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ABSTRACT
In this study we mine one of the few sources of public data available
about the interdomain peering ecosytem: PeeringDB [1], an on-
line database where participating networks contribute information
about their peering policies, traffic volumes and presence at various
geographic locations. Although established to support the practical
needs of operators, this data also provides a valuable source of in-
formation to researchers. Using BGP data to cross-validate three
years of PeeringDB snapshots, we find that PeeringDB member-
ship is reasonably representative of the Internet’s transit, content,
and access providers in terms of business types and geography of
participants, and PeeringDB data is generally up-to-date. We find
strong correlations among different measures of network size –
BGP-advertised address space, PeeringDB-reported traffic volume
and presence at peering facilities, and between these size measures
and advertised peering policies.

1. INTRODUCTION
Although most of society considers the Internet as a critical in-

frastructure by now, we still know surprisingly little about its dy-
namics and structure. Its opaqueness is due to both the complexity
of network interactions and the proprietary treatment of many as-
pects of these interactions by commercial providers. One source
of public data on some of these network interactions that has yet
to be systematically mined by researchers is PeeringDB [1]. Peer-
ingDB [1] is an online open database where the operators of Au-
tonomous Systems (ASes) provide information about the networks,
such as peering policies, traffic volumes and presence at various
geographic locations. PeeringDB was established in 2004 to assist
peering coordinators identifying potential peers and peering loca-
tions. Over the last 3 years it has grown by 74% from 1950 partic-
ipants in August 2010 to 3392 in August 2013.

Networks registered in PeeringDB self-report their business type,
yielding a data set that can be used directly or to validate other
AS business-type inference algorithms [2, 3, 4]. Second, networks
report the set of IXPs and private peering facilites at which they
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are present. Third, networks self-report their general peering pol-
icy (either “Open”, “Selective”, or “Restrictive”) and approximate
traffic levels. Data on these four AS properties (business type, peer-
ing presence, traffic volume, peering policy) can help parameterize
models of interdomain interconnection economics and traffic flow
([5, 6, 7, 8], among others). To the best of our knowledge, Peer-
ingDB is the only centralized resource available to the research
community that publishes such data.

We undertake a study of PeeringDB data to investigate three
questions. First, since PeeringDB participation is voluntary, with
no mechanism to verify the accuracy of reported information, we
investigate whether the PeeringDB dataset is representative, cor-
rect, and current. We then explore PeeringDB data from the net-
work perspective, focusing on the geographic expanse, traffic vol-
ume, address space and peering policies that networks advertise.
Our goal is to discover correlations between these properties; the
presence of strong correlations would allow us to estimate proper-
ties of networks that are otherwise difficult to obtain (e.g., approxi-
mate traffic levels) using a property we can estimate from publicly
available data (e.g, size of advertised address space). Finally, we
explore what historical snapshots of the PeeringDB database can
tell us about the evolution of the Internet peering ecosytem.

We find that PeeringDB membership is representative of transit,
content, and access provider populations, and that most networks
keep their records current. The data less accurately reflects IXP
properties such as member counts and their evolution over time,
because many networks in developing regions do not participate
in PeeringDB. We find strong correlations among different mea-
sures of network size – advertised address space (from BGP), traf-
fic volume and geographic expanse (reported on PeeringdB), and
between these size measures and the peering strategies that those
networks use. The presence of such correlations allows us to esti-
mate difficult-to-obtain network properties, such as traffic volume
and peering policy, using parameters such as the BGP-advertised
address space or geographic expanse that are easier to obtain. Us-
ing three years of historical PeeringDB snapshots, we observe the
evolution of the peering ecosystem – geographic expansion by con-
tent, access, and transit networks that agrees with their published
peering behavior, changes in traffic volume, and a shift towards
more restrictive peering. Furthermore, we find widespread adop-
tion of Open peering among transit providers, which is counterin-
tuitive given that transit providers prefer other ASes as their cus-
tomers instead of peers.
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2. DATASETS
In this paper we analyze the latest (August 2013) snapshot from

