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Botnets are the most common vehicle of cyber-criminal ac-
tivity. They are used for spamming, phishing, denial of service
attacks, brute-force cracking, stealing private information, and
cyber warfare. Botnets carry out network scans for several
reasons, including searching for vulnerable machines to infect
and recruit into the botnet, probing networks for enumeration
or penetration, etc. We present the measurement and analysis of
a horizontal scan of the entire IPv4 address space conducted by
the Sality botnet in February 2011. This 12-day scan originated
from approximately 3 million distinct IP addresses, and used
a heavily coordinated and unusually covert scanning strategy to
try to discover and compromise VoIP-related (SIP server) infras-
tructure. We observed this event through the UCSD Network
Telescope, a /8 darknet continuously receiving large amounts
of unsolicited traffic, and we correlate this traffic data with
other public sources of data to validate our inferences. Sality
is one of the largest botnets ever identified by researchers,
its behavior represents ominous advances in the evolution of
modern malware: the use of more sophisticated stealth scanning
strategies by millions of coordinated bots, targeting critical
voice communications infrastructure. This work offers a detailed
dissection of the botnet’s scanning behavior, including general
methods to correlate, visualize, and extrapolate botnet behavior
across the global Internet.

I. INTRODUCTION

Botnets are collections of Internet hosts (“bots”) that
through malware infection have fallen under the control of
a single entity (“botmaster”). Botnets of up to few million
hosts have been observed [4], [24], [58]. Innocent users carry
on with their legitimate activities, unaware that their infected
PCs are executing various types of malicious activity in the
background, including spamming, phishing, denial-of-service
(DOS) attacks, brute-force password cracking, stealing of
credentials, espionage and cyber warfare. The news media and
scientific literature have documented many criminal activities
carried out by botnets over the last few years [15], [21], [36],
[63], including on mobile phones [46].
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Botnets perform network scanning for different reasons:
propagation, enumeration, penetration. One common type of
scanning, called “horizontal scanning”, systematically probes
the same protocol port across a given range of IP addresses,
sometimes selecting random IP addresses as targets. To infect
new hosts in order to recruit them as bots, some botnets, e.g.,
Conficker [28], [50], perform a horizontal scan continuously
using self-propagating worm code that exploits a known
system vulnerability. In this work we focus on a different type
of botnet scan – one performed under the explicit command
and control of the botmaster, occurring over a well-delimited
interval.

Several botnets have been analyzed in the literature, includ-
ing characterizing botnet scanning techniques either based on
packet captures from darknets and honeynets [42], [43], or
by examining botnet source code [11]. Documented scans by
botnets have been of relatively small size (e.g. around 3000
bots) [43] and lightly coordinated, e.g., many bots randomly
(typically uniformly randomly [43]) probing the same target
address range.

In February 2011, the UCSD /8 Network Telescope in-
strumentation [7] captured traffic reflecting a previously un-
documented large-scale stealth scanning behavior (across the
entire IPv4 space, we believe) from a botnet using about 3
million unique source IP addresses. We identified the malware
responsible for this massive and sophisticated scanning activity
as a binary module of the Sality botnet [24] known to target
SIP (Session Initiation Protocol [53]) servers [23]. We hence
refer to this interesting scanning event as “sipscan” throughout
the rest of this paper.

Our contributions in this study include techniques to char-
acterize a large-scale intentionally surreptitious scan of the
entire IPv4 space (that is, a “/0” scan), including use of
additional data to confirm that the scan was not using spoofed
source IP addresses, but rather was being sourced by a large
botnet. We correlated darknet traffic over this period with two
other publicly available sources of Internet traffic data that
strongly suggest the scan was not just of this /8 but over
the entire IPv4 Internet address space. Finally, we created
animations and visualization to help us understand the strictly
ordered progression of the entire /0 scan, and correlate its
address space and geographic coverage with its traffic volume.
These tools also enabled us to delineate different phases of
its scanning activity and its adaptation to changing network
conditions. These methods and tools have already yielded
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substantial insight into the first observed /0 scan by a botnet,
but we anticipate a wide range of applicability to other
analyses of unidirectional or even bidirectional traffic.

