usable mechanisms to manage
user trust. Since keys can be communicated as NDN data, key distribution is simplified. Secure binding of
names to data supports a wide range of trust models. If a piece of data is a public key, a binding is effectively
a public key certificate. Finally, NDN’s end-to-end approach to security facilitates trust between publishers
and consumers, and gives applications flexibility in customizing their trust model.

NDN’s data-centric security has natural applications to content access control and infrastructure security.
Applications can control access to data via encryption and distribute (data decryption) keys as encrypted
NDN data, limiting the data security perimeter to the context of a single application. Requiring signatures
on network routing and control messages (like any other NDN data) provides a solid foundation for rout-
ing protocol security, e.g., protecting against spoofing and tampering. NDN’s inherent multipath routing,
together with the adaptive forwarding plane (Section 1.3), mitigates prefix hijacking because routers can
detect the anomaly caused by a hijack and retrieve data through alternate paths.

Two possible attacks against an NDN network are cache poisoning and denial of service via Interest
flooding. We have addressed the latter in our recent work [1, 3], and we are actively pursuing effective
solutions to the former.

4

1.3 Adaptive Routing and Forwarding

NDN routes and forwards packets based on names, which eliminates four problems caused by addresses
in today’s IP architecture: address space exhaustion, NAT traversal, mobility, and address management.
There is no address exhaustion problem since the namespace is unbounded, which also eliminates the need
for name translation. Mobility, which requires changing addresses in IP, no longer breaks communication
since data names remain the same. Finally, address assignment and management is no longer required in
local networks, which is especially empowering for embedded sensor networks.

NDN can make use of conventional routing algorithms such as link state and distance vector. Instead
of announcing IP prefixes, an NDN router announces name prefixes that cover the data that the router is
willing to serve. Routers simply treat names as sequences of opaque components and do component-wise
longest prefix match of the name in a packet against the FIB. We have designed and implemented an NDN
link state routing protocol (Section 3.2.1), and developed efficient data structures and algorithms for fast
lookup of variable-length, hierarchical names (Section 3.3).

PIT state at each router supports forwarding across NDN’s data plane. Routers record each pending
Interest and its incoming interface(s), and remove Interests after matching Data is received or a timeout
occurs. This per-hop, per-packet state is a fundamental change from IP’s stateless data plane. This state
information enables NDN nodes to monitor packet delivery performance across different interfaces, and adapt
to network failures, all at the time scale of a round-trip time. Via a random nonce in the Interest packet,
NDN nodes can identify and discard packets that have returned to the same node, preventing forwarding
loops. This allows NDN nodes to use multiple paths toward the same data producer.

PIT state serves other important purposes. Since it records the set of interfaces over which the Interests
for the same data name have arrived, it naturally supports multicast Data delivery. Since each Interest
retrieves at most one Data packet, a router can control the traffic load by controlling the number of pending
Interests to achieve flow balance. The PIT state can also be used to mitigate DDoS attacks. Because the
number of PIT entries is an explicit indicator on router load, limiting its size also constraints the effect of a
DDoS attack. PIT entry timeouts offer relatively cheap attack detection [7]; and arrival interface information
in each PIT entry can support a push-back scheme [4].

Each NDN node also implements a forwarding strategy module, which does not exist in today’s IP nodes.
The role of this forwarding strategy module is to inform decisions about which Interests to forward to which
interfaces, how many unsatisfied Interests to allow, relative priority of different Interests, how to load balance
Interest forwarding among interfaces, and choosing alternative paths to avoid detected failures.

1.4 In-Network Storage

Because each NDN Data packet carries a name and a signature, it is meaningful independent of its source or
destination. Thus a router can cache the data in its Content Store to satisfy future requests. The Content
Store is analogous to buffer memory in IP routers, but IP routers cannot reuse data after forwarding it,
while NDN routers can. NDN treats storage and network channels identically in terms of data retrieval. For
static files, NDN achieves almost optimal data delivery. Even dynamic content can benefit from caching in
the case of multicast (e.g., realtime teleconferencing) or retransmission after a packet loss. In addition to the
Content Store, NDN supports a more persistent and larger-volume in-network storage, called a Repository
(Repo in short). While a Content Store provides opportunistic caching to optimize performance, a repo
provides managed storage to meet specific application needs.

Caching named data raises different privacy concerns from those of IP. In IP, one can examine packet
headers, and possibly payload, to learn who is consuming what data. The naming and caching of data in
NDN networks may facilitate observation of what data is being requested, but it is harder to identify who
is requesting data (unless one is directly connected to the requesting host). This aspect of the architecture
offers privacy protection at a fundamentally different level than the IP architecture.

5

1.5 From Transport to Distributed Synchronization

The NDN architecture does not require a separate transport layer. It moves the functions of today’s transport
protocols into applications, their supporting libraries, and the strategy module of the forwarding plane. NDN
does not use port numbers; a host knows to which application to deliver packets based on data names, and
applications handle data integrity checking, signing, and trust decisions related to their data. To provide
reliable delivery across highly dynamic and possibly intermittent connectivity, such as in ad hoc mobile
environments, nodes will discard Interest packets that remain unsatisfied after some threshold of time. The
application that originated the initial Interest must retransmit it if it still wants the data. Such functionality
is supported by NDN common client libraries.

NDN’s flow balance requirement, together with the ability of nodes to control their own traffic load by
limiting the number of pending Interests at each hop (Section 1.3), means that there is no need for separate
end-to-end congestion control, a typical transport layer function in today’s networks. If congestion losses
occur, caching will mitigate the impact since retransmitted Interests can be satisfied by cached Data packets
right before the point of packet losses. Thus NDN avoids the kind of congestion collapse that can occur in
today’s Internet when a packet is lost near its destination and repeated retransmissions from the original
source host(s) consume most of the bandwidth.

Traditional transport services provide point-to-point data delivery and most of today’s distributed appli-
cations, including peer-to-peer applications, heavily rely on centralized servers. To aid development of robust
and efficient distributed applications, we have added a fundamentally new architectural building block that
we call Sync. Using NDN’s basic Interest-Data exchange communication model, Sync uses naming conven-
tions to enable multiple parties to synchronize their dataset. By exchanging individually computed data
digests, each party learns about new or missing data quickly and reliably, and retrieves data efficiently via
NDN’s built-in multicast delivery [8].

References

[1] Alexander Afanasyev, Priya Mahadevan, Ilya Moiseenko, Ersin Uzun, and Lixia Zhang. Interest flooding
attack and countermeasures in Named Data Networking. In Proceedings of IFIP Networking, May 2013.

[2] David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden. Tussle in cyberspace: defining
tomorrow’s internet. In Proceedings of ACM SIGCOMM, 2002.

[3] Paolo Gasti, Gene Tsudik, Ersin Uzun, and Lixia Zhang. DoS & DDoS in named-data networking. In
Proceedings of International Conference on Computer Communications and Networks, July 2013.

[4] John Ioannidis and Steven M. Bellovin. Router-based defense against ddos attacks. In Proceedings of
Internet Society Symposium on Network and Distributed System Security, 2002.

[5] Van Jacobson, Diana Smetters, James Thornton, Michael Plass, Nicholas Briggs, and Rebecca Braynard.
Networking named content. In Proceedings of the ACM CoNext, 2009.

[6] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in system design. ACM Transactions in
Computer Systems 2, 4, November, 1984.

[7] Vyas Sekar, Nick Duffield, and Oliver Spatscheck. Lads: Large-scale automated ddos detection system.
In Proceedings of USENIX 2006.

[8] Zhenkai Zhu and Alexander Afanasyev. Let’s ChronoSync: Decentralized dataset state synchronization
in Named Data Networking. In Proceedings of IEEE ICNP, 2013.

6

Chapter 2

Research Plan and Progress

In this chapter we present the major outcomes we are working to deliver and the plan we are executing to
move the NDN architecture from ideas to reality and validation. We summarize the execution results during
the third year of the project and the milestones for the remaining duration of the report.

2.1 Intended Outcome of the NDN Project

As shown in Figure 1.1, the NDN architecture retains the same hourglass shape as the IP architecture, with
the narrow waist being its centerpiece. However the minimal functionality of NDN’s narrow waist, as we
described in Chapter 1, is fundamentally different from IP’s. NDN’s minimal functionality includes support
for consumer-driven data delivery, built-in data security, stateful data plane, and in-network storage. These
two building blocks can together support scalable data dissemination, flow balancing, multiple path data
retrieval, as well as facilitating mobile and delay-tolerant communication.

We aim at the following major outcome:

1. A specification of the standard formats for the two NDN packet types, Interest and Data. We expect
this specification to play a role equivalent to that of RFC791 (Internet Protocol Specification) for
NDN networks. The challenge is not the format details, but verification and validation of the minimal
functions that must be supported by this new narrow waist. Over the past year we have produced a
preliminary NDN packet format specification [3], which is now used in NDN pilot applications running
on the NDN testbed.

2. A functional version of the necessary supporting modules in an operational NDN network, including:
libraries for naming conventions, reliable delivery, and security utility that reside above the NDN layer;
routing protocols and forwarding strategy module that reside at the narrow waist NDN layer; trust
management; and usable, efficient cryptography for data security. We see an analogy between the
above list and IP with its supporting components. Although the IP address allocation system, routing
protocols, and DNS are not part of the IP narrow waist, they are nonetheless necessary supporting
components in an operational IP network. The fact that DNS was added after the initial IP deployment
further underscores the importance of identifying missing components during real deployment. Our
most significant milestone this year was completion of a new modular and extensible NDN Forwarding
Daemon (NFD), which will provide a platform for the broader community to investigate NDN router
data structure and forwarding strategy designs.

3. A set of applications that operate over NDN, including entirely new applications as well as NDN
versions of legacy applications deployed on today’s Internet.

4. An online documentary of the NDN project process, and a technical report series to capture our
thinking along the path of architectural development.

7

2.2 Path and Progress

The NDN protocol specification is our fundamental goal, and we seek to achieve it through experimenting
with real applications in an operational environment. Development of pilot applications (Section 3.1) deep-
ens our understanding of how applications can choose names to facilitate both application development and
network delivery. An application-driven approach also organically reveals general principles and guidelines
for naming in NDN networks, and suggests how to translate these principles and guidelines into naming
conventions in system libraries (Section 3.1.4). Our efforts in library implementation requires us to oper-
ationalize what we have learned in a form that supports consistent reuse, simplifying future application
development and accelerating progress.

The opaqueness of names to the network means that design and development of the NDN architecture
can proceed in parallel with our research into name structure, name discovery and namespace navigation,
all studied in the context of real application development. Similar to previous years, in parallel with our
investigation into application development, we progressed on NDN routing protocols, data forwarding strate-
gies, and testbed operations. Deployment of these components has provided a live NDN environment to ask
and answer design questions, and verify and demonstrate NDN capability in reality. A major achievement
in 2014 was the design and implementation of a new NDN Forwarding Daemon (NFD). The NDN testbed
previously relied on the CCNx implementation developed by PARC, which lacks modularity and makes ex-
perimentation difficult. NFD is highly modular and extensible, has been deployed on the NDN testbed and
released to public.

To support larger-scale experiments than our current testbed can support, we developed an ns-3 based
NDN simulator, ndnSIM [1], to answer questions regarding large scale NDN network properties. Since
ndnSIM’s public released during summer 2012, its functionality has been substantially expanded through
active usage by ourselves and by a global ndnSIM user community.

2.3 Progress: Year 4

• Applications (Section 3.1): We made progress on important fronts through course-based explorations
and a variety of internships, in addition to ongoing research of graduate students and staff:

– To complement enterprise building automation and management work, developed a series of
device-focused smart home application and library designs, with experimental prototypes for
device control and sensor data acquisition created for the Raspberry PI.

– Developed and prototyped an NDN Internet of Things tool kit for the Raspberry PI.

– Designed, developed, and performed experimental deployment of a practical, end-to-end real-time
audio and video conferencing application (ndnrtc) using the NDN-CCL libraries and industry-
standard WebRTC media components.

– Continued to explore different approaches to peer-to-peer multiplayer online gaming, resulting in
a working demonstration for the ACM ICN conference.

– Transitioned building management system prototype and other NDN applications to use new
NDN-TLV packet format and work with new NFD, library, and repository implementations.

– Expanded the NDN Common Client Libraries (NDN-CCL), providing support for NDN applica-
tion development across C++, Python, Javascript, and Java, and some C#.

– Transitioned research results into the NDN-CCL, including support for the new NDN-TLV packet
format, native Python, a prototype SYNC implementation, security library functionality, and
application-side content cache.

– Organized regular NDN Platform releases to aid researchers working with NDN.

– Continued work on web browser support through expansion of the NDN-JS Javascript library,
now used by multiple practical applications.

• Routing (Section 3.2):

– Dynamic intra-domain routing protocol: We re-implemented the Named-data Link State Routing

8

Protocol (NLSR) [2] to work with NFD. NLSR supports both link state and hyperbolic routing
(Section 3.2.2), synchronization using ChronoSync, and a hierarchical trust model for routing
within a single administrative domain. We have deployed it on the NDN testbed.

– Hyperbolic routing:

∗ We embedded the updated NDN testbed topology into the hyperbolic plane using newer
Internet topology data, and our simpler and more efficient hyperbolic network mapping algo-
rithm.

∗ We implemented the basic hyperbolic routing in NLSR by disseminating hyperbolic coordi-
nates in link state announcements. We have been conducting Emulab experiments to evaluate
the feasibility of hyperbolic routing in NDN by comparing it with link-state routing under
various conditions.

∗ We developed and released a stand-alone software package for hyperbolic network generation
and greedy routing simulation.

– Dynamic Interest Limiting for NDN Congestion Control: We designed a new scheme to detect link-
layer packet loss and dynamically adjust Interest limit to effectively control network congestion.
This is the first hop-by-hop NDN congestion control scheme that does not assume the knowledge
of underlying link bandwidth and can work better on overlay links. Our evaluation using ndnSIM
has shown significant performance improvement over existing approaches.

• Scalable Forwarding (Section 3.3):

– Refined and evaluated lookup performance of FIB design with 1 billion synthetic names. Investi-
gated incremental updates on proposed data structures and evaluated insertion latency.

– Refined the proposed fingerprint-only PIT design to support the case with multiple core routers
and investigated in supporting all prefix matching with this PIT design.

– Started to develop an NDN forwarding engine on a general-purpose multi-core platform.

• Security and Privacy (Section 3.4):

– We designed and implemented a security library to facilitate experimentation with trust models
and help application developers enable security support. Within the security library, we achieved
several goals, including:

∗ Secured private key storage and management on local machine;

∗ PIB service: which allows different libraries/applications to share and manage public key
information on local machine;

∗ Basic automated packet signing through ”identity, key, certificate” abstraction;

∗ A new extensible NDN public key certificate format.

∗ Generalize packet validation process and design a validation framework.

∗ Design a policy language to express a variety of trust models.

– We designed, implemented, and deployed a testbed certificate system to facilitate the process
of deploying public key certificates on the NDN testbed. The system consists of two parts: a
set of tools for users to generate and manage keys/certificates, and for testbed operators to issue
certificates; and a web-based certificate requesting system, which provides a user-friendly interface,
email-based user authentication, efficient notification to operators/users who process certificate
requests.

– We experimented with a Web-of-Trust model in ChronoChat, a server-less multi-party chat
application. For this application, we adapted the Web-of-Trust model into an endorsement-based
authentication system and also designed a key distribution system to support it.

• Theory (Section 3.5):

– We published the description of VIP framework and algorithms for joint forwarding and caching
in NDN networks and demonstrated their superior performance relative to other algorithms as one
of the first algorithmic contributions to the NDN literature with a solid theoretical foundation.

9

– We developed joint congestion control, forwarding, and caching algorithms for NDN based on the
VIP framework, pioneered the study of congestion control in information-centric networks where
utilities (fairness) are now associated with content objects, rather than source-destination pairs.
We also developed fair congestion control schemes to obtain a tradeoff between the utility gained
by admitting more demand into the network layer, and the incurred average network delay.

– We studied throughput and delay behavior in large-scale information-centric wireless networks,
obtained the optimal tradeoff between throughput and delay in information-centric wireless net-
works using shortest path interest routing and optimized cache placement. We also extended
these results to hybrid wireless scenarios where wireless nodes can communicate not only among
themselves but also to a set of base stations.

• NFD and testbed deployment (Section 4):

– We produced a new NDN packet format specification, which is now used by all NDN applications
running on the NDN testbed.

– We designed, implemented, and deployed a new NDN Forwarding Daemon (NFD) on the NDN
testbed.

– We expanded the NDN testbed to three continents and multiple collaboration sites.

• Education (Chapter 5):

– Continued biweekly NDN Seminars among all participating sites to share the latest research results
and discuss results by other researchers.

– Created screencasts to demonstrate features of NDN such as distributed publishing, enumeration,
discovery, retrieval and failover.

– Continued to incorporated NDN architecture into undergraduate and graduate teaching at NDN
project participation institutions; a number of term projects from the graduate seminar courses
directly contributed new results to NDN research.

• Global expansion of NDN effort (Chapter 6):

– We organized the first NDN Community meeting.

– We established the NDN Consortium.

– We contributed to the organization of, and participated in the first ACM Information Centric
Networking Conference.

References

[1] Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. ndnSIM: NDN simulator for NS-3. Technical
Report NDN-0005, NDN Project, July 2012 (revised October 2012.