PeeringDB, which we refer to as the Aug13-PDB dataset. Partici-
pating networks can report a wide range of attributes that are stored
as fields in its database record [1]; we use the following fields:
Business type of the network, which is one of Network Service
Provider (NSP) , Cable/DSL/Access Provider, Content Provider,
Enterprise, EducationResearch, or Non-Profit.
Approximate traffic volume that the network handles, which ranges
from 0-20Mbps to 1+Tbps, in 14 distinct bins.
Peering strategy that the network uses: Open, Selective, or Re-
strictive. ASes advertising a Restrictive peering policy are gener-
ally not inclined towards peering. ASes advertising a Selective pol-
icy prescribe a set of criteria (overall traffic volume, traffic ratios,
minimum number of geographic locations of overlap, etc.) that
potential peers must meet. ASes advertising an Open policy are
generally willing to peer with any co-located network.
The IXPs and private peering facilities where a network is present.

To examine whether PeeringDB participants are representative
of the AS population, we construct an AS topology using BGP
routing table dumps from Routeviews [9] and RIPE RIS [10] in
the first week of August 2013. We use CAIDA’s AS-relationship
algorithm [11] to infer the number of customers of each AS. We
use this BGP data to determine the size of the address space that
each AS originates (removing double-counting due to ASes adver-
tising overlapping prefixes). We classify ASes according to broad
geographic regions using the RIR database (WHOIS) where the AS
is registered: ARIN (North America), RIPE (Europe, Middle East,
and the former USSR), APNIC (Asia/Pacific), AfriNIC (Africa),
and LACNIC (Latin America). We refer to the dataset obtained
from BGP and WHOIS information as the Aug13-BGP dataset.

Through private communication with the PeeringDB operators
we found that they do not maintain historical snapshots of the Peer-
ingDB data. However, they publish a nightly mysql dump of the en-
tire database, which we have been archiving daily since July 2010.
To the best of our knowledge, this is the only resource of historical
peering data available to the research community. We will make
this data available publicly via CAIDA’s data sharing portal [12].

3. REPRESENTATIVENESS AND USABIL-
ITY OF PEERINGDB DATA

Given that PeeringDB runs on a volunteer basis, a key question
is whether PeeringDB participants are representative of the general
AS population, and whether the data is up-to-date and correct.

3.1 Business type representation of PeeringDB
We first study whether the business type of PeeringDB partic-

ipants is representative of the entire AS population. The Aug13-
PDB dataset contains 3392 ASes (7.5% of the number in Aug13-
BGP), of which 31% are Network Service Providers (NSP) (Tran-
sit Providers), 25% Content Providers, 33% Access Providers, 4%
Enterprise Networks, 4% Educational/Research, and 3% are Non-
profit organizations. The Aug13-BGP dataset contained 45074
ASes, of which 4.5% were Transit providers, 4.5% Content/Ac-
cess/Hosting providers, and 91% were Enterprise Customers ac-
cording to our scheme for classifying ASes into business types [2].
Based on this public BGP data, enterprise customers are under-
represented in PeeringDB as compared to transit, content and ac-
cess networks.

To determine if the largest transit networks are present in Peer-
ingDB, we use CAIDA’s AS-rank, which ranks transit providers ac-
cording to the number of ASes present in the provider’s customer

Registry Aug13-PDB BGP Aug13-PDB BGP
All (%) All (%) Non-stubs (%) Non-stubs (%)

ARIN 25.1 34.9 24.0 26.8
RIPE 53.2 44.2 53.6 49.8

APNIC 13.4 12.3 15.3 13.7
LACNIC 4.9 6.2 5.1 7.4
AFRINIC 1.7 1.5 1.7 2.1

Table 1: Geographical distribution of ASes in the Aug13-PDB and
Aug13-BGP datasets. While the overall PeeringDB population is

biased towards RIPE, the PeeringDB non-stub population is
geographicly representative of the entire Internet.