Section II summarizes related work. Sections III describes
the anatomy of the scan, including high-level characteristics
and validation that it was indeed carried out by a botnet
targeting the entire IPv4 space. Section IV analyzes more
detailed properties of the scan, including the impressively
covert scanning strategy, bot turnover rate, coverage and over-
lap in target addresses, and highly orchestrated adaptivity and
coordination of the bots. Section VI summarizes our findings
and contributions.

II. BACKGROUND AND RELATED WORK

Botnets have been an active area of research for almost
a decade, starting with early generation botnets that used
IRC channels to implement centralized Command & Control
(C&C) infrastructures [9], [17]. In 2007 the Storm botnet sig-
naled a new generation of botnet capabilities, including the use
of peer-to-peer protocols to support distributed C&C channels
[34], [55], [62]. These botnets are harder to detect and disman-
tle because there is no single point of failure, and they often
use sophisticated techniques such as encrypted communication
[62] and Fast flux DNS resolution [14]. Researchers have also
studied methods for automated discovery of botnets [32], [44],
[60], formal models of botnet communication [16], [18], and
their use for orchestrated spam campaigns [39], [49].

Botnets commonly scan large segments of Internet address
space, either seeking hosts to infect or compromise, or for the
purpose of network mapping and service discovery. Analyzing
and detecting these events can improve our understanding
of evolving botnet characteristics and spreading techniques,
our ability to distinguish them from benign traffic sources,
and our ability to mitigate attacks. But analysis of network
probing activities of botnets has received little attention in the
literature.

In 2005, Yegneswaran, Barford, and Paxson analyzed six
months of network traffic captured by honeynets [66]. Based
on statistical properties of traffic, they characterized and
classified 22 large-scale events into three categories: worm
outbreaks, misconfigurations, and botnet probings. These first-
generation botnets were less evolved in several ways than those
we see today: in size (a maximum of 26,000 bots), scope
(largest target scope was a /8 network), and communication
capabilities (centralized IRC-based command and control). Li,
Goyal, and Chen [42] analyzed traffic data they collected from
10 contiguous /24 networks operating as honeynets throughout
2006. Through analysis of the probing traffic they were able
to infer properties of the botnet, e.g., geographical location of,
and operating system running on infected machines. We use
a similar approach to infer characteristics of the botnet scan
we study in this paper. These three authors collaborated with
Paxson on a more comprehensive analysis of data from both
2006 and 2007, which was corroborated both by data from the
DShield project [35] and by the inspection of botnet source
code [43]. Analyzing the traffic from 10 contiguous /24 dark-
nets/honeynets they identified 203 botnet scans with different

characteristics, all scanning at most a /8 network, and all with
inferred bot populations significantly smaller (200-3700) than
the February 2011 scan captured at our darknet (3 million IP
addresses), They found that these first-generation botnets em-
ployed simple scanning strategies, either sequential or uniform
random scanning, and elementary orchestration capabilities:
many bots scanning the same address range independently,
with high redundancy and large overlap in target addresses.
Other studies have found similar results via examination of
botnet source code to understand the scanning strategies [10],
[11]. Barford and Yegneswaran [11] inspected four widely-
used IRC botnet code bases, finding only primitive scanning
capabilities with “no means for efficient distribution of a target
address space among a collection of bots”. However these
studies did not analyze any new-generation botnets.

The scan that we observe and analyze in this study differs
from previous work in several ways: (i) it is recent (2011)
and related to a new-generation, widely-deployed, peer-to-peer
botnet (Sality [24]); (ii) it is observed from a larger darknet
(a /8 network); (iii) the population of bots participating in
the scan is several orders of magnitude larger; (iv) the target
scope is the entire IPv4 address space; (v) it adopts a well-
orchestrated stealth scan strategy with little redundancy and
overlap.