[2] AKM M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang. NLSR: Named-data link
state routing protocol. In ACM SIGCOMM ICN Workshop, 2013.

[3] Ndn packet format specification. http://named-data.net/doc/ndn-tlv/.

10

http://named-data.net/doc/ndn-tlv/

Chapter 3

Architecture Research

The NDN design introduced in the Architecture Overview (Chapter 1) represents a novel architectural
blueprint with both unique opportunities and many challenges. This chapter describes activities and findings
in each research area during the fourth year.

3.1 Applications

Contributors
PIs Jeffrey Burke, Van Jacobson & Lixia Zhang (UCLA), Tarek Abdelzaher (UIUC)

Grad Students . . Shuo Chen, Ilya Moiseenko, Mengchen Pei, Wentao Shang, Yingdi Yu (UCLA); Jongdeog

Lee, Shiguang Wang (UIUC)

Undergrads Akash Kapoor, Yang Sheng (UIUC)

Staff Peter Gusev, Alex Horn, Jeff Thompson, Zhehao Wang, (UCLA); Hongyan Wang (UIUC)

Postdoc: Alex Afanasyev

3.1.1 Summary of Objectives

NDN application research: (1) drives architecture development based on a broad vision for future applica-
tions; (2) drives and tests prototype implementations of the architecture using applications for participatory
sensing, instrumented environments, and media distribution, among others; (3) verifies and validates func-
tional and performance advantages of NDN in key areas; and (4) demonstrates how NDN’s embedding of
application names in the routing system promotes efficient authoring of sophisticated distributed applications,
reducing complexity, opportunities for error, and time and expense of design and deployment.

3.1.2 Technical Approach

During the fourth year of NDN research, the applications group continued to explore the instrumented
environment, media distribution, and serverless peer-to-peer applications. In the process we confirmed the
value of developing pilot applications to drive NDN architecture design and development.

3.1.3 Progress - Applications

This section summarizes the progress of each application area, emerging design patterns, and impact on
our architecture research. The application areas include instrumented environments, peer-to-peer, serverless
applications, NDN in the browser, and NDN support for climate data application.

11

NDN Network

TCP/IP

BACnet, Modbus, etc.

Publish into repo

Fetch data from repo

Device configuration

Legacy BMS Protocol
NDN Communication

Gateway
User

Repo

BMS Manager Daemon

Operator

Device

Figure 3.2: Building management system prototype
deployment conceptual diagram.

/ndn/ucla.edu/bms

strathmore melnitz

user

data

public wentao

demand hvac

[key-id] [key-id]

[timestamp]

building

data

panel

1451

voltage

J K

current

[timestamp]

[timestamp] [timestamp]

acl

acl

acl apl apl

electrical

acl

Figure 3.3: Building management system namespace.

Instrumented environments: Building Automation Systems & Smart Home/Internet of Things

Figure 3.1: Interface for deployed building manage-
ment system, now ported to NDN-TLV packet format

Information-centric networking is generally dis-
cussed in terms of content retrieval, as opposed to
control, actuation, or remote execution. We be-
lieve NDN offers design solutions for not only these
functions but broader BAS industry goals, e.g., to
enhance device interoperability, enable data-centric
application designs, and provide simplified access
to networked buildings over commodity networks
while providing security against a wide variety of
IT and industrial control attacks. To explore NDN
as a network substrate for Building Automation Sys-
tems (BAS), we connect BAS devices to the NDN
testbed and incorporate them into applications that
leverage unique features enabled by the architecture.
We reached a milestone with the publication of a
IEEE Network Magazine article, “Securing Building
Management Systems using Named Data Network-
ing” [8], which summarizes a design and prototype
for building management systems over NDN. An-
other milestone was our initial repository design for
building management data using a graph database and the imminent field deployment (October 2014) of an
ambient informatics project with the Architecture Department at UCLA, which will use NDN for internal
communication of transportation data and lighting control [4]. We also transitioned the existing building
management code to use the new forwarder (NFD), repo, and libraries.

This year, we also started work to support device-level IoT applications for NDN, for use in smart home
R&D. Significant results include: 1) a basic NDN-IoT tool kit and demonstration applications for NDN on
the Raspberry PI, with support for basic sensor and actuator I/O and HDMI-CEC consumer device control
(e.g., for televisions and home electronics); and 2) an initial design for discovery and bootstrapping (of trust
and services) for devices on a local network [1]. The primary goal of the NDN-IoT toolkit for the Raspberry
PI is to provide a platform for users to create a home network of NDN-capable Raspberry Pi computers.
The platform is easy to install, run, and customize, and uses NDN’s built-in security features to help users
protect their network from outside access.

The NDN-IoT toolkit is primarily distributed as an SD card1 image based on the Raspbian Linux distri-

1Secure Digital Card is an ultra small flash memory card designed to provide high-capacity memory in a small size, and

12

Figure 3.4: ndnrtc conference screenshot.

NDN

Producer

Capturer

Channel

Renderer

Encoder

Segmentizer
YUV Frames

YUV Frames Encoded
Frames

YUV Frames

PIT+Cache

Segments

Segments

Media Interests
NDN

Consumer

Playout

Buffer

Receiver
Interest queue

RTT Estimator Buffer Estimator

Pipeliner

Renderer

Segments

Media Interests

Service Channel

Stream Info
Metadata

Stream Info
Metadata

Meta
Interests

Meta Interests

Figure 3.5: ndnrtc Application Architecture.

bution, which users can flash onto their Raspberry Pi SD cards. The image contains scripts for configuring
and running the NDN forwarder, as well as instructions and tutorials for creating nodes and adding them
to a home network. Currently, users can create or modify network behavior using the ndn pi module, de-
veloped with the Python binding of the NDN Common Client Libraries (http://named-data.net/doc/
ndn-ccl-api/). There are also examples of simple networks that are ready to run. All source code for
the ndn pi module is available online at http://github.com/remap/ndn-pi. The SD card image includes
several other libraries for more advanced NDN application development, including C++ bindings of the
Common Client Libraries.

Peer-to-Peer, Serverless Applications

Real-time video conferencing We made significant progress in the development and evaluation of real-
time video conferencing over NDN through the ndnrtc application, which enables many-to-many conferencing
over NDN [3]. Figure 3.4 shows a sample screenshot; Figure 3.5 shows a diagram of the application archi-
tecture. This application requires low-latency packet delivery and consumer-side retransmission of Interests,
and has proved a useful driver for evaluating the NFD forwarder with real world traffic. It has also motivated
design dialogue around the relationship between application configuration and forwarder strategy. Further,
it has driven the development of the NDN-CPP C++ library and motivated support for features such as
application-side cache management. We expect ndnrtc to gain real-world use among the project team in the
Fall of 2014, and motivate traffic congestion control research. It also proved a fertile ground for external col-
laboration: during summer 2014 we hosted an intern from Keio university who collaborated on incorporating
Forward Error Correction (FEC), and we are currently working with researchers from Panasonic Corporation
on adaptive rate control algorithms for real-time video of NDN, with a paper forthcoming [16]. The ndnrtc
NDN Real Time Communication Library & Application is available at https://github.com/remap/ndnrtc.

Multi-player online game We continued research on peer-to-peer virtual environments, investigating a
variety of namespace designs, and implementing a functional peer-to-peer multiplayer game in the Unity
3D graphics engine. The current game design uses SYNC for namespace synchronization, and static octree

used extensively in portable devices.

13

http://named-data.net/doc/ndn-ccl-api/
http://named-data.net/doc/ndn-ccl-api/
http://github.com/remap/ndn-pi
https://github.com/remap/ndnrtc

Figure 3.6: Octree hierarchical partitioning of
the game world.

Figure 3.7: Multi-player on-line game discovery
and communication problem.

partitioning of the game world (Figure 3.6) to solve peer-to-peer discovery and updating of game objects
(Figure 3.7) via Interest/Data exchange [15].

Matryoshka is a multiplayer online game, which adopts a serverless, pure peer-to-peer architecture.
Synchronization in a distributed gaming environment presents a key challenge: each player only needs
to know objects near itself in the game world, yet players whose areas of interest intersect must reach
consistent conclusions about objects in the intersected area. The current design statically and recursively
partitions the virtual environment into octants, thus providing a shared namespace for every peer running
the game. Then, we apply a two-step synchronization to deal with the two questions which each peer asks
the network: “Which players are in my vicinity?” in a broadcast discovery namespace, and “What are those
players doing?” in a multicast update namespace. The game application is implemented using Unity3D
game engine, and ndn-dot-net, a C# adaptation of the NDN common client library. A presentation of this
game has been accepted by ACM ICN 2014 in the demonstration session, where we will showcase its player
discovery and position update utilities [14].

ChronoChat This year we continued work on ChronoChat, a serverless multi-party chat application. Since
the chatroom has no centralized management, peer authentication must be distributed, which motivated our
investigation of Web-of-Trust models for NDN applications. For ChronoChat specifically, we designed an
endorsement-based authentication mechanism to allow peers in a chatroom to manage chatroom membership
and authenticate each other’s identity, thus only authorized peers can speak in a chatroom and have their
chat messages authenticated [17]. In addition, we also developed a chatroom discovery mechanism, so that
interested users can learn all ongoing chatrooms automatically [18]. This research continued our progress on
discovery and bootstrapping challenges across different applications.

Web applications / NDN in the browser

Support for web applications has continued primarily through expansion of the Javascript library, NDN-JS.
In part because of its adoption by developers outside of the application group, it has continued to evolve
to support experimentation on web browser support for NDN and rapid prototyping of user interfaces. The
library team has incorporated continued enhancements provided by the community for such features as
Node.js standalone Javascript application support. The software development team integrated websockets
proxy support, enabling direct NDN communication from browsers, into the new NFD forwarder.

The applications team also finished a port of ChronoChat, originally coded in C++, to Javascript, and

14

created several small tools such as the namespace browser NDNExplore. Colorado State developed the
NDN-Browserkit prototype, an NDN toolkit for client side browser apps, packaged as a Node.js npm (Node
Package Manager) module.

Finally, the applications team designed the ndnrtc real-time conferencing library for integration into
browsers, and began building a web-based conferencing tool, which should complete in 2015 as part of the
NDN-NP project. Integration of the NDN code with a complex multi-threaded platform such as the Mozilla
browser motivated some of our approaches to threading and shared pointers in the NDN-CPP library.

NDN for Climate Data

In a companion project titled “Supporting Climate Applications over Named Data Networking (NDN)” (NSF
CC-NIE Integration Award#13410999) PI Papadopoulos at Colorado State University has been investigating
NDN as a technology to support applications in the climate domain. In this project, a team of networking
researchers in the Computer Science and Atmospheric Sciences departments at Colorado State University
are working jointly to integrate NDN with the Global Cloud Resolving Model (GCRM). GCRM simulates
the global atmosphere using a grid which is fine enough to crudely resolve the larger individual clouds.
This driver application typically generates terabyte to petabyte scale datasets. GCRMs are currently under
development at several modeling centers in the U.S. and abroad.

The CSU team has built modules to translate GCRM datasets into an namespace appropriate to run
over an NDN network. The translators take into account filenames, directory structures, metadata inside
data files, and information provided by scientists to construct namespaces suitable for capturing desirable
information in the names while imposing a NDN-compliant hierarchical name structure. The tasks for the
translator range in difficulty, from relatively straightforward, such as CMIP5 data that already obeys a strict
hierarchical structure, to hard, such as climate model output data with many user-defined parameters.

We have deployed a small testbed made of five 10GB-connected NDN nodes: two at CSU (CS and
Atmospheric Sciences), one each at Denver, Sacramento, and LBNL. A sixth node will be deployed at the
supercomputing center in Wyoming. Existing nodes are seeded with about 50TB of CMIP5 data, with names
that have been translated to NDN names. We have also developed a simple browsing application to publish,
discover, enumerate, and retrieve datasets. Finally, we presented our work in several venues, ranging from
networking (Internet2 and ESnet) workshops to climate research groups.

3.1.4 Progress - Libraries

NDN Software Platform

This year, we launched the NDN Platform, a starting point for experimention with NDN. It collects individual
software components into a coherent, usable, and well-documented platform for exploring NDN in practical
applications. The platform has the following objectives:

1. Gather stable versions of core components needed for NDN experimentation.

2. Use a release heartbeat to stimulate interoperability testing and discussion.

3. Improve access to and consistency of NDN software projects.

4. Employ an open and lightweight process, minimizing central management but identifying stewards of
each component

5. Ensure that the managed nodes on the testbed run the Platform.

NDN Platform 0.3 The platform had the following components in its third release in August 2014:

• NFD - NDN Forwarding Daemon, version 0.2.0

• ndn-cxx library, version 0.2.0: The NDN C++ library with eXperimental eXtensions (CXX)

15

– ndnsec security tools to manage security identities and certificates

• NDN-CCL - NDN Common Client libraries suite, version 0.3

– NDN-CPP C++ / C library

– PyNDN2 Python library

– NDN-JS JavaScript library (with Node.js support)

– jNDN Java library (preliminary)

• NLSR - Named Data Link State Routing Protocol, version 0.1.0

• repo-ng - next generation of NDN repository, version 0.1.0

• ndn-tlv-ping - ping application for NDN, version 0.2.0

• ndn-traffic-generator - traffic generator for NDN, version 0.2.0

• ndndump - packet capture and analysis tool for NDN, version 0.5

• Preliminary binary package support on Ubuntu, MacOS X, others.

The NDN Platform Codebase is located at http://named-data.net/codebase/platform/.

NDN-CXX: NDN C++ library with eXperimental eXtensions

To promote and support robust, effective, and diverse experimentation with the NDN architecture, and drive
development of the new forwarding daemon (NFD), in 2014 we forked the NDN C++ library development
effort (NDN-CPP) and developed ndn-cxx, C++ with eXperimental eXtensions, a C++ library that im-
plements all NDN protocol abstractions and provides a foundation for cutting edge experimentation with
NDN technology. In particular, ndn-cxx is used to prototype new architectural features, which may then
be incorporated into the Common Client Libraries, i.e., NDN-CPP. The development of ndn-cxx follows
an application-driven iterative approach, taking feedback from application developers on how they use and
interact with the library, what challenges they experience, and what changes they would like. At the same
time, ndn-cxx also strives to maintain some level of stability within release cycles.

To optimize developer productivity while experimenting with their applications, ndn-cxx encourages and
extensively uses the well-known Boost libraries [2], leveraging more than 7000 person years of high-quality
code and modern design patterns. The library includes many utility classes and helpers to simplify common
operations in NDN applications, which have been discovered during the last few years of NDN application
development. Finally, ndn-cxx tries to stay as simple as possible, be easy to understand by new developers,
and easy to maintain and extend. To meet these objectives, ndn-cxx is implemented purely in C++,
adhering to object-oriented programming principles, with extensive documentation. A ndn-cxx developer
guide is under development which describes the basic concepts, and shows examples and common patterns
in NDN applications.

Usage in applications ndn-cxx was released in August 2014, together with the new NDN Forwarding
Daemon (NFD). It is currently used by the following projects:

• NFD - NDN Forwarding Daemon

• NLSR - Named-data Link-State Routing protocol

• repo-ng - a new implementation of NDN repository

• ChronoChat - Multi-user NDN chat application

• ChronoSync - Sync library for multiuser realtime applications for NDN

• ndn-tlv-ping - Ping Application For NDN

• ndn-traffic-generator - Traffic Generator For NDN.

NDN security library is part of ndn-cxx, which is described in Section 3.4.

16

http://named-data.net/codebase/platform/

NDN-CCL: Common Client Libraries

The NDN Platform release also includes the NDN Common Client Libraries (CCL) [12] that we have been
developing over the last few years. NDN-CCL provide a common application programming interface (API)
across several languages. Currently, the CCL is implemented in C++, Python, JavaScript and Java. Signif-
icant effort continued on the development of these libraries to support application research and experimen-
tation. We extended them to support both the existing forwarder (NDNx, a port of CCNx) and the new
forwarder (NFD), to allow comparison and simultaneous experimentation. (This support enabled a critical
transitional period; we will slowly phase out use of the NDNx codebase and deprecate library support.)

We updated the NDN-CCL libraries to support the following expressed needs of the research and com-
munity: 1) preliminary trust management based on the architecture group’s reference implementation in
ndn-cxx; 2) ECDSA signatures; 3) a language-independent, industry-standard approach to message descrip-
tion (Google protocol buffers), which generates TLV or binary XML format messages in Data and Interests
across all CCL languages; 4) configuration interaction with the NFD forwarder; 5) a preliminary generalized
API for the SYNC protocol, across multiple languages; 6) a pure Python library implementation that runs
on a variety of platforms; 7) an application-side in-memory repository; 8) the major components of the Java
library implementation, in preparation for work on Android mobile platforms; and 9) initial incorporation of
unit testing and continuous integration. These library developments required ongoing dialogue between the
architecture and applications groups, which continued to benefit the design evolution of the NDN protocol
itself, including naming conventions and protocol structure decisions.

Usage in applications. The NDN-CCL is used by the following applications and projects:

• CCNx Federated Wiki, an NDN port of the Smallest Federated wiki (NDN-JS)

• Chronochat-js, a javascript implementation of the ChronoChat application (NDN-JS)

• Matryoshka, an experimental multi-player online game using NDN and the Unity3D game engine.
(jndn as the basis of the .NET port of CCL used in this project.)