cone [11]. We find that 93% of the top-100, 80% of the top-200
and 74% of the top-300 ASes from AS-rank were present in the
Aug13-PDB dataset, including all known Tier-1 [13] and major
Tier-2 ASes [14]. To determine whether popular content providers
are present in PeeringDB, we used Alexa’s ranking of major con-
tent sites in August 2013 [15] to find the ASes that host the most
popular websites. 59% of ASes hosting the top-100, 39% of ASes
hosting the top-500 and 38% of ASes hosting the top-1000 web-
sites were present in Aug13-PDB. To determine whether popular
access providers are present in PeeringDB, we crawled the tracker
for the popular torrent site The Pirate Bay [16] over two weeks in
July 2013, and obtained a list of IP addresses that connected to the
tracker. We then mapped those IP addreses to ASes, and ranked
ASes by the number of BitTorrent clients. We find that 54% of the
top-100 ASes in terms of host count, 52% of the top-200, and 47%
of the top-300 ASes were present in Aug13-PDB.

Limitations of AS representation in PeeringDB: Given that
the objective of PeeringDB is to assist peering coordinators, it is
likely to draw the attention of only that section of the network oper-
ator community that is interested in peering. Hence, we can expect
organizations whose primary business is not Internet connectiv-
ity, e.g., education/research, retail enterprises, etc., networks with
small traffic volumes, limited resources, small geographic foot-
print, to not appear in PeeringDB. Finally, some networks may not
be willing to share information about themselves due to competi-
tive reasons. This is evident as there were 8724 registered users in
the Aug13-PDB dataset but only 3392 ASes that volunteered any
information about themselves.

3.2 Geographical representation of PeeringDB
Our next question is whether the geographic distribution of Peer-

ingDB participants matches that of all ASes seen in BGP. To an-
swer this question we used WHOIS information to determine the
RIR that each AS in peeringDB is registered in, and we compared
that with the distribution for all ASes. The first two columns of
Table 1 show the fraction of ASes in the Aug13-PDB and Aug13-
BGP datasets associated with each registry. The APNIC, LAC-
NIC, and AFRINIC registries have almost the same representation
in the Aug13-PDB and Aug13-BGP datasets. RIPE, however, is
over-represented and ARIN is under-represented in Aug13-PDB.
Since PeeringDB membership is not representative of the entire AS
population (most of which are stub networks [2]), we isolate the
geographic distribution of non-stub networks in the two rightmost
columns of Table 1. For this non-stub population, the representa-
tion bias towards RIPE (over ARIN) is much lower; the geographic
characteristics of non-stub PeeringDB participants are thus similar
to those of the larger Internet.

3.3 Freshness of PeeringDB records
Using the last updated field in PeeringDB records in the Aug 1,
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2013 snapshot, we find that the median time since the last update
was between 10-14 months for NSPs, Cable/DSL/Access providers
and Content providers, and 17 months for Enterprise networks.
When we considered the top-20 NSPs, top-20 Content and top-20
Access providers (ranked according to their advertised traffic vol-
ume), 70% of this set had updated their peeringDB records in the
month preceding August 1, 2013. PeeringDB records thus appear
to be reasonably current. PeeringDB does not incorporate topology
data, which is more susceptible to frequent variation. We do not
expect peering policies, geographic co-location and traffic profiles
to change frequently.

3.4 Correctness of data reported in PeeringDB
Snijders [17] recently found that PeeringDB data was 99% ac-

curate with respect to network presence at IXPs, i.e., 99% of the
instances where a network reported presence at an IXP were true.
To check the consistency of peering policies that networks report on
PeeringDB and on their webpages, we obtained the peering policy
URLs of 50 networks in PeeringDB, and compared the policy seen
on their URL with the policy mentioned in the PeeringDB record.
In each case, the peering policy listed on PeeringDB (Open, Se-
lective or Restrictive) matched the peering policy at that network’s
policy URL. Verifying other self-reported network properties such
as traffic volume is difficult; however, we are currently developing
a method to compare a network’s advertised peering policy with its
peering behavior at various IXP route servers.