This last point is the most surprising finding in terms of nov-
elty and impact. The remarkably stealth scanning employed
by new-generation botnets gives us reason to suspect that
many large-scale scans may have occurred in recent years but
gone unnoticed by any modern instrumentation for studying it.
Despite the lack of any literature documenting the observation
of highly coordinated large-scale network scans from botnets,
the concept has been discussed, both in a worst-case theoretical
analysis of attack potential [61], and for the more benign
application of Internet-wide service discovery [40]. For service
discovery, these authors considered a scan strategy based
on reverse-byte sequential increments of target IP addresses,
which they named “Reverse IP Sequential (RIS)”. Although
they dismissed this option for being difficult to extrapolate
metrics from partial scans, we discovered that this was exactly
the technique used by the Internet-wide scan (“sipscan”)
we study in this paper (Section IV-A). Heidemann’s et al.
reachability census was Internet-wide but ran independently
from two hosts, not coordinated in the way botnets are [33].

Another relatively novel aspect of the scan we analyze is
that it targets SIP infrastructure, which is not typically in
published lists of services probed by botnets [43]. Only in the
past 3 years have SIP servers been reported as the object of
large-scale attacks [51], [56], [68]. As more of the world’s
voice communications move to an IP substrate, fraudulent
activity targeting SIP-based VoIP services offers an attractive
source of revenue to cybercrime [25]. In April 2010, Sheldon
reported a series of brute-force password-guessing attacks on
SIP servers worldwide, sourced from the Amazon EC2 cloud
[56], [68]. Later in 2010, several sources reported on a new
malware named “sundayaddr”, which behaved like a few-
hundred node botnet comprised of unix-like machines (e.g.,
Linux, FreeBSD) trying to brute-force accounts on SIP servers
[31], [51]. The layout of the SIP headers in the attacking
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packets was almost identical to that of SIPVicious, a tool suite
written in Python designed to perform security auditing of SIP
services [27]. It seems therefore likely that the attack code was
a slightly modified version of SIPVicious [51].

In November 2010, the author of SIPVicious reported an-
other large-scale attack against several SIP servers worldwide,
using a more significantly different SIP header than used by
SIPVicious [26], [57]. Both of these events were reported
by several parties and were largely discussed on public SIP
operational mailing lists [6], [8]. In contrast, to the best of
our knowledge the scan that we document in this study was
not publicly reported with respect to either observed network
traffic or server activity (e.g. logs). Symantec identified and
analyzed the binary responsible for what we call the “sipscan”,
which they discovered while monitoring Sality, a large peer-
to-peer based botnet [23], [24]. A host infected by Sality
downloads the scanning binary via a component of the main
bot executable, which is responsible for downloading and
executing additional malware whose URLs are communicated
by other botnet peers [24]. During our analysis we had access
to the same binary code and verified that it matches the
SIP headers we observed in the sipscan. Symantec did not
publish any information about the stealth scanning strategy or
in particular on the reverse byte order adopted by the sipscan
(Section IV-A). Our study, based instead on network traffic
measurement and analysis, is complementary to what has been
found by reverse-engineering the code running on the bots,
showing novel insights into the botnet population and the
orchestration and coordination of the scan. Since Sality is one
of the largest known botnets but relatively undocumented in
research literature, another contribution of our study is to shed
light on the scanning behavior of this new-generation botnet.

III. ANALYSIS PART I: ANATOMY OF THE SIPSCAN

A. Overview

The sipscan probes each target IP address with two packets:
(i) a UDP packet to port 5060 carrying a SIP header and (ii)
a TCP SYN packet attempting to open a connection on port
80. We observe the sipscan at a darknet – i.e., there are no
devices on it responding to incoming traffic – so we do not
observe any further packets for the same flows except for TCP
SYN retransmits.

Figure 1 depicts the SIP header of the packets sent by the
sipscan. This SIP header is a request to register a random user
account on a SIP server, but random account registrations are
usually not accepted by SIP servers. Thus, if the targeted host
is a SIP server, the registration will likely fail but will result in
a “404 Not Found” response code, which is enough to reveal
to the bot that the target is indeed a SIP server. We presume
that the goal is to identify SIP servers for later use, e.g., to
perform brute-force attempts to register user accounts.