• ndn-bms, building management system prototype (part of NDN-NP project) (PyNDN, NDN-JS)

• ndn-lighting, lighting control application using NDN (PyNDN, NDN-JS)

• ndn-protocol, a firefox browser plug-in supporting an ndn:/ retrieval scheme (NDN-JS)

• NDNEx, an NDN-based mobile health application (part of NDN-NP research project). (jndn)

• ndnfs and ChronoShare, NDN file sharing platforms (PyNDN)

• NDNoT, the Named Data Network of Things toolkit for the Raspberry PI (PyNDN, NDN-JS)

• ndnrjs, a javascript implementation of an NDN repository (NDN-JS)

• ndnrtc, a peer-to-peer multiparty audio, video, and chat application (NDN-CPP, NDN-JS)

• ndnstatus, the NDN routing status web page (PyNDN, NDN-JS)

• NDNVideo, a video playout application for NDN (PyNDN)

• OpenPTrack-NDN an open source person tracking system that will add NDN support in Fall 2014.
(NDN-CPP)

Advanced API Project

Over the last year we started a new API development that provides higher-level abstractions than that
provided by the existing libraries. The existing libraries provides a basic programming interface called Interest
/ Data API, which lacks features commonly desired by applications, such as content segmentation, packet
reassembly, reliable data fetching, flow control, realistic security capabilities, and the ability to influence
forwarding decisions. Consequently application developers spent considerable time re-implementing these
functions. This observation motivated us to develop a new API to fit NDN’s information distribution model.
We expect this new API to play the same role in NDN as sockets in TCP/IP.

We dedicated time and many thoughtful discussions this year to identifying commonalities in the design

17

of various NDN applications, and to design common programming abstractions to accommodate them. We
proposed two new programming abstractions – consumer context and producer context – specifically tailored
for NDN’s distribution model to allow developers to build applications quickly and consistently. We have
built a prototype of this Consumer-Producer API as described in DN Technical Report NDN-0017 [5]. The
current state of this research project was presented at the First NDN Community Meeting [7], and a brief
description of the design, “Consumer-Producer API for Named Data Networking”, was accepted by ACM
ICN 2014 Conference as a poster presentation [6].

Information maximization

Researchers at UIUC investigated the exploitation of hierarchical data names to achieve information-utility
maximizing data transport. A novel transport-layer mechanism, called the information funnel, was developed
that maximizes a measure of delivered information utility. Named-data networking is especially suited for
utility-maximizing transport because the network is aware of hierarchical data names, allowing intelligent
sampling of sets of named objects such that redundancy is minimized and information utility is increased.
NDN gives rise to a notion of distance between named objects that is a function of only the topology of the
name tree. This distance, in turn, can expose similarities between named objects that can be leveraged for
minimizing redundancy among objects stored in cache or transmitted over bottlenecks, thereby maximizing
their aggregate utility. With appropriate naming conventions, objects with higher similarity will share a
longer prefix in the name tree. For example, different versions of the same object might share all parts of
the name except a version number. Hence, partial redundancy can be removed by preferentially dropping
objects that share more of their names with others (in the case of versioned objects, this results in retaining
the latest version). Experiments at UIUC demonstrated that with a proper hierarchical name space design,
the information funnel prioritizes transmission and storage of data objects to maximize information utility,
with very weak assumptions on the utility function. This prioritization is achieved merely by comparing data
name prefixes, without knowing application-level name semantics, which makes it a generalizable transport-
layer mechanism across a wide range of applications. Evaluation results show that the information funnel
improves the utility of the collected data objects compared to other lossy protocols.

The information funnel is motivated by the advent of the age of data overload, where applications
will increasingly need a new transport protocol, different from TCP and UDP, that offers a representative
sampling of information as opposed to reliably conveying all bits (TCP) or randomly dropping packets (UDP).
The current protocol stack does not offer an efficient and general way to implement such transport because
the network is aware of bits or abstract datagrams only, which carry no information on application-level data
boundaries. In contrast, in an NDN-based architecture, the network is aware of application-relevant named
objects, which can be meaningfully sampled. Hence, the information funnel allows applications to retrieve
a representative sampling of information based on an information-flow maximizing protocol. The protocol
resulted in a paper published in DCoSS 2014 [13].

3.1.5 New Architectural Findings from Application Development

Collaboration between the application, architecture, and NDN testbed teams has pointed to important areas
of further research that generalize some of the experiences of recent design and implementation effort.

• Deployment on the testbed of applications such as ndnrtc and ChronoChat have demonstrated the
critical relationship between application packet delivery requirements and per-namespace forwarding
strategy in the forwarder. What strategies are needed to support different applications, and how those
strategies are selected and configured will be an important part of future research.

• ndnrtc and other applications using real-time data suggest that consumer retransmission strategies
designed to maximize throughput and latency performance amid varying network conditions are an
important general area of consideration. We can draw from previous work in TCP flow control for this,
and potentially provide library support for data buffering and interest pipelining based on application-
level deadlines and performance targets.

• Although NDN is intrinsically “pull-based”, the internal approach of many applications is to “publish-

18

and-forget”, so that they do not have to handle incoming interests for data concurrently with other
aspects of the application. Even for dynamic data, an application may wish to publish it persistently
for the lifetime of the process, so that the data does not need to be regenerated due to loss, or for
requests for historical data. Our libraries have evolved to support in-memory, application store to meet
such needs. An emerging area of investigation is the relationship between per application storage and
the local content store, which could also provide this functionality in a centralized and efficient manner
on a given host.

• Naming convention design for versioning, segmenting, timestamping, and the general inclusion of meta-
data associated with data objects have evolved over the course of this year and will continue to be
a focal area of research. The project team recently released a technical memo describing the current
approach to such conventions, hoping to inspire community dialogue [11]. How to best translate multi-
dimension object descriptions into NDN names has been a challenge in the design of a number of NDN
applications, a challenge we plan to address in the coming year.

3.1.6 Values in Design

Our collaboration with Values in Design researchers continued this year, resulting in the “World on NDN”
technical report [9] and a related upcoming submission [10]. This paper, collaboratively authored with
Katie Shilton at the University of Maryland with applications and architecture researchers of the NDN
project team, discusses implications for free speech, anonymity and obscurity, data retention and forgetting,
privacy, content regulation, law enforcement, and network neutrality. We look forward to continuing this
collaboration through Shilton’s upcoming NeTS-Small grant, which will enable further engagement with the
NDN namespace design and trust management.

References

[1] Adeola Bannis. Ndn internet of things toolkit for raspberry pi (poster). In NDN Community Meeting,
Los Angeles, CA, September 2014.

[2] Boost Project. Boost Libraries. Online: http://www.boost.org/, 1998.

[3] Peter Gusev, Zhehao Wang, and Jeff Burke. Ndn real-time conferencing library (poster). In NDN
Community Meeting, Los Angeles, CA, September 2014.

[4] Alex Horn, Adeola Bannis, Jeff Burke, Dana Cuff, and Jason Payne. Ambient informatics - ndn bus
bench (poster). In NDN Community Meeting, Los Angeles, CA, September 2014.

[5] Ilya Moiseenko and Lixia Zhang. Consumer-producer api for named data networking. Technical Report
NDN-0017, Revision 1, NDN, February 2014.

[6] Ilya Moiseenko and Lixia Zhang. Consumer-producer api for named data networking. In Proc. 1st ACM
Conference on Information-Centric Networking (ICN-2014), Paris, France, September 2014.

[7] Ilya Moiseenko and Lixia Zhang. Consumer-producer api for named data networking (poster). In NDN
Community Meeting, Los Angeles, CA, September 2014.

[8] Wentao Shang, Quihan Ding, Alessandro Marianantoni, Jeff Burke, and Lixia Zhang. Securing building
management systems using named data networking. IEEE Network, 28(3):50–56, 2014.

[9] Katie Shilton, Jeff Burke, Kimberly Claffy, Charles Duan, and Lixia Zhang. A world on ndn: Affordances
& implications of the named data networking future internet architecture. Technical Report NDN-0018,
Revision 1, NDN, April 2014.

[10] Katie Shilton, Jeffrey Burke, Kimberly Claffy, and Lixia Zhang. Anticipating policy and social impli-
cations of named data networking. Communications of the ACM (submitted).

19

http://www.boost.org/

[11] NDN Project Team. Ndn technical memo: Naming conventions. Technical Report NDN-0022, Revision
1, NDN, July 2014.

[12] Jeff Thompson and Jeff Burke. Ndn common client libraries. Technical Report NDN-0024, Revision 1,
NDN, September 2014.

[13] Shiguang Wang, Tarek Abdelzaher, Santhosh Gajendran, Ajith Herga, Sachin Kulkarni, Shen Li,
Hengchang Liu, Chethan Suresh, Abhishek Sreenath, Hongwei Wang, William Dron, Alice Leung,
Ramesh Govindan, and John Hancock. The information funnel: Exploiting named data for information-
maximizing data collection. In 10th IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS), May 2014.

[14] Zhehao Wang, Zening Qu, and Jeff Burke. Matryoshka: Design of an ndn multiplayer online game
(demo). In Proc. 1st ACM Conference on Information-Centric Networking (ICN-2014), Paris, France,
September 2014.

[15] Zhehao Wang, Zening Qu, and Jeff Burke. Project matryoshka: Ndn multiplayer online game (poster).
In NDN Community Meeting, Los Angeles, CA, September 2014.

[16] Takahiro Yoneda, Ryota Ohnishi, Eiichi Muramoto, and Jeff Burke. Consumer-driven adaptive rate
control for real-time video streaming in named data networking. IEICE Trans. Fundamentals Commun.
Electron. Inf. & Systems. (Tentatively accepted for publication.), 2014.

[17] Yingdi Yu, Alexander Afanasyev, Zhenkai Zhu, , and Lixia Zhang. An endorsement-based key manage-
ment system for decentralized ndn chat application. Technical Report NDN-0023, Revision 1, NDN,
July 2014.

[18] Zhenkai Zhu, Alex Afanasyev, Yingdi Yu, and Lixia Zhang. Chronochat: a server-less multi-user instant
message application over ndn (poster). In NDN Community Meeting, Los Angeles, CA, September 2014.

Demonstrations, and Posters

1. Adeola Bannis. Poster presentation, demo, and conference talk, “NDN Internet of Things Toolkit for
Raspberry Pi.” NDN Community Meeting. September 3-5, 2014, Los Angeles CA.

2. Alex Horn, Adeola Bannis, Jeff Burke, Dana Cuff, Jason Payne. Poster presentation and demo, NDN
Community Meeting. “Ambient Informatics - NDN Bus Bench.” September 3-5, 2014, Los Angeles
CA.

3. Giulio Grassi. Poster presentation, NDN Community Meeting. “Using GeoFaces to route Interests
and Data in Vehicular Networks.” September 3-5, 2014, Los Angeles CA.

4. Peter Gusev, Jeff Burke, Zhehao Wang. Poster presentation, demo and conference talk, NDN Com-
munity Meeting. “NDN Real-Time Conferencing Library.” September 3-5, 2014, Los Angeles CA.

5. Ilya Moiseenko and Lixia Zhang. Poster presentation and lightning talk, NDN Community Meeting.
“Consumer-Producer API for Named Data Networking.” September 3-5, 2014, Los Angeles CA.

6. Jeff Thompson and Jeff Burke. Poster presentation and demo, NDN Community Meeting. “NDN
Common Client Libraries API.” September 3-5, 2014, Los Angeles CA.

7. Zhehao Wang. Poster presentation and demo, NDN Community Meeting. “Project Matryoshka: NDN
Multiplayer Online Game.” September 3-5, 2014, Los Angeles CA.

8. Zhenkai Zhu, Alexander Afanasyev, Yingdi Yu, Lixia Zhang. Poster presentation and demo, NDN
Community Meeting. “ChronoChat: a Server-less Multi-User Instant Message Application Over NDN.”
September 3-5, 2014, Los Angeles CA.

20

3.2 Routing

Contributors
PIs Beichuan Zhang (Arizona), Lan Wang (Memphis), Dmitri Krioukov (CAIDA/NU), Lixia

Zhang (UCLA)

Grad Students . . Cheng Yi, Junxiao Shi, Yifeng Li (Arizona); A. K. M. Mahmudul Hoque, Minsheng

Zhang (Memphis); (UCLA)

Undergrads Nathan Yee (Arizona); Adam Alyyan, Marc Badrian, Ashlesh Gawande, Vince S.

Lehman, Nic Smith (Memphis)

Staff Chiara Orsini, Rodrigo Aldecoa, Ken Keys, Marina Fomenkov and Alex Ma (CAIDA)

Postdoc: Alex Afanasyev (UCLA), Syed Obaid Amin (Memphis)

The goal of NDN’s network layer is to provide a name-based packet delivery service for applications to
build upon. To meet the requirements of the future Internet, the network layer must have the following
properties:

1. Scalability : support a large Internet topology and large number of name prefixes.

2. Security : provide integrity, provenance, and pertinence of routing messages.

3. Resiliency : detect and recover from packet delivery problems quickly.

4. Efficiency : exploit multi-path forwarding and data caching for efficient use of network resources.

Over the last year the routing group’s effort focused on the following three areas:

• Dynamic intra-domain routing protocol: We re-implemented the Named-data Link State Routing
Protocol (NLSR) [3] to work with the newly developed NFD. NLSR supports both link state and hy-
perbolic routing (Section 3.2.2), uses ChronoSync for routing database synchronization among routers,
and uses a hierarchical trust model for routing security within a single administrative domain. NLSR
has been deployed on the NDN testbed.

• Hyperbolic routing: We embedded an updated NDN testbed topology into the hyperbolic plane
using more recent Internet topology data, and our new, simpler and more efficient, hyperbolic net-
work mapping algorithm. We also implemented basic hyperbolic routing in NLSR by disseminating
hyperbolic coordinates in link state announcements. We have been conducting experiments on Emulab
to evaluate the feasibility of hyperbolic routing in NDN by comparing it with link-state routing un-
der various conditions. We also developed and released a stand-alone software package for hyperbolic
network generation and greedy routing simulation.

• Dynamic Interest Limiting for NDN Congestion Control: We designed a new scheme to detect
link-layer packet losses and dynamically adjust the Interest packet forwarding rate to control network
congestion. This scheme is the first hop-by-hop NDN congestion control approach that does not assume
knowledge of underlying link bandwidth and can work well over tunneling links. Our evaluation using
ndnSIM showed significant performance improvement over other proposed approaches [8, 6, 2, 7] .

3.2.1 Named-data Link State Routing Protocol (NLSR)

Named-data Link State Routing (NLSR) [3] runs directly on top of NDN, i.e., it uses NDN’s Interest and
Data packets to exchange routing updates. NLSR uses names instead of IP addresses to identify the various
components of a routing system, and can use any underlying communication mechanism that NDN uses
(e.g., Ethernet, IP tunnels, TCP/UDP tunnels) for routing message exchanges. In Year 3 we implemented
a preliminary version of NLSR in C that runs over CCNx and discovered several problems with CCNx
sync/repo, including high memory consumption, inability to delete information from the repo, and failure to
notify NLSR of routing changes when the update rate is high. During Year 4, as the new NDN forwarding
daemon NFD was being developed, we re-implemented NLSR in C++ using the new ndn-cxx developer
library to work with NFD. Below we summarize the main design decisions and features in NLSR.

21

Component Name

Router /〈network〉/〈site〉/〈router〉
NLSR /〈network〉/〈site〉/〈router〉/NLSR

NLSR data /〈network〉/NLSR/LSA/〈site〉/〈router〉/〈type〉/〈version〉
NLSR key /〈network〉/〈site〉/〈router〉/NLSR/key

Router key /〈network〉/〈site〉/〈router〉/key

Table 3.1: Naming Scheme in NLSR (not all names are shown.)

We designed a naming
scheme that associates vari-
ous entities in the routing sys-
tem with each other (see Ta-
ble 3.1). In the case of intra-
domain routing, the relation-
ship between routers, rout-
ing processes, and routing
data is inherently hierarchical.
Therefore, we decided to use a hierarchical naming scheme to reflect this hierarchy of operation. More
specifically, a router name has its network name as the first name component and site name as the second
component. The NLSR process running on a router has the router name as its prefix, and similarly the name
of a routing update generated by an NLSR process has an association with the NLSR process name.

Figure 3.8: Routing Security Trust Model

We devised a hierarchical trust model
based on the common management struc-
ture and operational practice in a sin-
gle network domain. Since NLSR routing
updates are carried in NDN data packets
and every NDN data packet carries a sig-
nature, a router can verify that a routing
message is created by the origin router
and that the message is not altered dur-
ing dissemination. While NLSR benefits
from the security primitives provided by
NDN, we still need a trust model to en-
sure that the signer of the routing mes-

sage is indeed the origin router. Figure 3.8 shows our trust model with a root key owned by the administrator
of the network. When an NLSR router receives a Data packet, it uses the trust model to map the data name
to the correct NLSR key name and compares this name with the key name carried in the Data packet. If
the names match, it fetches the NLSR key and verifies the signature on the Data packet. It then verifies
the NLSR key using the router key, operator key, and site key until NLSR reaches the self-signed root key
(preconfigured). If at any step the signature is found to be invalid or the key cannot be located, NLSR
determines that the data is signed by an unauthorized key. If the final verification step does not reach the
root key, the data is considered illegitimate.