We investigated whether we could use PeeringDB to infer a spe-
cific IXP property – the number of members present at that IXP.
For each of the top-20 IXPs for which we could find member lists
online, we calculated a ratio of the number of members of the IXP
inferred from PeeringDB to the number of members obtained from
the IXP’s webpage. If a network does not participate in PeeringDB
but is present at an IXP, then that network does not appear in the
member list created from PeeringDB. Consequently, for each of the
top-20 IXPs, this ratio is less than 1; the median is 0.8. For some
IXPs this ratio is close to 1 , e.g, LINX Extreme LAN (0.99), LINX
Juniper LAN (0.98), Seattle Internet Exchange (0.98); these IXPs
encourage their members to join PeeringDB. For many IXPs the
ratio is small, especially in developing regions, e.g., Moscow IX
(0.25), PTT Sao Paolo (0.32) and Hong Kong IX (0.62). We con-
clude that IXP member counts from PeeringDB are a lower bound
on the number of networks present at the IXP; they are not complete
membership lists. Consequently, PeeringDB should not be used to
estimate the size (in terms of member count), or the diversity of the
participants at an IXP, unless we first verify that the member list
generated from PeeringDB is close to that obtained from the IXP
iteself.

4. PROPERTIES OF PARTICIPANTS
We explore the use of PeeringDB to infer properties of networks

that are difficult to obtain from other sources. We focus on three
measures of a network’s size – geographic expanse (the number of
IXPs and private peering facilities), advertised traffic volume, and
BGP-advertised IPv4 address space. Networks self-report the first
two properties in PeeringDB; we obtain the size of the IPv4 address
space from publicly available BGP data. Metrics of the size and
geographic expanse of networks are important for developing, pa-
rametering, and evaluating models of interdomain economics and
interconnection [5, 6, 7, 8]. Moreover, the presence of strong cor-
relations between these properties would enable us to estimate a
network property that is difficult to measure (e.g., traffic volume)
using a property that is more readily available (advertised address
space, or number of peering locations).
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Figure 1: Distribution of the number of IXPs and private peering
facilities at whcih PeeringDB participants are present. NSPs are

generally present at the largest number of IXPs and private peering
facilities. Enterprise networks are similar to content and access in

geographic expanse.