The sipscan SIP header is similar to the header built by
the SIPVicious security auditing tool suite to generate probe
packets [27]. In November 2010, the author of this tool
reported a large distributed attack against SIP servers with
headers similar to those his tool used; this attack was observed
by several parties and was likely carried out by a botnet

[26], [57]. In the case of both the November 2010 scan and
the February 2011 scan we observed, the botnet developers
probably used the Python code of SIPVicious as a reference
to write their attack code. The most notable difference between
such attacks and SIPVicious headers is in the “User-Agent”
header, where the attack code replaced the string “friendly-
scanner” with the less suspicious “Asterisk PBX”1.

The observed sipscan header has two distinctive charac-
teristics compared to the attack of November 2010 (and in
general compared to the miscellaneous SIP malware packets
observed at the UCSD telescope): the user name, which is
always composed of ten digits, and the “To:”/“From:” fields,
which contains a SIP URI instead of simply the number [53].
Based on the properties of its SIP header, we defined a payload
signature to identify all the sipscan packets seen by the UCSD
Network Telescope. Each source host sends the TCP packet
together with the UDP packets, allowing us to easily infer
which TCP SYN packets on port 80, among all those received
by the telescope, were associated with the sipscan).
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Fig. 2: Overview of the scan. The continuous line shows the packets
per second, in 5 minute bins, of UDP probing packets from the
sipscan observed by the UCSD Network Telescope. The dashed line
represents the corresponding number of distinct source IP addresses
per bin.

Figure 2 shows the packet rate of the sipscan UDP packets
(left axis) and the number of unique IPs per hour (right
axis) sending such packets to addresses in the UCSD Net-
work Telescope. The scan goes through different phases over
approximately 12 days: it starts with a packet received on
Monday 31 January 2011 at 21:07 UTC, and ends with a
sharp drop of packets on Saturday 12 February around 15:00
UTC. Approximately 100 residual packets were observed in
the following two days. During the scan, peaks of 21,000 hosts
with distinct IPs probed the telescope’s /8 address space in a
single 5-minute interval.

Table I lists the main characteristics of the scan. The
portion of the scan observed by the UCSD Network Telescope
involved around 3 million distinct source addresses, generating
20 million probes – we define a probe as a UDP scanning
packet with the payload signature from Figure 1, plus TCP
SYN packets to the same destination. These probes covered

1Asterisk is a widely deployed open-source PBX software supporting both
PSTN and VoIP.
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1 2011−02−02 1 2 : 1 5 : 1 8 . 9 1 3 1 8 4 IP ( t o s 0x0 , t t l 36 , i d 20335 , o f f s e t 0 , f l a g s [ none ] , p r o t o UDP
( 1 7 ) , l e n g t h 412) XX. 1 0 . 1 0 0 . 9 0 . 1 8 7 8 > XX. 1 6 4 . 3 0 . 5 6 . 5 0 6 0 : [ udp sum ok ] SIP , l e n g t h : 384

2 REGISTER s i p :3982516068@XX. 1 6 4 . 3 0 . 5 6 SIP / 2 . 0
3 Via : SIP / 2 . 0 / UDP XX. 1 6 4 . 3 0 . 5 6 : 5 0 6 0 ; b r an c h =1F8b5C6T44G2CJt ; r p o r t
4 Conten t−Length : 0
5 From : <s i p :3982516068@XX. 1 6 4 . 3 0 . 5 6 > ; t a g =1471813818402863423218342668
6 Accept : a p p l i c a t i o n / sdp
7 User−Agent : A s t e r i s k PBX
8 To : <s i p :3982516068@XX.164 .30 .56 >
9 C o n t a c t : s i p :3982516068@XX. 1 6 4 . 3 0 . 5 6

10 CSeq : 1 REGISTER
11 Cal l−ID : 4731021211
12 Max−Forwards : 70

Fig. 1: Example of the payload of a UDP packet generated by the sipscan (line 1 is tcpdump output [5] with timestamp and information
from IP and UDP headers). The payload contains a SIP request to register a user on the contacted host. A variant of the signature (which
we also matched) has the string ”:5060” appended to the ”Contact: ” header field (line 9). In the figure we replaced the value of the most
significant byte of the destination address with ”XX”.