NLSR routers distribute link-state advertisements (LSA) for adjacency information and for name prefixes
reachable through that router (the LSA formats are shown in Figure 3.9). Routers use the Adjacency LSAs
to build a network topology, calculate routing paths, and determine next-hops for names, and use the Name
LSAs to track which name prefixes are reachable through routers in the network. These LSAs are stored in
a link-state database (LSDB), which is synchronized with other routers using ChronoSync [9]. Every node
periodically sends a digest of their LSDB to other nodes in the network using NDN Interest packets. When
a node produces a new LSA and its digest changes, it will reply to others’ Interests with the name of the
new LSA. Other nodes can then fetch the new LSA data. LSDB synchronization is shown in Figure 3.10.

To detect link and process failures, NLSR sends periodic INFO Interest messages to each neighboring
router. If an INFO Interest times out, NLSR will resend INFO Interests in case the Interest was lost. If there
is no response from the neighbor after a few tries, the adjacency with the neighbor is considered INACTIVE.
NLSR will then send a new adjacency LSA to inform others of the topology change. The NLSR process will
continue to send INFO Interests to detect the recovery of the neighbor. When the adjacency recovers, NLSR
will receive a response to its INFO Interest and change the adjacency status to ACTIVE. It will again send a
new adjacency LSA for the topology change.

One important feature of NDN is multi-path forwarding. NDN routers can forward Interests to multiple
faces to find the best path by taking advantage of the forwarding state for each Interest, which helps detect
loops and store measured round-trip delay between Interest and corresponding Data packets. To support
multi-path, NLSR uses a modified Dijkstra’s algorithm to produce a ranked list of policy-compliant next-

22

Figure 3.9: LSA Formats

NLSR NLSR

1. Sync Interest: /ndn/NLSR/sync/A

LSDB
Digest A

LSDB
Digest A

2. Sync Interest: /ndn/NLSR/sync/A

LSA
Added

LSDB
Digest B

3. Sync Reply: /ndn/NLSR/LSA/...

5. LSA Interest: /ndn/NLSR/LSA/...

6. LSA Data: /ndn/NLSR/LSA/...
LSA
Added
LSDB
Digest B

Chronosync Chronosync

4. Sync Interest: /ndn/NLSR/sync/B

7. Sync Interest: /ndn/NLSR/sync/B

Figure 3.10: LSDB Synchronization

hops and inserts them into the FIB. This essentially provides a name-based multi-path routing table, which
can be utilized by NDN’s forwarding strategy.

NLSR 0.1.0 was released in August 2014 (http://named-data.net/doc/NLSR/0.1.0). It is currently
running and being evaluated on the NDN testbed, which includes 16 nodes and 29 links.

3.2.2 Hyperbolic Routing

Since the NDN name space is in principle unbounded, a scalable routing solution is necessary. Hyperbolic
routing is a potential solution to this problem if one can map a given real network topology to hyperbolic
space [4, 1]. Hyperbolic routing is a geometric routing scheme that relies on hyperbolic coordinates to send
packets efficiently through a network. Assuming a mechanism for retrieving the coordinates of a name prefix
exists, each Interest can carry the coordinates of the name prefix and routers and use greedy routing to
forward the Interest, i.e., choose the next hop(s) for the Interest based on the distances between a router’s
neighbors and the desired name prefix. This scheme is highly scalable as there is no need to maintain a
routing table or FIB and there are no dynamic routing updates except to learn neighbors’ coordinates.

The viability of hyperbolic routing in NDN depends on several factors. First, is the underlying topology
hyperbolic? Second, can the forwarding strategy at each NDN router effectively find the best path in case
the hyperbolic coordinates do not give the best path? Third, when an Interest reaches a local minimum,
which can happen due to either greedy routing or a failure, can the forwarding strategy find alternative
paths quickly? Finally, how sensitive is the routing performance with respect to the density of the topology
and the number of faces allowed in multi-path forwarding?

To explore above questions, we developed HyperMap [5], a simple method to map a given real network
to its hyperbolic space using a recent geometric theory of complex networks modeled as random geometric
graphs in hyperbolic spaces. The method replays the network’s geometric growth, estimating at each time
step the hyperbolic coordinates of new nodes in a growing network by maximizing the likelihood of the
network snapshot in the model. We applied HyperMap to embed the AS-level Internet topology derived
from CAIDA’s Ark measurements into its hyperbolic space and thus obtained the hyperbolic coordinates of
the ASes participating in the NDN testbed.

We then measured the performance of the modified greedy forwarding algorithm in the NDN testbed.
This algorithm excludes the current node from any distance comparisons and finds the neighbor closest
to the destination. The packet is dropped if this neighbor is the same as the packet’s previously visited
node. We used the following performance metrics: (i) the success ratio which is the percentage of the
successful paths that reach their destinations; and (ii) the average stretch of three types. Stretch 1 is
the standard hop stretch measured on the actual topology, that is the ratio between the hop lengths of

23

http://named-data.net/doc/NLSR/0.1.0

greedy paths and the corresponding shortest paths in the graph. Stretch 2, measured in the underlying
hyperbolic space, is the ratio of the length of a successful greedy path to the actual hyperbolic distance
between the source and the destination. Stretch 3, also measured in the underlying hyperbolic space, is
the ratio of the length of the shortest path to the actual hyperbolic distance between the source and the
destination. The lower these two hyperbolic stretches, the closer the greedy and shortest paths stay to
the hyperbolic geodesics, and the more congruent the network topology is with the underlying geometry.
(http://www.caida.org/research/routing/greedy_forwarding_ndn/)

If the hyperbolic coordinates of testbed sites are set to the hyperbolic coordinates of their corresponding
ASes, then the greedy routing success ratio (i.e., the ratio of source-destination pairs than can successfully
communicate via shortest greedy routing paths) is 82% vs. 71% in our previous embedding. In an ideal
hyperbolic topology constructed for the testbed by using the same node coordinates and setting up links
between the sites according to the growing hyperbolic network model, we obtain 100% success ratio both
in the full graph of the testbed, and in all graphs obtained removing any single link or node. This result
indicates that such failures would induce no routing updates or path recompilations in such testbeds.

We also implemented hyperbolic routing in NLSR by propagating router coordinates to the network
through link state advertisements. Using a set of emulated experiments on a network of 10 nodes, we
compared the performance of hyperbolic routing (HR) to that of link state (LS) routing, which calculates
the optimal paths, under various conditions including different network topologies, forwarding strategies,
number of multi-path faces, and failure scenarios. If it performs as well as link state routing, then hyperbolic
routing can be considered a viable NDN routing protocol. We tested across two separate topologies to
emulate the conditions of an ideal network scenario, as well as a setup that mimics the actual NDN testbed
and the ideal topologies described above. We employed both best-route and ncc forwarding strategies to
determine which is more suitable to hyperbolic routing. The ncc forwarding strategy in NFD is the same
as the forwarding strategy in CCNx, while the best-route strategy uses the best path calculated by the
routing scheme as long as the path returns data. The performance metrics are Round-Trip Time (RTT),
packet loss ratio, number of messages generated, and failure response time. These tests revealed three
findings: (1) the forwarding strategy greatly impacts the performance of hyperbolic routing. In our tests,
the ncc strategy performed better (in terms of RTTs) than the best-route strategy because ncc utilizes
multiple paths more efficiently; (2) in the “ideal” topology, RTTs under HR and LS are close regardless of
the number of multi-path faces used. In the real testbed topology, using more multi-path faces improves
the RTT under HR; and (3) the accuracy of the hyperbolic coordinates affects performance. Surprisingly,
resulting RTTs in the ideal topology are sometimes much higher than those in the real NDN testbed topology.
The HR coordinates may not be ideal, which would lead to suboptimal routes. Our results are at http:

//netwisdom.cs.memphis.edu/pvthome.html.

Finally, we implemented hggraphs, a C++ library that provides a collection of functions and data struc-
tures for a) generating synthetic graphs embedded in hyperbolic metric spaces, and b) computing properties
of the graphs associated with the hyperbolic geometry (e.g. hyperbolic distance between two vertices). The
hggraphs library supports the development of the hyperbolic routing in the NDN environment in two ways: a)
it enables the implementation of tools to assess the effectiveness of the greedy routing approach in synthetic
networks of variable size; b) it facilitates the creation of new ndnSIM scenarios in which we can extend the
default forwarding strategy to simulate the hyperbolic routing on an NDN network. The library is available
at http://named-data.github.io/Hyperbolic-Graph-Generator/ and contains two additional tools: (i)
the Hyperbolic Graph Generator - a command line utility that generates synthetic topologies embedded in
a hyperbolic metric space and saves the graph in an output file; and (ii) the greedy routing tester - a com-
mand line tool that loads in memory a graph generated by the Hyperbolic Graph Generator and returns the
greedy routing success ratio, i.e. the percentage of paths successfully connecting two random vertices built
according to the greedy forwarding approach. We also developed HyperbolicRoutingScenario, a new ndnSIM
scenario that generates a synthetic network topology, embeds into an hyperbolic space and simulates the
hyperbolic greedy forwarding on each vertex to calculate the routing success ratio. This scenario relies on
the ndnSIM simulator and leverages the utility functions provided by the hggraphs library. The software is
currently under test.

24

http://www.caida.org/research/routing/greedy_forwarding_ndn/
http://netwisdom.cs.memphis.edu/pvthome.html
http://netwisdom.cs.memphis.edu/pvthome.html
http://named-data.github.io/Hyperbolic-Graph-Generator/

3.2.3 Dynamic Interest Limiting for NDN Congestion Control

Data packets carry content, are generally much larger than Interests and more likely to cause congestion.
An NDN node can control the amount of Data packets received from an interface by limiting the number
of Interests departing through that interface. The per-interface Interest limit can be coupled with adaptive
forwarding to optimize network resource usage, e.g., diverting overflowing Interests to alternative interfaces.
We have explored the advantages of NDN’s adaptive forwarding with respect to congestion control, but have
not yet discovered a practical and effective congestion control scheme.

Interest rate limiting induces a tradeoff: wasted bandwidth (if the limit is too small) vs. congestion (if
too big). The proposed methods to compute the Interest limit so far [8, 6, 2, 7] all have serious limitations. A
common false assumption of these solutions is that key network and traffic properties are known: size and/or
retrieving delay of Data packets, available bandwidth of each link. Currently, NDN is typically deployed as
overlay on top of IP or Ethernet, where NDN nodes are oblivious about the bandwidth of underlying links
– one NDN hop can be many IP/Ethernet hops, with a bottleneck link several hops away from the NDN
node. The bottleneck link can be shared by many flows, making the actually available bandwidth dynamic.

To address these obstacles in the existing congestion control proposals, we designed Dynamic Interest
Limiting (DIL). A static Interest limiting mechanism does not work well in NDN due to the dynamics
in Data size, round-trip time and underlying link bandwidth; thus routers need long output queues to
accommodate the potential bursty traffic caused by such dynamics. However, excessive packet buffering
may cause bufferbloat, inducing high latency and jitter for applications and degradation of throughput.
Traditional AQM mechanisms such as RED and CoDel are not efficient in NDN since they will simply drop
Data without explicit notification. We propose to adjust the Interest limit for each interface dynamically
using an AIMD algorithm similar to TCP. The Interest limit increases when Data is received, and decreases
when congestion is detected. To manage the queue length of the upstream node, a novel Random Early
NACK (REN) mechanism can send explicit congestion notification to the downstream node.

One limitation of REN is that it cannot be used to detect congestion in NDN overlay scenarios, since NDN
nodes may not be able to monitor the queues of underlying IP routers. We propose Link-layer Congestion
Detection (LCD) for such scenarios. Each NDN node adds a link-layer header to each NDN packet, such that
the node at the other end of the link can detect congestion by counting the gaps in the received sequence
numbers. REN and LCD work together to detect congestion more reliably than either alone.

Another feature of DIL is to enforce fairness at routers. The Fair Interest Limiting (FIL) component of
DIL can fairly divide the total Interest limit among multiple namespaces. With FIL, we no longer rely on
end hosts to provide fairness, hence eliminating the potential damage caused by ill-behaved consumers.

Node

DIL Module

Strategy Module

LCD
REN

FIL

Interface

Interface Interface

Interface Interface

Figure 3.11: Node model for DIL.

Figure 3.11 provides an overview of DIL, where
solid arrows represent flow of regular packets while
dashed arrows represent flow of rejected packets.
One DIL module is installed on each interface.
When a packet arrives at an interface, the LCD
module will remove the link-layer header and store
the sequence number, and then pass the remaining
packet to the REN module. REN only checks in-
coming Interests, and will reject them if the output
queue of the interface keeps growing. If a packet is
accepted, it will be further passed to the forward-
ing strategy module. When forwarding Interests,
the strategy module will query the DIL module for
availability of interfaces. An Interest is forwarded to
an interface only if the limit for the flow has not been
reached. Otherwise, the strategy module will imme-
diately try alternative interfaces. The LCD module
will append link-layer headers to the packets before
they are actually forwarded.

We evaluated DIL under different scenarios, including with and without caching, various end-to-end

25

delays, various topologies and different sizes of buffers. On a small linear topology, DIL finished 11.3% faster
than HIS [7] in transferring 10M bytes of Data while always maintaining an average queue under 3 packets
after the initial stage. In the more general case with caching, DIL achieves shorter application delay and
completion time. In a large-scale experiment using Sprint topology and many concurrent traffic flows, DIL
finished faster than TCP in all cases.

References

[1] Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the Internet with Hyperbolic
Mapping. Nature Communications, 1:62, 2010.

[2] Giovanna Carofiglio, Massimo Gallo, and Luca Muscariello. Joint hop-by-hop and receiver-driven interest
control protocol for content-centric networks. In Proceedings of ACM SIGCOMM ICN Workshop, 2012.

[3] AKM M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang. NLSR: Named-data link
state routing protocol. In ACM SIGCOMM ICN Workshop, 2013.

[4] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá. Hyperbolic geometry of complex
networks. Physical Review E, 82:036106, 2010.

[5] Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov. Network mapping by replaying
hyperbolic growth. IEEE ACM Transactions on Networking, 2014.

[6] N. Rozhnova and S. Fdida. An effective hop-by-hop Interest shaping mechanism for CCN communica-
tions. In Proceedings of IEEE INFOCOMM NOMEN Workshop, 2012.

[7] Yaogong Wang, Natalya Rozhnova, Ashok Narayanan, David Oran, and Injong Rhee. An improved
hop-by-hop interest shaper for congestion control in named data networking. In Proceedings of ACM
SIGCOMM ICN Workshop, 2013.

[8] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan Zhang, and Lixia Zhang. A case
for stateful forwarding plane. Computer Communications: Information-Centric Networking Special Issue,
36(7):779–791, April 2013.

[9] Zhenkai Zhu and Alexander Afanasyev. Let’s ChronoSync: Decentralized dataset state synchronization
in Named Data Networking. In Proceedings of IEEE ICNP, 2013.

26

3.3 Scalable Forwarding

Contributors
PIs Patrick Crowley (Wash U)

Grad Students . . Hila Ben Abraham, Haowei Yuan (Wash U)

Staff John Dehart, Jyoti Parwatikar, Tian Song (Wash U)

The goal of our forwarding research is to develop fast, scalable NDN node prototypes. By fast, we mean
that we intend to support 1 Gbps links at line-rates in software implementations; we expect our hardware-
accelerated implementations to exceed this rate by at least an order of magnitude. By scalable, we mean
that we intend to develop an NDN forwarding plane that can support millions and even billions of names
of arbitrary length. In addition, we provide feedback to the architecture and routing research teams when
their design choices might have substantial performance consequences in the data plane. We also need to
keep NDN forwarding comparable to other name-based forwarding schemes with respect to features and
performance.

During the fourth year of the NDN project, we refined our previously proposed data structures and
algorithms for the Forwarding Information Base and Pending Interest Table, and we started implementing
an NDN forwarding engine on a general-purpose multi-core platform. This section provides describes our
activities and findings in the forwarding area.

3.3.1 Scalable Name-Based Forwarding

Name-based packet forwarding represents a core characteristic of the NDN architecture. IP-inspired forward-
ing methods are not feasible because a) name-based forwarding must support variable-length lookup keys of
unbounded length, and b) namespaces for data are substantially larger than the global address prefix rule
sets used in today’s Internet. In our previous work, we have investigated the information-theoretic difference
approach and proposed trie-based solutions that can scale variable-length name forwarding to billions of
name prefixes [1]. We have also proposed fingerprint-based solutions to improve the name-based forwarding
performance further, where both trie-based and hash table-based data structures have been developed [2].

In the past year, we have continued to refine and evaluate the proposed design. To demonstrate the
scalability of the proposed data structures, we have evaluated the lookup performance with a forwarding
table that contains 1 billion synthetic names. The hash table-based implementations outperform the trie-
based implementations because of less number of memory references. The proposed fingerprint-based hash
table requires only 3.2 GB to store 1 billion names, and the measured lookup latency of the software-based
implementation is 0.69 microseconds on the machine equipped with 2.53 GHz Intel Xeon E5540 processor,
8 MB of L3 cache, and 12 GB of DDR3 memory.