Geographical expanse: Figure 1 shows the distribution of the
number of IXPs and private peering facilities where participating
networks (classified according to their self-reported business type)
are present. Unsurprisingly, the self-reported data indicates that
NSPs tend to have presence at more IXPs (median=2 and 90th per-
centile=8) and private peering facilities (median=2 and 90th per-
centile=9) than other network types. The median number of IXPs
for Enterprise, Content and Access networks is a single IXP, while
the 90th percentile is 2 for Enterprise networks and 4 for Content
and Access networks. More surprising is that the presence of En-
terprise networks at private peering facilities is comparable to that
of content and access providers; in each category, the median is a
single facility and 90th percentile is 5 facilities. Conventional wis-
dom suggests that enterprise networks are usually stubs at the edge
of the network that do not engage in widespread peering. While
the sample of Enterprise networks in PeeringDB is small (only 120
networks), and contains networks such as Amazon and Websense
Hosted Security that peer at many locations, it suggests a trend to-
ward richer peering at the periphery of the Internet.
Relation between geographic expanse and traffic volume: We
examine the correlation between the geographic expanse of a net-
work (the number of IXPs and private peering facilities) and the
advertised traffic volume of that network. Figure 2 bins the to-
tal number of locations where a network is present, and shows the
distribution of the traffic volume of networks in each bin. In gen-
eral, the number of locations where a network is present at pos-
itively correlates with its advertised traffic volume. The fraction
of networks advertising large traffic volumes (100-1000Gbps and
1Tbps+) increases with the total number of locations. The number
of peering locations of a network is usually easier to discover than
its traffic volume, and the correlation between these factors sug-
gests that we may be able to roughly estimate the latter based on
the former.
Relation between traffic volume and advertised address space:
Figure 3 shows the median, 10th and 90th percentiles of the ad-
vertised address space size for each advertised traffic volume for
different classes of networks. Access and enterprise networks have
the largest median advertised address space for each traffic volume,
with strong correlation (correlation coefficient 0.91), while content
providers have the smallest median advertised address space for
each traffic volume with weaker correlation (correlation coefficient
0.56). NSPs show the strongest correlation coefficient (0.95) be-
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twen advertised traffic volume and advertised address space, but
lower median values than access and enterprise networks. These
trends match what we expect from these business types. Access
and enterprise networks serve end-users, and their traffic volume
typically increases with the size of their advertised address space;
in contrast, content providers do not require much address space
to serve content. Since a network’s BGP-advertised address space
is computable from public data, its strong correlation (for access,
enterprise and transit networks) with traffic volume suggests that
we may be able to use BGP data to estimate the approximate traffic
volume of other networks on the Internet.
Changes in the traffic volume of participating networks: Given
that reported global traffic levels in the Internet continue to in-
crease rapidly [18], we expect that most networks should advertise
larger traffic volumes over time. For PeeringDB snapshots between
August 2010 and 2013, 35% of access providers, 42% of content
providers, and 29% of transit networks reported a decrease in their
traffic volume. We do not know whether this decrease is due to a
loss of customers, or consolidation in the content delivery and ac-
cess markets [19]. Another plausible hypothesis is that networks
initially advertise inflated traffic volumes to peer with large net-
works. Over time, however, networks are able to determine the

actual traffic volumes being exchanged with their peers. Hence,
networks advertising inflated traffic volumes may realize that do-
ing so only leads to unstable peering relationships and drives away
peers with whom they could have formed stable links. Therefore,
they report figures closer to reality. Correlating observed changes
in traffic volume with publicly available financial information about
revenues and incomes could help identify cases where traffic vol-
ume changes are due to factors such as loss of market share (as
opposed to changes due to more truthful reporting). Such actual
changes of traffic volume may help researchers validate models that
relate traffic flow to economics and strategic decisions of network.
Geographical expansion by networks: Researchers have studied
the geographic expansion of networks, and the resulting flatten-
ing of the Internet topology [20, 6]. Historical peeringDB snap-
shots allow us to estimate the geographic expansion by participat-
ing networks. Of 2,525 networks present in both Aug 2010 and
Aug 2013, 25% increased their presence at IXPs, and 25% in-
creased their presence at private peering facilities. When classified
by business type, 33% of NSPs present in both snapshots increased
their presence at IXPs and 37% did so at private peering facili-
ties. The increase at peering locations was 24% and 31% for Con-
tent providers, and 28% and 31% for Cable/Access/DSL providers.
The following case studies from each business type illuminate the
changing structure of the ecosystem.
Content providers: From 2010 to 2013, Google increased its peer-
ing presence from 57 to 72 IXPs and from 58 to 77 private fa-
cilities. Akamai’s presence at private peering facilities is almost
constant (35 in 2010 to 36 in 2013), while its presence at IXPs
increased from 47 to 74. Limelight Networks’ presence at IXPs
remained constant at 42, while it expanded its presence at private
facilities from 55 to 65. These observations are consistent with
well-documented peering policies of these networks [21, 22], i.e.,
engage in Open peering at IXPs for low-traffic peers and private
peering for high-traffic peers. In contrast, Limelight Networks ad-
vertises a Selective peering policy requiring a minimum of 1Gbps
of traffic [23], implying that it prefers private peering with quali-
fying networks. The geographic expansion of Netflix follows its
growth as a major source of Internet traffic. In 2010, Netflix was
present at one IXP and one private peering facility; in 2013, it is
present at 21 IXPs and 27 private peering facilities.
Access Providers: Major access providers, e.g., Comcast, Time
Warner Cable, Vodafone and ClaraNet announce Selective or Re-
strictive peering policies. Vodafone and Claranet decreased their
IXP presence between 2010 and 2013 (from 7 to 5 and 15 to 11,
respectively), while Comcast did not report presence at any IXPs
since 2010 (and was present at 17 private facilities in 2013). Time
Warner Cable reduced its private peering locations from 12 to 10
and added a single IXP between 2010 and 2013.
Transit Providers: Large transit providers, e.g., AT&T, Level3,
Global Crossing (Now Level3), TiNet, TeliaSonera, Deutsche Telekom
and TATA announce Restrictive or Selective policies. AT&T and
Level3 are not present at any IXP or private peering facility; pre-
sumably they prefer to peer at their own facilities. Tinet, Deutsche
Telekom, TATA, and TeliaSonera have all decreased their presence
at IXPs and increased their private peering count from 2010 to
2013. Hurricane Electric is an interesting exception; it advertises
an Open peering policy, and has increased its IXP and private peer-
ing count (from 43 to 68 and 27 to 58, respectively).
Network presence at multi-IXP cities: PeeringDB lists 59 cities
with more than one IXP. For networks in multi-IXP cities, peering
at multiple IXPs could increase the diversity of peering partners
and resiliency of interconnection. For each multi-IXP city with 4
or more IXPs, Figure 4 shows the fraction of networks present in
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Figure 4: For each multi-IXP city with 4 or more IXPs, the
fraction of networks that are present at different numbers of IXPs.

that city that connect to a given number of IXPs. Perhaps unsurpris-
ingly, there are significant differences between cities; in Chicago,
Montreal, and Singapore, close to 90% of the networks are present
at a single IXP in that city. London and Paris, on the other hand,
present the opposite case, where 40% and 35% of participants re-
spectively are present at 2 IXPs. Delving into why networks in
different multi-IXP cities peer differently involves looking into the
size, business model, and diversity of the participant mix at these
different IXPs, which we plan to do in future work.

5. ADVERTISED PEERING POLICIES
Network presence at IXPs is a measure of the ability of networks

to peer with other co-located networks, but says nothing about their
willingness to do so. Peering policies advertised in PeeringDB can
serve as a coarse measure of peering openness. We emphasize that
a network is under no obligation to follow its announced peering
policy. At the same time it is unlikely that networks can derive
any advantage by advertising a completely different peering pol-
icy than what they follow in practice. For example, a network im-
plementing Open policy would only drive potential peers away by
advertising a Selective policy. Similarly, a network implementing
Selective policy while advertising Open will form many unstable
peering links as most links will fail to qualify its satisfy its peering
constraints. Nevertheless, the peering policies in PeeringDB should
be viewed as a coarse measure of peering openness, as many net-
works also require that their peers follow additional constraints,
e.g., co-location at more than one IXP, traffic volume exchanged
between peers, 24/7 operator support, etc. Another reason for devi-
ation from advertised peering policies is due to the complexities of
implementing import/export filters to enforce these policies when a
network connects to an IXP’s route server. Giotsas et al. [24] found
that some networks advertising a Selective peering policy in Peer-
ingDB were actually engaging in open peering at some IXPs, due
to the complexity of setting fine-grained import/export policies at
the corresponding route server.