The proposed succinct data structures are typically generated from data structures that maintain the
entire forwarding information. We have investigated incremental updates on the succinct data structures
and evaluated the insertion latency of data structures that hold the complete forwarding information. The
insertion latency was measured on a machine equipped with 1.7 GHz AMD Opteron 6164 HE processor
and 96 GB of memory because the data structures that hold the complete information have large memory
requirements. The measured insertion latency of the fingerprint-based hash table is 1.92 microseconds.

3.3.2 Scalable Pending Interest Table Design

The Pending Interest Table (PIT) is another core component of the NDN architecture. Scalable PIT design is
challenging because it requires per-packet updates, including memory write operations; and the entire content
name strings are stored in the PIT, requiring more memory. Hence, high-speed memory devices, such as
SRAM and RLDRAM, are favored, but they have limited capacity. We have proposed the fingerprint-only
PIT design [3] that stores fingerprints rather than content name strings to reduce the memory requirements.
To guarantee packet delivery when fingerprint collisions occur, we relax the Interest aggregation feature in

27

the PIT so that all Interest packets are forwarded. In addition, the colliding PIT entry will not be deleted
until it expires to provide sufficient time for potential Data packets to arrive. Because the PIT cannot
differentiate between duplicate Interest requests and hash collisions, we propose a network-wide solution to
reduce the chances of receiving duplicate Interest requests in the core routers. In our design, only core routers
store the fingerprints and relax the Interest aggregation feature. Edge routers perform normal operations
and still aggregate Interest packets.

edge

edge

core

I: A, A'
D: A, A'

I: B, B'
D: B, B'

I: A, A'D: A, A'

I: B
, B'

D: B, B'

I: A, A'

D: A, A'
I: B, B'

D: B, B'

(a) Normal Operation

edge

edge

core

I: A, A'
D: A, A'

I: A, A'
D: A, A'

I: A, A'D: A, A'

I: A
, A'

D: A, A'

I: A, A'

D: A, A'
I: A, A'

(b) Duplicate Interest Requests

edge

edge

core

I: A, A'
D: A, A'

I: C, A'
D: C, A'

I: A, A'D: A, A'

I: C
, A'

D: A, A'

I: A, A'

D: A, A'
I: C, A'

D: C, A'

D: C, A'

D: C, A'

fingerprintname

Data
Interest

type

(c) Fingerprint Collisions

Figure 3.12: PIT Operations

Essentially, our design is based on the ideas that storing fingerprints saves memory space, and that edge
routers can aggregate most duplicate Interest packets. In the case with only one core router, three operational
situations are shown in Figure 3.12: a) Normal Operation, where different Interest names map to different
fingerprints, e.g., name A maps to fingerprint A′, and name B maps to B′. This scenario operates the same
way as with storing name strings, and introduces no traffic overhead. b) Duplicate Interest Requests, which
are not aggregated, increasing traffic overhead. If duplicate requests arrive at the core router from different
faces, the fingerprint stays in the PIT longer, inducing memory overhead. c) Fingerprint Collisions, where
two content names share the same fingerprint. The two corresponding Interest packets consume one PIT
entry, rather than two, reducing PIT memory consumption. But the colliding PIT entry stays longer in the
PIT, which introduces memory overhead compared with the normal case. Also, both Data packets arrive
at both faces, inducing data traffic overhead. To evaluate the design, we implemented it in software and
analyzed memory and network traffic overhead in the case of single core router software [3].

During the fourth year, we refined the PIT design to support the case with multiple core routers. The
challenge with multiple core routers is that each core router knows only local fingerprint collisions and
does not have knowledge of remote fingerprint collisions, thus packet delivery cannot be guaranteed when an
Interest packet has a remote fingerprint collision but no local collision. We have proposed a solution to address
this issue. Each data packet carries an additional bit to indicate if it has encountered any PIT collision along
the path. This way, remote fingerprint collision information is propagated to downstream routers. After
receiving remote collision information, downstream routers mark the corresponding PIT entries as collided
and retain them until expiration. This additional mechanism increases the effective fingerprint collision
rates, thus increasing memory requirements and network traffic overhead. We will continue to analyze and
optimize the memory requirements and network traffic overhead in the multiple core router case.

We have also investigated issues with supporting all prefix matching with the proposed PIT design that
performs only exact matching with fingerprints of the full names. Because edge routers store the complete
content names and support all prefix matching, the Data packets can carry additional information about
matched prefixes from edge routers to core routers. After receiving the information, the core routers can
compute the corresponding fingerprints and consume as many pending Interests as possible. As part of the
NDN-NP project, we will continue to explore and evaluate the detailed design.

3.3.3 Forwarding Engine Development

The best way to demonstrate the efficiency of the proposed FIB and PIT design is to build an NDN forwarding
engine that employs these methods, and evaluate its performance with real network traffic. Implementing
this forwarding engine also exploits performance optimization opportunities at the system level. We have

28

started to implement an NDN forwarding engine on a general-purpose multi-core platform. The forwarding
engine takes advantage of memory-efficient data structures and algorithms, parallel processing power in the
multi-core platform, and fast packet I/O frameworks such as netmap [4] and Intel DPDK [5].

The NDN forwarding engine consists of five major components: Fast Packet I/O, Face Table, Forwarding
Information Base, Pending Interest Table, and Content Store. The Fast Packet I/O component bypasses
the operating system protocol stack so that packets can be efficiently processed in the user-space. The Face
Table maps an interface to a face ID used internally in the forwarding engine, and is implemented as a hash
table. The current implementation uses MAC addresses as Face Table lookup keys, as the forwarding engine
updates the MAC addresses for each packet. Our design does not preclude using other information, such as
IP+Port pairs, as lookup keys. The FIB supports multi-threading naturally because it is mostly used for
lookup. The PIT and CS, which require frequent updates, needs to be implemented in a thread-safe manner.
The PIT and CS can be implemented centrally and shared by all the cores, or in a distributed fashion where
each core has its dedicated PIT and CS [6].

We have implemented the single-threaded NDN forwarding engine based on the netmap framework. As
part of the NDN-NP project, we will continue to develop and evaluate the multi-core forwarding engine.

References

[1] “Scalable Name-Based Forwarding: From Millions to Billions”, Tian Song, Haowei Yuan, Beichuan
Zhang, and Patrick Crowley. Submitted to IEEE INFOCOM 2015.

[2] “Enhancing Scalable Name-Based Forwarding”, Haowei Yuan, Patrick Crowley, and Tian Song. Submit-
ted to IEEE INFOCOM 2015.

[3] “Scalable Pending Interest Table Deisgn: From Principles to Practice”, Haowei Yuan and Patrick Crowley.
In IEEE INFOCOM 2014.

[4] “netmap: A Novel Framework for Fast Packet I/O”, Luigi Rizzo. In USENIX ATC’12.

[5] “Intel DPDK: Data Plane Development Kit”, http://www.dpdk.org.

[6] “Named Data Networking on A Router: Fast and DoS-Resistant Forwarding with Hash Tables”, Won
So, Ashok Narayanan, and David Oran. In ANCS 2013.

29

3.4 Security

Contributors
PIs Van Jacobson (UCLA), Christos Papadopoulos (CSU), Lixia Zhang (UCLA)

Grad Students . . Steven DiBenedetto (CSU), Yingdi Yu (UCLA)

Staff UCLA Postdocs: Alaxendar Afanasyev

Se
cu

rit
y

Li
br

ar
y

KeyChain

Trusted Platform
Module (TPM)

Private key
Private key
Private key

Private key
Private key

Public-key Info Base (PIB)
Identity Identity ...

Public key
Public key
...

Public key
...

Certificate

Certificate
Certificate

Certificate
Certificate

Certificate
Certificate

Validator

PIB Interface

ValidationPolicy

TPM Interface

Interests/Data Exchange System-provided channel

Signing Policy

KeyChain::sign(packet) Validator::validate(packet)

Trust Anchors

Figure 3.13: Framework of security library.

The implementations of some early
NDN applications used default keys
stored in a file to sign data, and either
performed data verification themselves or
otherwise skipped it entirely. Over the
past year we built an experimental secu-
rity library to facilitate the development
of secure applications.

3.4.1 Security Library

Our experimental security library (Fig-
ure 3.13) provides support for efficient
signing and validation of packets, so that
application developers do not have to
handle security operations by themselves.
The library also includes configuration
files that guide developers toward best
practices. NDN applications that use
the security library support include NFD,
NLSR, ChronoChat, and a toolset for
testbed certificate deployment. The ref-
erence implementation for the security library is part of ndn-cxx. Support for primary and stable features
is also included in NDN-CCL.

Key Management

SecTpm
generateKey(); deleteKey(); sign(); setAcl(); ...

SecTpmOsx SecTpmFile ...

Applications

Security Library Interface

Figure 3.14: The TPM Interfaces in the security li-
brary.

Protect private keys One of the primary goals
for the security library is the ability to manage keys
on a localhost, which requires hiding private key
operations, e.g., access control and packet signing,
from applications. The old API library stored pri-
vate keys in a file encrypted with a password, which
had three drawbacks: (1) applications must main-
tain a mapping from key name to file name; (2) ap-
plications must explicitly handle passwords for key
decryption; and (3) private keys are exposed to ap-
plications, making them vulnerable to compromises.
We introduced the Trusted Platform Module (TPM)
into the security library to address these problems.

The system-provided TPM service (e.g., Key-
Chain in Mac OS X) stores private keys securely,
and performs all key-related operations as a black
box. The security library provides an NDN-friendly

30

NFD

PriKey1

PriKey2

PubKey1

PubKey2

...

PriKey3

PriKey4

PubKey3

PubKey4

PIB TPM 1

TPM 2

App 1

App 2

AP
I 1

App N

App 3

AP
I 2

Apps
PIB protocol

Figure 3.15: Serving public key information
through PIB protocol to applications using dif-
ferent API libraries.

Certificate Certificate Certificate Certificate Certificate Certificate

Public key Public key Public key

IdentityIdentity

Default

Figure 3.16: Organization of public key info in
PIB.

interface to the TPM service, so that applications only need to specify the name of the signing key and the
packet to sign, and the TPM service will return the appropriate signature according to the signing algo-
rithm of the key. The system-provided TPM service also provides application-level access control, so that
application developers do not need to handle passwords directly.

For the Mac OS X system, we provided a reference TPM interface SecTpmOsx in the security library
to utilize OS X’s TPM service. For other systems lacking the TPM service, the security library provides
a built-in file-based pseudo TPM SecTpmFile. Since the file-based TPM is a lightweight placeholder for a
real TPM, it simply relies on file system permission (rather than passwords) to provide basic user-friendly
protection to private keys.

Another design goal of the TPM interface is to decouple the TPM implementation from the application
programming interface (API), so that applications on different platforms do not have to know details of the
underlying TPM. The TPM interface enables researchers to contribute to the security library by making
their own TPM implementation (Figure 3.14).

Sharing public key information NDN applications on a local host may have shared access to certain
keys and their meta-data, e.g., identities represented by keys, corresponding certificate names to put in
KeyLocator fields of packets. This information can help applications decide which signing key to use, thus
facilitating automated signing. To share this information within a local host, especially among applications
developed in different programing languages. we created a Public-key Information Base (PIB) service that
allows applications to query stored information through NDN Interest/Data exchanges. Our PIB query
protocol [1] facilitates development of libraries in different language (Figure 3.15). The PIB maintains all
information about a key, including identity it represents, the key name that uniquely identifies it, crypto
algorithms of the key, certificates issued by different parties, etc. Each identity has a default key, and each
key has a default certificate (Figure 3.16). The PIB simplifies the signing interface because applications
only need to know the name of the signing identity, and can leave key and certificate resolution to the PIB
service. Decoupling identity from exact key/certificate is our first step toward automated signing. It allows
application developers to express signing policy in terms of trust relationships between identities; based on
these signing policies, the security library can automatically determine the signing identity. Thus the library
can determine the signing key from the name of the packet to be signed.

Validation Framework

Public key certificate format. This year we defined a new public key certificate format [4], which
preserves all required fields of the X.509 certificate but allows researchers to extend the usage of certificates.

31

Unlike the old certificate format [5], the new format enables a certificate to carry all information in a single
data packet, facilitating certificate fetching for packet validation.

Generalized validation process Packet validation involves several procedures, e.g., policy checking,
validity period checking, and signature verification. All applications use some of these procedures. A standard
extensible packet validation framework can allow researchers and developers to focus on designing trust
models rather than implementation details. This year we investigated commonalities of packet validation
in NDN applications, and defined a packet validation framework (Figure 3.17). The framework provides a
policy module and hooks for developers to extend the validation process. In the policy module, one can
specify rules that a packet should obey using the policy language described below.

Three hooks are located: 1) before fetching a key, 2) after fetching a key, and 3) after a certificate is
validated. The first two hooks can be used to extend the key fetching process, allowing developers to fetch
keys in different fashions. The last hooks can be used to extend the key authentication (e.g., some trust
model may require more than one valid certificate to authenticate a key). We have included this framework
in the most recently released codebase.

Comply with policy?

Fetch the key

Validation
failure

Is signing key
authenticated?

Is signature verified?

No

No

Yes

Yes

Fetch signing
key before?

No

Yes

No

Validated

Yes

Key
received

Interest for
key sent

Packet
supplied

ValidKey
callback

ValidPacket
callback

Hook

Figure 3.17: Processing flow in the validation frame-
work.

Policy language Although many validation pro-
cedures are common across applications, trust mod-
els and implementations vary. To save researchers
and developers the effort of implementing their trust
model, we defined a policy language to allow ex-
pression of a trust model via configuration [2]. The
configuration consists of a set of rules that a packet
should obey, e.g., the relationship between a data
packet name, signing key name, and type of packet
signature. To describe the relationship between a
packet name and the signing key name, we defined
“Name Pattern” [3] to extract name components to
use in name matching. The policy language also
supports all signature types defined in the NDN
TLV specification, and allows users to specify trust
anchor management models. For example, users can
specify the key bits or file path of a trusted key,
and/or specify a trust anchor directory and have a
policy module periodically update trust anchors in
that directory, to support trust anchor rollover. Fi-
nally, the security library provides a policy parser
to convert logic into policy language for use in this

framework.

3.4.2 Testbed Certificate Deployment

We built a testbed certificate management system to help testbed users easily and securely obtain public key
certificates. This system assumes a hierarchical trust model, thus it allows NDN site operators to apply for a
public key certificates for their own site. With their site certificate, operators can issue public key certificates
to users at their site. The system provides a web interface for site operators and users to submit requests for
public key certificates, authenticate requester identities via email exchange, and then automatically determine
the namespace allocated to the user and provide instructions for the user to generate a public key certificate
signing request. The system also notifies a site operator when it receives a signing request for a certificate
belonging to its site. If the operator approves the request, the system provide an automation tool to help
the operator issue, publish, and notify the requestor of its new certificate. This certification system has been
deployed over the NDN testbed (http://redmine.named-data.net/projects/nfd/wiki/Ndncert).

32

http://redmine.named-data.net/projects/nfd/wiki/Ndncert

3.4.3 Web-of-Trust

Some NDN applications run between entities that all belong to a hierarchically structured namespace, and
we have experimented with a trust model that strictly follows their naming hierarchy. There are other
applications where the entities are not under the same hierarchical namespace, thus a hierarchical trust
model does not apply well. For example, in ChronoChat, chatroom users may come from anywhere and
their names do not share a common prefix, and the previous ChronoChat implementation could not enforce
any membership control in a chatroom. Such distributed applications must manage trust in a distributed
way. This year we explored a Web-of-Trust endorsement model to solve this problem by using ChronoChat [6]
as a test case. A user in a chatroom expresses trust in another user via an endorsement, which associates
the endorsee’s public key with a trust scope expressed in an NDN name.

With the endorsement-based mechanism, a new user can join a chatroom with a membership endorsement
(invitation) from an existing member in the chatroom. The new user responds by endorsing the membership
of its inviter, in order to derive the membership of other users through the inviter. A user can stay in a
chatroom as long as at least one existing member still endorses his membership; users with more endorsements
are more unlikely to be removed from a chatroom. Membership endorsements constitute a graph that
interconnects chatroom members, and bi-directional membership endorsements allow users to derive trust in
membership from their own trust anchors (inviters), removing the need for a third-party trust anchor. Finally,
unlike traditional WoT systems, which store certificates and revocations at centralized servers, ChronoChat
uses its built-in synchronization mechanism, ChronoSync, to distribute and revoke endorsements, eliminating
any third-party dependency. This endorsement-based trust model has been implemented in the latest version
of ChronoChat.

3.4.4 Content Poisoning Mitigation

Malicious objects named identically to legitimate ones can slow or even prevent desired content retrieval.
Consumers can detect poisoning of caches by verifying the signature on each object, but they have limited
ability to evade such poisoning attacks, because Interests describe desired content rather than where to
retrieve it. Routers cannot scalably retrieve keys and verify signatures to detect poisoned content objects.
We designed a mitigation system that enables consumers to report poisoned content to their immediate
upstream nodes. If the node can confirm the report, it can try alternate forwarding paths, as well as
propagate the information further upstream. The propagation enables the network to purge cached copies,
and ultimately evict the malicious source from the path. To prevent harm from false reports, our system
requires originators of reports to cryptographically authenticate them, although routers may whitelist well-
behaved downstream nodes.

References

[1] “Public-key Information Service”, http://redmine.named-data.net/projects/ndn-cxx/wiki/

PublicKey_Info_Base.

[2] “Trust Policy Language“, http://redmine.named-data.net/projects/ndn-cxx/wiki/

CommandValidatorConf.

[3] “Name Pattern“, http://redmine.named-data.net/projects/ndn-cxx/wiki/Regex.

[4] “Public Key Certificate Format“, http://redmine.named-data.net/projects/ndn-cxx/wiki/

Certificate.

[5] “Deploying Key Management on NDN Testbed“, Chaoyi Bian, Zhenkai Zhu, Alexander Afanasyev, Ersin
Uzun, and Lixia Zhang. NDN, Technical Report NDN-0009.

[6] “An Endorsement-based Key Management System for Decentralized NDN Chat Application“, Yingdi
Yu, Alexander Afanasyev, Zhenkai Zhu, and Lixia Zhang. NDN, Technical Report NDN-0023.

33

http://redmine.named-data.net/projects/ndn-cxx/wiki/PublicKey_Info_Base
http://redmine.named-data.net/projects/ndn-cxx/wiki/PublicKey_Info_Base
http://redmine.named-data.net/projects/ndn-cxx/wiki/CommandValidatorConf
http://redmine.named-data.net/projects/ndn-cxx/wiki/CommandValidatorConf
http://redmine.named-data.net/projects/ndn-cxx/wiki/Regex
http://redmine.named-data.net/projects/ndn-cxx/wiki/Certificate
http://redmine.named-data.net/projects/ndn-cxx/wiki/Certificate

3.5 Fundamental theory for NDN

Contributors
PIs Edmund Yeh (Northeastern)

Grad Students . . Milad Mahdian, Fangxiang Wang, Ran Liu (Northeastern)

Undergrads Kyle Dumont, Sean Kerr (Northeastern)

Staff Postdoc: Ying Cui (Northeastern)

3.5.1 Objectives

The basic objective of the theory module of the NDN project is to start the development of a fundamental
theory for NDN networks, which properly incorporates the role of caching. Since the approach of NDN to
networking is fundamentally different from traditional connection-based approaches, certain basic assump-
tions must be reconsidered. As a first step, the relevant network performance metrics should be redefined.
Instead of seeking to maximize source-destination communication rates, we focus on maximizing the total
amount of information satisfied per unit time for the interest sources (nodes generating interest packets)
within the network. As an initial estimate, this can be captured by the total consumed bit rate, i.e., the
total bit rate arriving at nodes requesting content.

A theory for NDN must capture the essential tradeoff between wires and storage in optimizing communi-
cation performance. Given an appropriate performance metric, we pose the following fundamental questions
as in classical information theory: for a given set of link capacities, storage capacities, interest and data
generation rates, what are the achievable capacity region and complexity costs for feasible joint routing,
forwarding, scheduling, caching and coding schemes? Initial NDN implementations yield achievable schemes
corresponding to subsets of the capacity region. Our long-term goal is to characterize the entire region.

Guided by the performance of these algorithms and combining with appropriate performance bounds,
we seek to characterize the macroscopic scaling laws governing NDN network capacity, in a manner similar
to [1]. This provides a useful starting point for studying the scalability of the NDN architecture. Next, we
will incorporate issues beyond network capacity, such as latency and fairness. Not all points in the network
capacity region are equally desirable, and we will investigate network management policies which achieve
a given set of performance objectives in the optimal manner. These optimal policies are expected to differ
significantly from those established in the classical network theory literature.

3.5.2 Progress for Theory Activities

Joint Forwarding and Caching for NDN

We have continued progress in developing optimal dynamic forwarding and caching algorithms for maximizing
total consumed bit rate in an NDN network. Assuming the prevalence of caches, we seek to optimally utilize
both bandwidth and storage for efficient content distribution. This highlights the need for joint design of
traffic engineering and caching strategies, in order to optimize network performance given current and future
traffic demands. Unlike many existing works on centralized algorithms for static caching, our goal is to
develop distributed, dynamic algorithms that can address caching and forwarding under changing content,
user demands, and network conditions.

To address this fundamental problem, we have introduced the VIP framework for the design of high
performing NDN networks [4]. The VIP framework relies on the new device of Virtual Interest Packets
(VIPs), which captures the measured demand for the respective data objects in the network. The central
idea of the VIP framework is to employ a virtual control plane which operates on VIPs, and an actual plane
which handles IPs and DPs. Within the virtual plane, we develop control algorithms operating on VIPs,
aimed at yielding desirable performance in terms of network metrics of concern. The flow rates and queue
lengths of the VIPs resulting from the control algorithm in the virtual plane are then used to specify the
forwarding and caching policies in the actual plane.

34

To illustrate the utility of the VIP framework, we have developed two instantiations of the framework,
called Algorithms 1 and 2, which both use the VIP count as a metric for determining both the forwarding and
caching algorithms. We have determined the VIP network stability region, the set of all IP arrival rates that
can be satisfied by some feasible forwarding and caching policy in an NDN network. We have proved that
the forwarding/caching policy in Algorithm 1 is throughput optimal, in the sense of adaptively maximizing
the VIP throughput, and therefore the user demand rate satisfied by an NDN network. We have shown that
Algorithm 2 achieves not only load balancing but also stable caching configurations. We have run numerical
experiments to compare the joint caching-forwarding VIP algorithm (Algorithm 2) against several baseline
routing and caching policies. Results show conclusively that the VIP joint forwarding/caching algorithm has
significantly improved performance in terms of user delay and the rate of cache hits [4].

Throughput and Delay Scaling for NDN Wireless Networks

We have completed our investigation of throughput and delay scaling laws for information-centric wireless
networks with nodes are uniformly distributed at random in the network area. Each node has a limited-
capacity Content Store, which it uses to cache contents. We considered a content-centric traffic model
with a general content popularity distribution, where users leverage multihop communication to retrieve
the requested content from the closest cache. We derived the throughput-delay tradeoff of the proposed
network paradigm for a general content popularity distribution, and solved the problem of joint optimiza-
tion of caching and forwarding strategies. We evaluated network performance for a Zipf content popularity
distribution, while letting the number of content types and network size both go to infinity. We consid-
ered contents with different sizes and hybrid network scenarios, and verified our theoretical results through
extensive simulations [2].

Fair Congestion Control for NDN

Finally, we investigated the problem of NDN congestion control using the VIP framework [3]. When IP (VIP)
arrival rates are outside the VIP stability region, in order to stabilize the VIP network, a controller limits
the number of VIPs (and IPs) admitted into the network layer. Newly arriving IPs first enter transport layer
storage reservoirs before being admitted to the network layer. The goal of congestion control is to admit a
portion of the VIPs to achieve a given fairness criterion, which may be realized by choosing the admitted
VIPs to maximize a sum of utility functions which are increasing and concave in the admitted VIP rate.
Unlike traditional network settings, the utilities (fairness) are associated with content objects rather than
source-destination pairs. We have developed a joint congestion control, forwarding and caching algorithm
that yields a VIP throughput vector which can be arbitrarily chose to the optimal solution of the utility
maximization problem, while keeping all VIP queues stable. We have also developed fair congestion control
schemes to obtain a tradeoff between the utility gained by admitting more demand into the network layer,
and the incurred average network delay [3]

References

[1] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Trans. on Information Theory,
46(2):388–404, Mar. 2000.

[2] Milad Mahdian and Edmund Yeh. Asymptotic behavior of wireless networks with named data networking
architecture. Technical report, Northeastern University, 8 2014.

[3] Edmund Yeh, Ying Cui, and Ran Liu. Joint congestion control, forwarding, and caching in named data
networks. Technical report, Northeastern University, 9 2014.

[4] Edmund Yeh, Tracey Ho, Ying Cui, Michael Burd, Ran Liu, and Derek Leong. Vip: A framework for
joint dynamic forwarding and caching in named data networks. In Proceedings of ACM Conference on
Information-Centric Networking (ICN), 9 2014.

35

Chapter 4

NFD Development and NDN Testbed

Contributors
PIs Beichuan Zhang (Arizona), Van Jacobson & Lixia Zhang (UCLA), Lan Wang (Mem-

phis), Christos Papadopoulos (Colorad State University), Patrick Crowley (Washington

University)

Grad Students . . Junxiao Shi, Jerald Abraham, Yi Huang (Arizona); Ilya Moiseenko, Yingdi Yu, Wentao

Shang (UCLA), Steve DiBenedetto, Chengyu Fan (Colorado State), Haowei Yuan, Hila

Ben Abraham (Washington Univerisity)

Undergrads Vince S. Lehman (Memphis)

Staff John DeHart, Jyoti Parwatikar (Washington University)

Postdoc: Alex Afanasyev (UCLA); Syed Obaid Amin (Memphis)

Our major testbed accomplishment this year was deploying our new NDN Forwarding Daemon (NFD)
on the NDN testbed. In previous years we used PARC’s CCNx package for both network layer research
and application prototyping, complemented by our ndnSIM simulator. As the NDN research advanced, it
became clear that the CCNx package was impeding progress, due to the difficulties in understanding and
modifying the codebase. We developed a new NDN packet format and a new NDN forwarder that can meets
NDN research needs more effectively.

First, our research has shown that a Type-Length-Value (TLV) based NDN packet format is superior to
CCNx’s binary XML packet format. A TLV-based packet format can provide adequate flexibility to meet
our research needs without overcomplicating packet processing. Second, the CCNx code does not provide
enough modularity to support experimentation with alternative designs and new features, in particular
different forwarding strategies. Third, as the global NDN community grows, a codebase that is open and
free to all users and developers is essential to the sustainability of long-term NDN development.

Our goal is to develop NFD as an open and free software under GPL 3.0 license, which supports a new
TLV packet format and prioritizes code modularity and extensibility to facilitate research. It is an ambitious
goal considering the scope, the technical depth, and the sheer amount of work. We worked closely as a team
over multiple conference calls per week for ten months, involving six PIs and dozens of students, postdocs,
and staff members. We succeeded in releasing the first specification of the TLV-based packet format in late
2013, and NFD v0.2 implementation in August 2014. The NDN testbed is now running NFD natively and
is running NFD-based routing protocols globally. While the packet format, NFD codebase, and testbed
continue to evolve, they now form a solid foundation for future NDN development.

36

4.1 New Packet Format Design

In the past, our research and development efforts used a packet format specification that was originally defined
as part of the CCNx project (http://www.ccnx.org/releases/latest/doc/technical/index.html). As
our understanding of NDN design deepened through experimentation over the last three years, and based
on inputs from the broader NDN research community, we realized the need for several important changes.
In 2013, we started designing a new packet format [?] that uses TLV encoding instead of binary XML for
efficient processing by network elements. This effort also gave us the opportunity to rethink the structure
of the packets and reexamine various fields. The resulting Interest and Data packet fields are illustrated in
Figure 4.1. Note that naming conventions and the use of special markers inside NameComponents are not
part of the packet specification. In July 2014 we released an initial draft of naming conventions as an NDN
technical memo [?] to propose and hopefully inspire discussion of an initial standardization for common use
cases, e.g., segmentation, versioning, time stamping, and sequencing. Changes to the packet format include:

Interest Packet Data Packet
Name Name

(order preference, publisher filter,
exclude filter, …)

Selectors MetaInfo

Nonce

Guiders
(scope, Interest lifetime)

Content

Signature

(content type,
freshness period, …)

(signature type, key locator,
signature bits, …)

Figure 4.1: New NDN Interest and Data packet structure

• Changes in Interest packet structure (Figure 4.1):

– The nonce is now required, since it is needed to detect forwarding loops.

– PublisherPublicKeyDigest is replaced by PublisherPublicKeyLocator, to accommodate either
a key digest or a key name by which the key can be retrieved.

– AnswerOriginKind is simplified from a 4-bit to a 1-bit MustBeFresh.

– FaceID no longer exists.

– InterestLifetime is measured in milliseconds

– The Exclude selector no longer supports the Bloom Filter option.

– A new default semantics of data staleness: NDN-TLV Interest with no selectors will bring any
data that matches the name, and only when MustBeFresh selector is enabled will it retrieve fresh
data. The FreshnessPeriod is a field in the Data packet and is set by the content producer. In the
previous binary XML encoded Interest packet format, the default behavior was to bring “fresh”
data and return “stale” data only when AnswerOriginKind is set to 3.

• Changes in Data packet structure (Figure 4.1):

– SignedInfo has been renamed to MetaInfo and its content has changed.

– PublisherPublicKeyDigest and ExtOpt have been removed.

– Timestamp has been removed

– KeyLocator is now inside the Signature (SignatureInfo) block

– Three content types, ENCR, GONE, and NACK have been removed. They were listed in CCNx
as placeholders for some potential usages, but we decided that they are either not needed (ENCR,
GONE), or will required detailed specification (NACK) in some future version of the packet

37

http://www.ccnx.org/releases/latest/doc/technical/index.html

format.

– FreshnessSeconds has been renamed to FreshnessPeriod and is expressed in milliseconds

• New definition of Data packet signature

– Signature block is now at the end of Data packet to facilitate packet processing.

– KeyLocator has been moved to be part of the SignatureInfo block, if it is applicable for the
specific signature type.
The rationale for the move is to make Signature (a tuple of SignatureInfo and SignatureValue

TLVs) self-contained and self-sufficient.

– Signature type (or signing method information) is now expressed as an assigned integer value
(with no assumed default), rather than OID.

– Support for hash-only “signature”, which can be used when the producer has a slow CPU or
limited power, or for applications that put stronger signatures inside the Data payload.

– New signature type for Elliptic Curve Digital Signature Algorithm (ECDSA) has been added.

The NDN team has fully adopted the new packet format, and all librariers and NFD support it. We
devised a transition mechanism, used from January 2014 to July 2014, when we had initial support for
the new packet format on the NDN Testbed with use of the ndnd-tlv package [?]. This package provides
translation between the binary XML format and the TLV format, allowing applications to experiment with
the new format and features, while still interoperating with legacy applications (Figure 4.2). It was used
on the NDN Testbed from January 2014 to July 2014 and played an important role in helping applications
migrate to the TLV packet format.

ndnd-tlv

New NDN-
TLV-based

apps

ndnd
(vanilla)

tlv-to-
ndnb

ndnb-to-
tlv

New NDN-
TLV-based

apps

ndnd-tlvtlv-to-
ndnb

ndnb-to-
tlv

Old format
internally

Old apps

Figure 4.2: ndnd-tlv package and experimentation opportunities

4.2 New NDN Forwarder: NFD

4.2.1 Development Overview

NFD (http://named-data.net/doc/NFD) is a network forwarder that implements and evolves together with
the NDN protocol. NFD is an open and free software package licensed under GPL 3.0 license and is the
centerpiece of our commitment to making NDN’s core technology open and free to all Internet users and
developers. For more information about the licensing details and limitation, refer to (https://github.com/
named-data/NFD/blob/master/COPYING.md).

38

http://named-data.net/doc/NFD
https://github.com/named-data/NFD/blob/master/COPYING.md
https://github.com/named-data/NFD/blob/master/COPYING.md

The primary objective of NFD is to facilitate community research. As our understanding of the NDN
architecture matured over the course of the last few years, we needed an platform that implements the
latest architectural components to support easy experimentation with new protocol features, algorithms,
and applications. Therefore, the NFD design emphasizes code modularity and extensibility.

To support the broader community in experimenting with the NDN architecture as well as in contributing
the NDN development, we adopted a common open-source project model for NFD development. We set up
and used Redmine for issue tracking, Jenkins for code review, and Travis-CI for automated testing. Bug
reporting, feature discussions, code reviews, unit tests and integration tests are all part of the development
pipeline. The NFD development team involved 6 PIs, a dozen students, and a few postdocs and staff
members. We also involved our collaborators from University Pierre & Marie Curie, Sorbonne University and
Beijing Institute of Technology to contribute code to NFD. All participating students gained tremendously
from the process in making system design tradeoffs, learning large system development skills and effective
remote collaborations.

NFD v0.1 was released internally in spring 2014 for testing and development purposes. The first public
release, NFD v0.2, was in August 2014. It is now part of the NDN platform and we will aim for the same
release cycle, i.e., every 3 months. To simplify and promote the adoption of NFD and NDN technology
in general, in addition to providing full access to the source code, we also provide official binary packages
for a set of supported platforms, including Ubuntu Linux 12.04, Ubuntu Linux 14.04, and Mac OSX with
MacPorts. NFD is known to run on other platforms including RedHat, Gentoo, FreeBSD, Raspberry Pi,
and OpenWRT/DD-WRT. The public release of the forwarder and other related tools was accompanied by
the release of a set of extensive documentation on NFD’s homepage (http://named-data.net/doc/NFD/
current/). These documents provide detailed explanation on how to compile, configure, use, monitor, and
debug NFD. In particular, to help developers improve NFD and extend it for their own research, we wrote
the “NFD Developer’s Guide” (Technical Report NDN-0021 [?]) which explains NFD’s internals including
the overall design, major modules, their implementations, and their interactions.

After its public release, we expect NFD will attract usage and contributions from the broader community.
To support the NDN-NP project, we intend to continue NFD development to keep pace with the protocol
specification, while maintaining a modular, stable, and lean framework to facilitate researchers experimenta-
tion with new features, some of which may make their way into future version of the protocol specification.
We will leverage the software development system and our project management experience in future NFD
and related NDN software development.