Of the 3392 ASes in the Aug13-PDB dataset, 76% use Open
peering, 21% use Selective, and 3% use Restrictive. We examine
whether this preference for Open peering depends on other proper-
ties of these networks such as their business type, or the measures
of network size (geographic expanse, approximate traffic volume).
Peering strategy distribution by business type: Table 2 shows
the fraction of networks in each business type that advertise Open,
Selective and Restrictive peering. Interestingly, the peering strategy
distribution does not depend significantly on the AS business type.
Between 65% to 84% of ASes from each business type advertise
an Open peering strategy. The popularity of Open peering is coun-

Type Total Open (%) Selective (%) Restrictive (%)
NSP 1064 66.7 28.7 4.5

Content 843 83.9 14.4 1.5
Access 1122 79.1 18.5 2.3

Enterprise 120 65.0 27.5 7.5
Edu/Research 133 69.1 28.5 2.2

Non-profit 108 81.4 14.8 3.7

Table 2: Peering strategy distribution by network type. Open
peering is the dominant peering strategy irrespective of business

type.
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Figure 5: Peering strategy distribution of transit, content, and
access providers – classification by traffic volume. Peering

openness of transit and access networks is negatively correlated
with geographic expanse. There is no such correlation for content

providers.

terintuitive, especially for transit providers, who could mostly use
Selective or Restrictive peering to increase their customer base and
transit revenues. The trend towards Open peering is not limited to
small transit providers; 32% of NSPs with traffic volume greater
than 100 Gbps, 43% of providers with traffic volume between 50
and 100 Gbps, and 56% of providers that advertise a global scope
use Open peering.
Peering strategy distribution by traffic volume: Figure 5 shows
the peering strategy distribution for NSPs, content providers, and
access providers that advertise a given traffic volume. For NSPs
and access providers the preference for Open peering gradually de-
creases as the AS’s traffic volume increases. Low volume NSPs and
access providers show a strong preference for Open peering; 80%
of 415 NSPs and 87% of 603 access providers advertising traffic
volume less than 5Gbps announce Open peering policy. On the
other hand, only 1 out of 5 NSPs and 2 out of 18 access providers
advertising more than 1 Tbps of traffic declare an Open peering
policy. Content providers have a weaker relation between traffic
volume and peering policy; 88% of 573 content providers with
less than 1Tbps of traffic announce Open peering. Of 8 content
providers with more than 1Tbps of traffic, 4 announce Open peer-
ing, and none announce Restrictive peering.
Peering strategy distribution – joint classification by traffic vol-
ume and number of customers: Transit providers (and also to
some extent access providers, e.g. Comcast), rely on transit cus-
tomers as a source of revenue. For these providers, peering openly
could mean losing revenue-generating customers. We use traffic
volume and size of customer base to consider four classes of ASes:
Class-1: Small traffic volume, small number of customers (ST+SC)
Class-2: Small traffic volume, large number of customers (ST+LC)
Class-3: Large traffic volume, small number of customers (LT+SC)
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Class Total Open (%) Selective (%) Restrictive(%)
Class-1 (ST+SC) 891 84.8 14.0 1.1
Class-2 (ST+LC) 19 57.9 36.8 5.3
Class-3 (LT+SC) 310 74.5 21.0 4.5
Class-4 (LT+LC) 344 46.8 45.3 7.6

Table 3: Peering strategy distribution of transit and access
providers – joint classification by number of transit customers and

traffic volume. Transit providers with low traffic and few
customers are most likely to adopt Open peering; providers with

large traffic and many customers are least likely.
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Figure 6: Peering strategy distribution of NSPs, Content, and
Access providers by geographic expanse. Peering openness of
NSPs and access networks is negatively correlated with traffic

volume. We find no such correlation for content providers.