4.2.2 Major Components and Functionality

The main functionality of NFD is to forward Interest and Data packets: it abstracts lower-level network
transport mechanisms into NDN Faces, maintains basic data structures such as the Content Store (CS),
PIT, and FIB, and implements the packet processing logic. NFD supports multiple forwarding strategies,
and implements a management interface for applications to configure, control, and monitor NFD. Figure 4.3
illustrates the major components of NFD:

• The Face System is separated into three logical abstractions: protocol factories, channels, and faces.
A protocol factory creates channels or faces of specific protocols, e.g., the TCP protocol factory
creates TCP faces. A channel represents an NFD-side endpoint for unicast communications (i.e.,
“listening” socket or socket from which connection will be established). NFD refers to these endpoints
using the concept of FaceURI, which defines protocol and protocol-specific parameters of the endpoint.
A Face is an abstraction which implements communication primitives to send and receive Interest
and Data packets. Depending on the nature of communication, a Face can have different properties,
such as local vs. remote, unicast vs. multicast. The implementation is heavily based on the Boost.Asio
library and uses asynchronous operations to avoid blocking the rest of the daemon while performing
potentially lengthy network operations. The current release supports the following underlying plat-
forms: TCP, UDP, Unix Socket, raw Ethernet, and WebSocket. Thanks to its modular design, it is
easy to add new types of faces into NFD.

39

http://named-data.net/doc/NFD/current/
http://named-data.net/doc/NFD/current/

Figure 4.3: Overview of NFD modules

• Tables
NFD implements five tables to store information. The Forwarding Information Base (FIB) is the name-
based forwarding table, which is consulted in order to forward an Interest. Its content can be manually
configured and/or managed by routing protocols. The Content Store (CS) caches passing Data packets
opportunistically. It currently supports a simple cache replacement policy. The Pending Interest Table
(PIT) records Interests that have not been satisfied by returned Data or timed out yet. It also helps
detect loops and facilitate strategy decisions. Compared with CCNx, NFD introduces two new tables
to support namespace-specific strategies. The StrategyChoice Table records the forwarding strategy
chosen for a namespace, while the Measurements Table stores past performance results to inform
forwarding decisions. FIB, PIT, StrategyChoice, and Measurements have similar index structures.
To improve performance and reduce memory usage, a common index called NameTree can be shared
among these four tables. NameTree defines a set of common APIs, which can be implemented by
different data structures and algorithms, making it easy to experiment with different designs.

• Forwarding
Packet processing in NFD has two dimensions: forwarding pipelines and forwarding strategies.
Temporally, packet processing is broken into a series of steps called pipelines, shared by all strategies.
Between pipelines, a router may invoke a namespace-specific strategy to make forwarding decisions
before entering the next pipeline. For example, when a router receives a new Interest, it pushes
the Internet into the onIncomingInterest pipeline, which will detect loops, consult the PIT/CS/FIB
etc. Depending on the lookup result, the router may invoke the onOutgoingData pipeline for a CS
match, or a forwarding strategy for a FIB match, etc. The strategy can be set for each namespace
by applications, and it can use the Measurements table to store strategy-specific state information.
Therefore by breaking packet processing into small pipelines and placing strategy hooks in between, we
enabled the support of per-namespace strategy. The current release supports the following strategies:
broadcast, best-route, client control, and the strategy used in ccnx. We plan to make strategy support
more flexible and add more strategies in the next step.

• Management
The NFD Management Protocol defines an Interest/Data API to control, configure, and query NFD.
In particular, users can:

– create, destroy Faces, and enable/disable local control features on local faces (Face Manager)

– add and remove FIB entries (FIB Manager)

– manipulate selection of the forwarding strategy for namespaces (Strategy Choice Manager)

– retrieve status and traffic statistics

Each manager is an interface for some part of the lower layers of NFD. Adding a new manager is a
fairly straightforward task; one only needs to determine what part(s) of NFD should be exported to an

40

Interest/Data API and create an appropriate command Interest interpreter. All management actions
that change NFD state require the use of control commands, a form of signed Interests. Management
actions that just query the current state of NFD do not need to be authenticated. In the future if data
access control is desired, some data can be encrypted.

• RIB Management
Different parties may update the RIB in different ways, including various routing protocols, application
prefix registrations, and command-line manipulation by sysadmins. The RIB management module
processes all these requests to generate a consistent forwarding table, and syncs it with NFD’s FIB,
which contains only the minimal information needed for forwarding decisions. Strictly speaking RIB
management is part of the NFD management module, but due to its operational importance and more
complex processing of routing flags, we implement it as a separate module.

• Tools
We implemented a set of tools for managing and experimenting with NFD. These tools include nfd-
start/nfd-stop scripts, nfdc to manipulate NFD states at run-time via the management interface,
nfd-status and nfd-status-http-server to retrieve NFD status and publish it over HTTP, autoconfig to
automatically detect and connect to an NDN gateway, ndnping to test connectivity, and ndn-traffic-
generator to generate traffic with different characteristics for testing purposes. These tools played an
important role in testing and deploying NFD.

• Core
This module provides some common services within NFD. They include hash functions, logging facility
with different log levels, configuration file processing, and DNS resolution.

• NDN-CXX Library
NFD and its tools uses the NDN-CXX library.

4.3 NDN Testbed: Deployment, Management, Expansion

The past year has seen substantial changes and progress in the nature and organization of the NDN testbed.
Most significantly, the testbed has been transitioned from using CCNx to NFD as the underlying forwarding
substrate. The NFD development effort was ambitious but triumphant, illustrated by the NDN testbed,
which now runs NFD natively and NFD-based routing protocols globally.

Figure 4.4: The NDN Map reflects the new NFD-based global
testbed.

The Testbed has also transitioned
from an internal testbed for the NDN
project to an open testbed for the
broader community. In 2014 we formal-
ized the procedure for a site to join the
testbed and opened it up to interested
researchers. Currently, there are 9 gate-
way nodes at NDN PI sites, and 7 col-
laborating sites, including 3 in Asia and
2 in Europe. All nodes in the NDN
testbed are operated and managed by the
testbed NOC at Washington University
which operates, manages, tests, and up-
grades all testbed nodes. NDN teams at
various campuses developed various sup-
porting software including NFD, NLSR,
the traffic generator, video streaming ap-
plication, and other monitoring tools.

Two developments from Washington
University enabled the NDN transition and its monitoring. First, the Open Network Lab (ONL) enabled a
network-scale integration test of the entire testbed before, during and after the testbed transition to NFD-

41

Figure 4.5: The NDN Testbed topology in ONL enables integration testing prior to testbed deployment.

based nodes. ONL was able to shake out some bugs in routing protocols that could only be found with
a large-scale deployment, as well as bugs in NFD during stress tests. Figure 4.5 shows the graphical-user
interface displaying the testbed in ONL.

Second, the NDN map tool originally designed for CCNx has been redesigned and implemented to work
with NFD-based nodes. The NDN map makes it easy for anyone to see both the organization and the real-
time usage of the global NDN testbed. It is helpful as a visual aid during wide-area network demonstrations
of NDN. Figure 4.4 includes a view drawn from http://ndnmap.arl.wustl.edu.

42

Chapter 5

Impact: Education

Contributors
PIs Christos Papadopoulos (CSU), Lan Wang (Memphis), Beichuan Zhang (Arizona), Van

Jacobson, Jeff Burke, Lixia Zhang (UCLA)

5.1 Education Philosophy and Objectives

The NDN group has produced a significant amount of educational material, which can be found at the
following URL: http://www.named-data.net/education.html.

The students of today will become the network architects of tomorrow. Network architectures will change
with technology advances over time and today’s students will determine how they change. As networked
computing systems such as the Internet grow rapidly in complexity along with our dependence on them,
the ability to rigorously understand the fundamentals of network communication architectures becomes only
more important. While we hope NDN succeeds as a network architecture, our education objectives are
broader: to teaching students “architectural thinking”, a type of computational thinking that encompasses
system principles, invariants, and design trade-offs, so they make their own informed decisions on how
network architecture should evolve. We encourage students to challenge our own architectural choices and
explore alternatives.

5.2 Biweekly NDN Seminars

During this reporting period we continued our biweekly NDN seminar series among participating universities.
Shiguang Wang, a UIUC graduate student and A K M Mahmudul Hoque, a Memphis graduate student,
collected topics and created the schedule. Seminar covered the following topics:

• 2/24/14: Ilya Moiseenko, Consumer-Producer API for Named Data Networking

• 3/17/14: Peter Gusev, NDN Real Time Conferencing Library

• 4/14/14: Jeff Burke, NP proposal ”network environments” (Open mHealth and Enterprise Building
Automation, mobile media application cluster)

• 6/6/14: Jeff Burke, Introduction to ”Enterprise Building Automation and Management network”
environment

• 6/30/14: Jeff Burke, Enterprise Building Automation and Management network

43

http://www.named-data.net/education.html

5.3 Education Efforts

This section describes the education efforts carried out during the reporting period by NDN team members
at various campuses.

University of Arizona During Year 4 Beichuan Zhang took sabbatical leave and visited Tsinghua Univer-
sity. His class material for CS 525, however, was still used in the Fall 2014 semester at the University of
Arizona. It has 2 lectures that cover NDN’s basic concepts, operations, research issues, and progresses.
The course also contains material on other future internet designs and other ICN designs to provide a
more comprehensive view of the research area. While at Tsinghua University, Beichuan Zhang devel-
oped a new advanced course that focuses on NDN. The course is titled Internet Routing Architectures
and Protocols: A Comparative Study of IP and NDN. Half of the course is lectures, covering IP
architecture and major routing protocols and content distribution solutions, NDN architecture and
its approaches to routing, mobility, security and content distribution. The other half of the course is
class discussions, in which students compare IP and NDN solutions to various problems and debate
their pros and cons. At the end of the course each student submits a report on a self-selected NDN-
related research topic. Ten students formally registered the course and four other students audited the
course. The approach of teaching IP and NDN at the same time while making comparison seems to
be effective. The submitted class reports reflected that most students gained good understanding of
NDN architecture with good technical depth. This course will be further developed at the University
of Arizona into an advanced graduate course.

Colorado State: CSU continued to teach NDN and assign NDN-related programming assignments in both
the graduate and undergraduate networking courses. PI Papadopoulos taught both classes in Fall 2013
and Spring 2014. As a demonstration of how NDN makes applicatipon development easy, the graduate
class assigned two projects with identical specs: an implementation a simple version of BitTorrent; one,
however, was implemented using IP and the other using NDN. The students were asked to comment on
the difficulty of the implementations. The difference was startling, with students finding it far easier
and more natural to implement the project in NDN.

CSU is currently working on updating the old GENI exercises to use the new NDN codebase. In the
process we will make the exercises richer, demonstrating more features of NDN. Finally, CSU produced
a few screencasts to demonstrate important features of NDN, which are described separately below.

UCLA: Lixia Zhang taught a graduate course “CS217A: Internet Architecture & Protocols” during Winter
2014 quarter, which covered both today’s Internet TCP/IP architecture as well as a brief introduction
to Named Data Networking (NDN), which was covered in three lectures. In addition, the students
were also encouraged to take optional term projects on several NDN research topics, including:

• Installation of NDN NFD on Raspberry Pie to enable exploration of home IoT.

• Simulation experimentation with a new mobility support approach: Interest forwarding via NDN’s
Pending Interest Table (PIT).

• Dynamic web publishing

• Implementation of a graph-database based NDN repository

• Design of a new naming structure to facilitate data discovery from k-nearest neighbor nodes.

• Implementation of NDNS (NDN-DNS)

Either a faculty member or a graduate student from the NDN team served as the contact person
for each topic. The first topic led to a master project with a successful demonstration. The work
started with the second topic eventually led to a paper submission to the first ACM ICN conference.
An undergraduate student took on the third topic and he has been involved in NDN research ever
since. Another undergraduate student from Zhang’s undergraduate teaching also got involved in NDN
research by helping with the NDNS implementation and the development of an NDN wikipedia page.

CS217A had about 30 enrolled students, however over 50 people attended three NDN introductory
lectures, including graduate students, visiting students and scholars. During the 2014-2015 academic

44

year, Lixia Zhang will teach both CS217A in fall 2014, hoping to exceed the success from last time,
and CS217B on “Advanced Topics in Internet Research” in spring 2015, a graduate seminar course
that to NDN architecture research and NDN application development since 2010.

NDN/CCN Tutorial Transcript: We transcribed, edited, and published the text of a 3+ hour
tutorial given by Van Jacobson on Content-Centric Networking for the Future Internet Summer School
(FISS 2009), hosted by the University of Bremen in Germany. This 35-page approximate transcript
is a goldmine for understanding the deep motivations and implications of the NDN architecture, and
is available online along with the video at http://named-data.net/2014/04/15/ndn-humans/. We
have referred students and others wishing to engage deeply with research on the architecture to this
new reference.

Memphis: Lan Wang gave a lecture on NDN in COMP4410/6410 (Computer Security) to explain how
provenance will be a built-in feature in the new Internet architecture.

5.4 Educational Screencasts

We developed a number of screencasts demonstrating several features of NDN such as data discovery, dis-
tributed publication, exclusion, retrieval, enumeration of a name prefix, and automatic failover. This screen-
casts show how NDN works and provide a visual experience for new users. Moreover, they capture features
that will benefit other research areas, such as climate research. These screencasts have been displayed at
several NDN workshops and meetings. The videos can be found here - http://www.cs.colostate.edu/

~susmit/ndn_screencasts/.

References

• NDN Project Education Webpage, http://named-data.net/education.html

• CCNx BootCamp Webpage, http://www.ccnx.org/ccnxbootcamp2011/

• AsiaFI NDN Hands-on Workshop Webpage, http://www.asiafi.net/org/ndn/hands-on2012/

45

http://named-data.net/2014/04/15/ndn-humans/
http://www.cs.colostate.edu/~susmit/ndn_screencasts/
http://www.cs.colostate.edu/~susmit/ndn_screencasts/
http://named-data.net/education.html
http://www.ccnx.org/ccnxbootcamp2011/
http://www.asiafi.net/org/ndn/hands-on2012/

Chapter 6

Impact: Expansion of NDN
Community

The NDN project continues to attract attention from the global networking community. The PIs have
participated in numerous conferences and speaking engagements, as listed below, and engaged a variety of
interns and visiting researchers from university and industry. These formal and informal efforts have helped
to disseminate the research results and core ideas of the project, as well as practical information about the
NDN codebase, to the community.

6.1 First NDN Community meeting

The team organized and executed the first NDN Community Meeting (held September 3-5, 2014 at UCLA),
which brought over 80 researchers from academia and industry together to discuss the architecture, future
research, and important applications. Attendees included students, faculty, and staff from the NDN cam-
puses, as well as other universities conducting NDN research and industry including Ericsson, Cisco, Huawei,
Panasonic Research, PARC, Intel, and others.

The full agenda can be found on the Named Data Networking First Community Meeting website,
http://www.caida.org/workshops/ndn/1409/.

Figure 6.1: Professor Lan Wang (University of
Memphis) speaking at NDNComm 2014. Figure 6.2: UCLA Graduate Student Yingdi Yu

explaining his poster at NDNComm 2014.

46

http://www.caida.org/workshops/ndn/1409/

6.2 Establishment of NDN Consortium

In a significant milestone for NDN, the project team launched the NDN Consortium to promote a vibrant
open source ecosystem of research and experimentation around NDN by providing developer support tools,
organizing community meetings, generating outreach activities, and hosting working groups for both industry
verticals and cross-cutting activities.

In addition to the eight NDN participating campuses which made the founding members of the consor-
tium, seven universities and six companies signed up with the first three weeks of the consortium announce-
ment. They include(to date)

• Anyang University, Korea

• Tongji University, China

• Tsinghua University, China

• University of Basel, Switzerland;

• Pierre-and-Marie-Curie University, France

• Waseda University, Japan.

• Alcatel-Lucent

• Cisco Systems

• Huawei Technologies

• The MITRE Corporation

• Panasonic Corporation (in progress)

• Verisign, Inc.

We expect that the consortium and events like the community meeting will build engagement and partic-
ipation in the research, bring new ideas and applications into the mix, and work towards and open and
accessible core architecture per our original Intellectual Property Statement.

More information on the Named Data Networking Consortium can be found at http://named-data.
net/consortium.

6.3 The First ACM Information Centric Networking Conference

Figure 6.3: Network World article on consortium, Sept 4, 2014.

After three successful ACM SIGCOMM
Information Centric Networking Work-
shops (ICN 2011-2013) and two IEEE
INFOCOM workshops on Emerging De-
sign Choices in Name-Oriented Network-
ing (NOMEN 2012-2013), where NDN
team members played important roles in
organizing the activities, ACM launched
the first Information Centric Network-
ing Conference to be held in September
2014 in Paris, France. Most NDN PIs
served on the Technical Program Com-
mittee for ACM ICN 2014. Lixia Zhang
served as TPC co-chair. The NDN team
will present 2 papers (of 17), 3 posters
(of 8), and a demo at the conference. We
will also present a half-day tutorial on
“An Introduction to NDN and its Soft-
ware Architecture”, a joint effort by NDN
PIs, supporting staff member, postdoc,

47

http://named-data.net/consortium
http://named-data.net/consortium

and graduate student. The high number of ICN 2014 submissions and registered attendees already led to
ACM’s decision to sponsor the next ICN conference in San Francisco, California in September 2015, a strong
indication of the growing popularity of information centric networking research.