Class-4: Large traffic volume, large number of customers (LT+LC)
Class-1 contains networks in the bottom 30% by traffic volume and
bottom 30% by number of customers; Class-2 contains networks
in the bottom 30% by traffic volume and top 70% by number of
customers; other clases are defined similarly. Table 3 shows the
peering strategy distribution for these four classes of ASes. Open
peering is most common in Class-1 networks (85% of such ASes
use Open peering) and is least popular for Class-4 ASes. However,
47% of even Class-4 ASes advertise Open peering. Using game-
theoretic analysis and agent-based simulations, we have shown [25,
26] that transit providers can gravitate towards Open peering due
to myopic decision making without coordination. Our results also
showed that in a world with widespread Open peering, networks in
Class-1 stand to gain, while networks in Class-4 stand to lose. The
distribution of peering policies seen in the real world is consistent
with our previous results [25, 26].
Peering strategy distribution by geographic expanse: Figure 6
shows the peering strategy distribution for NSPs, content and ac-
cess providers as a function of their geographic expanse (the num-
ber of IXPs at which they are present). Similar to the earlier classi-
fication by traffic volume, the peering strategy of content providers
is largely independent of geographic expanse; these ASes mostly
prefer Open peering independent of their size. The strategy distri-
bution of NSPs and access networks strongly correlates with geo-
graphic expanse; the fraction of networks that announce an Open
peering policy decreases with geographic expanse.
Strategy transitions: Between August 2010 and August 2013,
130 ASes in PeeringDB changed their peering strategy. Surpris-
ingly, given the prevalence of Open peering, most (70%) of net-
works that changed their peering strategy moved towards a more
selective strategy. When classified by self-reported business type,

among these 130 ASes, 71% of access providers, 52% of content
providers, and 80% of transit providers became more selective in
their peering. When classified by traffic volume, 61% of networks
with reported traffic less than 1Gbps, 81% of networks with 1-
100Gbps and 83% of networks with more than 100Gbps became
more selective in their peering policies. A plausible hypothesis
for the change towards more selective peering is that these ASes
became less profitable due to Open peering, causing them to re-
vert back. This shift may also be evidence of the “peering life cy-
cle” [27], where networks initially advertise an Open peering policy
and then become more selective with time.

6. RELATED WORK
To the best extent of our knowledge this work is the first compre-

hensive look at PeeringDB data with the goal of extracting usable
network-specific properties that could help Internet researchers pa-
rameterize and validate their models [5, 6, 7, 8]. Several schemes
for classifying ASes according to business type were proposed [3,
2, 4]; they all relied on hand-classifying a few networks and using
these labels as ground truth to support inference of business types
of other networks, an area in which PeeringDB data can be very
useful. In the area of measuring and characterizing IXPs, Augustin
et al. [28] developed techniques based on targeted traceroutes to
map connectivity at IXPs. Ager et al. [29] used traffic data from
a large European IXP to measure and characterize peering con-
nections. Silvius [30] did a comparative survey of IXPs, focusing
on the differences in the IXP ecosystem between North America
and Europe. Our work complements these studies by providing a
network-centric view as seen through PeeringDB. Norton surveyed
a set of 28 peering policies [31] to identify differences in peer-
ing behavior between networks of different types and sizes. Nor-
ton also discusses how the peering preferences of networks change
over time [27, 32]. However, that work was based on small-scale
surveys of network operators. PeeringDB gives us the opportunity
to study similar questions at a much larger scale.

7. CONCLUSIONS AND FUTURE WORK
Our goal was to explore PeeringDB, an online reource widely

used by operators for peering, and assess its applicability to Inter-
net research. We found that the network membership in PeeringDB
is representative of the general population of transit, content, and
access providers, especially the more prominent networks of each
type. While PeeringDB is useful for network-specific properties, its
use for measuring IXP-specific properties is questionable, as many
networks in developing regions do not register in PeeringDB. From
PeeringDB snapshots we extracted information about peering poli-
cies, geographic expanse, traffic volume, and correlations among
these properties. We envision that this data will help to better pa-
rameterize and validate models of interdomain interconnection and
dynamics, our own work [6, 33] as well as that of other researchers.
More work needs to be done to validate self-reported network prop-
erties in PeeringDB. In that direction, we are focusing on compar-
ing network-advertised peering policies with their peering behavior
seen at IXP route servers.
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