6.4 Reaching Out: NDN Presentations

Lan Wang and Beichuan Zhang participated in INFOCOM 2014 Panel on “Whether NDN: Doubts, Tough
Questions, Progress, and Challenges”. They presented NDN architecture design principles and progress.

NDN team member Jeff Burke gave a keynote at IFIP 2014 to continue the team’s outreach effort to the
networking community. The talk, entitled “Why architecture matters to everyone: Creativity on the Future
Internet” introduced NDN, outlined the team’s approach, and suggested a path for formally evaluatinig the
architecture’s impact on application developers.

NDN team member Lixia Zhang gave a LINCS1 seminar presentation to a full room in June 2014 on
“The Art of Packet Format Design”. The talk explained how the new NDN packet format design took into
account the successes and lessons from both today’s Internet protocol packet format designs as well as the
lessons learned from their evolution over the last 30+ years.

Lixia Zhang gave an invited talk at VeriSign in August 2014 on “IoT Networking via NDN”, which
explained why an information-centric architecture such as NDN, provides a better fit for IoT applications
than TCP/IP, and how NDN’s data naming simplifies overall system design, facilitates data security, access
control, and resource discovery. The talk was well attended and a few VeriSign researchers indicated their
interest in investigating into this area.

Christos Papadopoulos gave invited talks at about seven Internet 2 conferences, climate workshops and
scientist groups. These talks introduced NDN and outlined how the new architecture significantly simplifies
Big Data applications in such domains. Examples include translation from existing, ad-hoc namespaces to
NDN hierarchical namespaces, distributed publishing for location independence, data discovery and enumer-
ation of all datasets under a common prefix, and instant failover through multiple NDN repositories.

Presentations

1. Tarek Abdelzaher, Invited Talk, Syracuse University, “Social Sensing: Making Reliable Observations
from Unreliable Data,” Syracuse, NY, October 2013.

2. Tarek Abdelzager, Panelist, 1st International Workshop on Sensing and Big Data Mining, “Bridging
Big Data and Sensing: What is Missing?” Rome, Italy, November 2013.

3. Tarek Abdelzaher, Invited Speaker, Global Innovation Festival, Daegu Gyeongbuk Institute of Science
and Technology (DGIST), “Data Analytics for Human-centric Cyber-physical Systems,” Daegu, Korea,
November 2013.

4. Tarek Abdelzaher, Award Talk, IEEE Real-time Systems Symposium, “Cyber-physical Systems in
Social Spaces: A Data Reliability Perspective,” Vancouver, Canada, December 2013. Note: The
IEEE RTSS Award Talk is an invited talk given by the recipient of the IEEE Outstanding Technical
Achievement and Leadership Award in Real-time Systems, the year following the award.

5. Tarek Abdelzaher, Invited Talk, Hong Kong Polytechnic University, “Social Sensing: Making Reliable
Observations from Unreliable Data,” Hong Kong, December 2013.

6. Tarek Abdelzaher, Invited Talk, UIUC (Department of Agricultural and Biological Engineering), “So-
cial Sensing: Making Reliable Observations from Unreliable Data,” Urbana, IL, January 2013.

7. Tarek Abdelzaher, Keynote Talk, Danish Academy of Technical Sciences (Big Data Seminar), “Social
Sensing: Making Reliable Observations from Unreliable Data,” Keynote Talk, Aalborg, Denmark,
February 2014.

1Laboratory of Information, Networking and Communication Sciences, Paris, France.

48

8. Jeff Burke, keynote, IFIP Networking 2014, “Why architecture matters to everyone: Creativity on the
Future Internet”, Trondheim, Norway, June 3, 2014.

9. Jeff Burke, invited talk. “The Conditions of Algorithmic Life, Occams Hourglass, Mellon Research
Initiative in Digital Cultures”, UC Davis, May 15-16, 2014.

10. Jeff Burke, invited talk. Huawei Corporate-level Science & Technology Workshop, “Named Data
Networking and the Internet of Everything”, Huawei headquarters, Shenzen, China, May 13, 2014.

11. Jeff Burke, invited talk. Big Conference, “Big Data and the Big Network”, University of California,
Irvine, April 11, 2014.

12. Jeff Burke, invited talk. Huawei Science & Technology Workshop, “Named Data Networking and the
Internet of Everything”, Futurewei, Santa Clara, March 11, 2014.

13. Jeff Burke, invited talk. Woodbury University, “Stories to Systems to Architectures”, January 13,
2014.

14. Jeff Burke, invited talk. Cinegrid, “Named Data Networking Video Streaming and Conferencing”,
December 10, 2013.

15. Jeff Burke. Packet Video Conference, co-chair, Information-Centeric Networking Special Session.
Cisco, San Jose, December 12, 2013.

16. Jeff Burke, invited talk. National Speakers Conference, “The Next Generation of Storytelling: The
Future of the Entertainment Industry in a Mobile World”, October 25, 2013.

17. Christos Papadopoulos, Cathie Olchanowsky, Susmit Shannigraphi, Steve DiBenedetto, David Ran-
dall, Kelly Wittmeyer, Don Dazlich, and Mark Branson, invited talk, NSF CC-NIE PI Workshop,
“Supporting Climate Applications over Named Data Networking,” May 1, 2014 Arlington, VA.

18. Christos Papadopoulos, Cathie Olchanowsky, and David Randall, invited talk, Internet 2 Summit,
“Supporting Climate Applications over Named Data Networking,” April 7, 2014 Denver, CO.

19. Christos Papadopoulos, Cathie Olchanowsky, Susmit Shannigraphi, Steve DiBenedetto, David Randall,
Kelly Wittmeyer, Don Dazlich, and Mark Branson, invited paper, LANMAN Workshop, “Supporting
Climate Applications over Named Data Networking,” May 23, 2014 Reno, NV.

20. Christos Papadopoulos, Cathie Olchanowsky, Susmit Shannigraphi, Steve DiBenedetto, David Randall,
Kelly Wittmeyer, Don Dazlich, and Mark Branson, invited talk, FTW Workshop, “Supporting Climate
Applications over Named Data Networking,” July 16, 2014, Boulder, CO.

21. Christos Papadopoulos, Cathie Olchanowsky, Susmit Shannigraphi, Steve DiBenedetto, David Ran-
dall, Kelly Wittmeyer, Don Dazlich, and Mark Branson, invited talk, NDN Community Meeting,
“Supporting Climate Applications over Named Data Networking,” September 2014.

22. Christos Papadopoulos, Cathie Olchanowsky, Susmit Shannigraphi, Steve DiBenedetto, David Randall,
Kelly Wittmeyer, Don Dazlich, and Mark Branson, invited talk, Cooperative Institure for Research in
the Atmosphere (CIRA), “Supporting Climate Applications over Named Data Networking,” September
9, 2014, Fort Collins, CO.

23. Beichuan Zhang, invited talk, “Adaptive Forwarding in Named Data Networking”, University of Science
and Technology, China, October 19, 2013.

24. Beichuan Zhang, invited talk, “Update on NDN Spec”, ICNRG meeting IETF 88, November 2013.

25. Beichuan Zhang, invited talk, “Named Data Networking: Architecture and Challenges”, The First t
HotICN workshop, Beijing, December 7, 2013.

26. Beichuan Zhang, invited talk, “Named Data Networking”, Beijing Institute of Technology, Dec. 2013.

27. Beichuan Zhang, invited talk, “Named Data Networking”, The 3rd Future Network Development and
Innovation Forum, December 17, 2013.

28. Beichuan Zhang, invited talk, “Named Data Networking”, Xi An Jiaotong Un., China, June 2014.

49

Chapter 7

Publications

Listed below are our publications during Year 4 of the NDN project.

1. “On the Role of Routing in Named Data Networking”, by Cheng Yi, Jerald Abraham, Alexander
Afanasyev, Lan Wang, Beichuan Zhang, Lixia Zhang. 1st ACM Conference on Information-Centric
Networking, Paris, France, September 2014.

2. “VIP: A Framework for Joint Dynamic Forwarding and Caching in Named Data Networks”, by Edmund
Yeh, Tracey Ho, Ying Cui, Michael Burd, Ran Liu, Derek Leong. 1st ACM Conference on Information-
Centric Networking, Paris, France, September 2014.

3. “Consumer-Producer API for Named Data Networking” by Ilya Moiseenko and Lixia Zhang. Poster,
1st ACM Conference on Information-Centric Networking, Paris, France, September 2014.

4. “Kite: A Mobility Support Scheme for NDN” by Yu Zhang, Hongli Zhang, Lixia Zhang. Poster, 1st
ACM Conference on Information-Centric Networking, Paris, France, September 2014.

5. “iSync: A High Performance and Scalable Data Synchronization Protocol for Named Data Networking”
by Wenliang Fu, Hila Ben Abraham, Patrick Crowley. Poster, 1st ACM Conference on Information-
Centric Networking, Paris, France, September 2014.

6. “Named Data Networking” by L. Zhang, A. Afanasyev, J. Burke, claffy, L. Wang, V. Jacobson, P.
Crowley, C. Papadopoulos, B. Zhang. ACM SIGCOMM Computer Communication Review (CCR),
July 2014.

7. “The Information Funnel: Exploiting Named Data for Information-maximizing Data Collection” by
Shiguang Wang, Tarek Abdelzaher, Santhosh Gajendran, Ajith Herga, Sachin Kulkarni, Shen Li,
Hengchang Liu, Chethan Suresh, Abhishek Sreenath, Hongwei Wang, William Dron, Alice Leung,
Ramesh Govindan, John Hancock. In Proc. 10th IEEE International Conference on Distributed
Computing in Sensor Systems (DCOSS), Marina Del Rey, CA, May 2014.

8. “Scalable Pending Interest Table Design: From Principles to Practice” by Haowei Yuan and Patrick
Crowley. INFOCOM 2014, Toronto, Canada, April-May 2014.

9. “VANET via Named Data Networking” by Giulio Grassi, Davide Pesavento, Giovanni Pau, Rama
Vuyyuru, Ryuji Wakikawa, Lixia Zhang. IEEE INFOCOM 2014 Workshop on Name Oriented Mobility
(NOM), Toronto, Canada, April-May 2014.

10. “Lets ChronoSync: Decentralized Dataset State Synchronization in Named Data Networking” by
Zhenkai Zhu and Alexander Afanasyev. Proceedings of the 21st IEEE International Conference on
Network Protocols (ICNP 2013), Goettingen, Germany, October 2013.

11. “Security Evaluation of a Control System Using Named Data Networking” by Victor Perez, Mevlut
Turker Garip, Silas Lam, and Lixia Zhang Eighth Workshop on Secure Network Protocols (NPSec),
October 2013.

50

12. “Performance measurement of the CCNx synchronization protocol” by Hila Ben Abraham and Patrick
Crowley. In Proceedings of the 9th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), San Jose, CA, October 2013.

NDN Technical Reports

All the reports are available online at http://named-data.net/publications/techreports/

• “NDN Common Client Libraries” by Jeff Thompson and Jeff Burke. NDN Technical Report NDN-0024,
Revision 1: September 5, 2014.

• “An Endorsement-based Key Management System for Decentralized NDN Chat Application” by Yingdi
Yu, Alexander Afanasyev, Zhenkai Zhu, and Lixia Zhang. NDN Technical Report NDN-0023, Revision
1: July 22, 2014.

• “NDN Technical Memo: Naming Conventions” by NDN Project Team. NDN Technical Report NDN-
0022, Revision 1: July 21, 2014.

• “NFD Developers Guide” by Alexander Afanasyev, Junxiao Shi, Beichuan Zhang, Lixia Zhang, Ilya
Moiseenko, Yingdi Yu, Wentao Shang, Yi Huang, Jerald Paul Abraham, Steve DiBenedetto, Chengyu
Fan, Christos Papadopoulos, Davide Pesavento, Giulio Grassi, Giovanni Pau, Hang Zhang, Tian Song,
Haowei Yuan, Hila Ben Abraham, Patrick Crowley, Syed Obaid Amin, Vince Lehman, and Lan Wang.
NDN Technical Report NDN-0021, Revision 1: July 1, 2014.

• “Kite: A Mobility Support Scheme for NDN” by Yu Zhang, Hongli Zhang, and Lixia Zhang. NDN
Technical Report NDN-0020, Revision 1: June 3, 2014.

• “Named Data Networking” by Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc
claffy, Patrick Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. NDN Technical
Report NDN-0019, Revision 1: 10 April 2014.

• “A World on NDN: Affordances & Implications of the Named Data Networking Future Internet Ar-
chitecture” by Katie Shilton, Jeff Burke, kc claffy, Charles Duan, and Lixia Zhang. NDN Technical
Report NDN-0018, Revision 1: 11 April 2014.

• “Consumer-Producer API for Named Data Networking” by Ilya Moiseenko and Lixia Zhang. NDN
Technical Report NDN-0017, February 2014

• “On the Role of Routing in Named Data Networking” by Cheng Yi, Jerald Abraham, Alexander
Afanasyev, Lan Wang, Beichuan Zhang, Lixia Zhang. NDN Technical Report NDN-0016, December
2013

• “NDNBlue: NDN over Bluetooth” by Arjun Attam, Ilya Moiseenko. NDN Technical Report NDN-
0015, November 2013

• “The Development and Experimentation with NDN.JS, a JavaScript Client Library for Named Data
Networking” by Wentao Shang, Jeff Thompson, Jeff Burke, and Lixia Zhang. NDN Technical Report
NDN-0014, August 2013.

• “A New Perspective on Mobility Support” by Zhenkai Zhu, Alexander Afanasyev, and Lixia Zhang.
NDN Technical Report NDN-0013, July 2013.

• “FileSync/NDN: Peer-to-Peer File Sync over Named Data Networking” by J. Lindblom, Ming-Chun
Huang, J. Burke, Lixia Zhang. NDN Technical Report NDN-0012, March 2013.

• “Authenticated Lighting Control Using Named Data Networking” by J. Burke, A. Horn, and A. Mar-
ianantoni. NDN Technical Report NDN-0011, October 2012.

• “Egal Car: A Peer-to-Peer Car Racing Game Synchronized Over Named Data Networking” by Z. Qu
and J. Burke. NDN Technical Report NDN-0010, October 2012.

51

http://named-data.net/publications/techreports/

• “Deploying Key Management on NDN Testbed” by Chaoyi Bian, Zhenkai Zhu, Alexander Afanasyev,
Ersin Uzun, and Lixia Zhang. NDN Technical Report NDN-0009, Revision 2, February 2013.

• “Chronos: Serverless Multi-User Chat Over NDN” by Z. Zhu, C. Bian, A. Afanasyev, V. Jacobson,
and L. Zhang. NDN Technical Report NDN-0008, October 2012.

• “NDN Video: Live and Prerecorded Streaming over NDN” by Derek Kulinski and Jeff Burke. NDN
Technical Report NDN-0007, September 2012.

• “NDNLP: A Link Protocol for NDN” by Junxiao Shi and Beichuan Zhang. NDN Technical Report
NDN-0006, July 2012.

• “ndnSIM: NDN simulator for NS-3” by Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. NDN
Technical Report NDN-0005, Revision 2, October 2012.

• “Scaling NDN Routing: Old Tale, New Design” by Alexander Afanasyev, Cheng Yi, Lan Wang,
Beichuan Zhang, and Lixia Zhang. NDN Technical Report NDN-0004, Revision 1: July 18, 2013.

• “OSPFN: An OSPF Based Routing Protocol for Named Data Networking” by Lan Wang, A K M
Mahmudul Hoque, Cheng Yi, Adam Alyyan, and Beichuan Zhang. NDN Technical Report NDN-0003,
July 2012.

• “A Case for Stateful Forwarding Plane” by Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan
Wang, Beichuan Zhang, and Lixia Zhang. NDN Technical Report NDN-0002, July 2012.

• “Named Data Networking” by the NDN project team. NDN Technical Report NDN-0001, October
2010.

52

	Executive Summary
	Architecture Overview
	Names
	Data-Centric Security
	Adaptive Routing and Forwarding
	In-Network Storage
	From Transport to Distributed Synchronization

	Research Plan and Progress
	Intended Outcome of the NDN Project
	Path and Progress
	Progress: Year 4

	Architecture Research
	Applications
	Summary of Objectives
	Technical Approach
	Progress - Applications
	Progress - Libraries
	New Architectural Findings from Application Development
	Values in Design

	Routing
	Named-data Link State Routing Protocol (NLSR)
	Hyperbolic Routing
	Dynamic Interest Limiting for NDN Congestion Control

	Scalable Forwarding
	Scalable Name-Based Forwarding
	Scalable Pending Interest Table Design
	Forwarding Engine Development

	Security
	Security Library
	Testbed Certificate Deployment
	Web-of-Trust
	Content Poisoning Mitigation

	Fundamental theory for NDN
	Objectives
	Progress for Theory Activities

	NFD Development and NDN Testbed
	New Packet Format Design
	New NDN Forwarder: NFD
	Development Overview
	Major Components and Functionality

	NDN Testbed: Deployment, Management, Expansion

	Impact: Education
	Education Philosophy and Objectives
	Biweekly NDN Seminars
	Education Efforts
	Educational Screencasts

	Impact: Expansion of NDN Community
	First NDN Community meeting
	Establishment of NDN Consortium
	The First ACM Information Centric Networking Conference
	Reaching Out: NDN Presentations

	Publications