# of probes (1 probe = 1 UDP + multiple TCP pkts) 20,255,721
#of source IP addresses 2,954,108
# of destination IP addresses 14,534,793
% of telescope IP space covered 86,6%
# of unique couples (source IP - destination IP) 20,241,109
max probes per second 78.3
max # of distinct source IPs in 1 hour 160,264
max # of distinct source IPs in 5 minutes 21,829
average # of probes received by a /24 309
max # of probes received by a /24 442
average # of sources targeting a destination 1.39
max # of sources targeting a destination 14
average # of destinations a source targets 6.85
max # of destination a source targets 17613

TABLE I: Summary of the scanning event characteristics. The scan
originated from almost 3 million distinct IP addresses and hit about
14.5 million addresses of the address space observed by the UCSD
Network Telescope.

more than 14.5 million target IP addresses, that is, 86.6% of
the darknet address space.

B. Verification of unspoofed source addresses

Because darknet addresses do not respond to received
packets, we cannot generally assume that packets are not using
spoofed (fake) source IP addresses. Effective scanning requires
the use of real source addresses to receive responses, so there
is reason to assume that these IP addresses are not spoofed.
Conversely, evidence that the addresses are not spoofed would
increase our confidence in the hypothesis that this behavior is
in fact a large-scale scan. We found the following evidence
that the observed packets were not actually spoofed.

• In [20] we studied the country-wide outage that occurred
in Egypt between the 27th of January and the 2nd of
February 2011. During the last two days of the outage -
which overlap with the period of activity of the sipscan
- most of the country was completely isolated from the
rest of the Internet. We verified that no sipscan packets
with source IP addresses that geolocated to Egypt were
observed by the telescope during the outage. Figure 3
shows the re-announcement of all the BGP prefixes ge-

olocated to Egypt that were withdrawn during the outage
(continuous line, left y axis), and the packet rate of UDP
packets from the sipscan geolocated to the same country
(dashed line, second y axis). The graph shows Egyptian
hosts contributing to the scanning activity only after the
country is reconnected to the Internet. We used the same
methodology described in [20] to analyze BGP data from
the RIPE RIS [3] and Routeviews [64] repositories, and
geolocation data from MaxMind [45] and Afrinic [1].

• Random IP spoofing would use also source IPs from our
/8 darknet set of addresses, which we never see in this
set of packets. We also mapped the source addresses of
the scan to originating ASes (autonomous systems, or
independent networks in the global routing system) using
BGP data, and verified that they matched only assigned
ranges of IP addresses.

• In Section III-D we analyze source port numbers in
transport-layer headers from selected scanning bots. The
consistency of these parameters over time suggests that
the source addresses are not spoofed: IP spoofing requires
the use of raw sockets and usually involves random
selection of spoofed addresses, whereas the progression
of source ports followed by these bots is typical of
packets sent through standard sockets that use ephemeral
ports assigned by the operating system based on a single,
global counter.

C. Botnet activity

This convincing evidence that the source IP addresses are
authentic supports our hypothesis that a botnet is generating
the packets, rather than one or a few hosts, or a worm
spreading. Over the course of twelve days, we observed about
3 million source addresses, which mapped to countries and
networks all over the world (Section IV-D). Figure 2 displays
a clearly delimited beginning and end of the behavior, with
strong diurnal periodicity and variations of intensity. Spreading
worms tend to exhibit closer to exponential growth in IP
addresses infected and trying to spread further [69].
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Fig. 3: The case of the Internet black-out in Egypt helps to verify that
source addresses from the sipscan are not spoofed. The continuous
line shows the reannouncement of routes to Egyptian IPv4 prefixes
when the country reappears on the Internet on 2 February 2011. The
sipscan starts approximately on the 1 February, but we start seeing
probes from source IPs geolocated to Egypt only when the Egyptian
networks get reannounced through BGP updates.

We discovered an even more compelling piece of evidence
that this traffic was generated by a botnet, when we exam-
ined traffic data during the nation-wide censorship episode
happened in 2011 in Egypt. In [20] we showed that, during
the Egyptian outage, some Conficker-infected hosts were still
able to randomly send infecting packets to the Internet, even
if they were in networks not visible via BGP. Outbound
connectivity (from Egyptian hosts “upstream” to the rest of
the Internet) was still possible from some networks in Egypt
through the use of default routes. But while we saw Conficker
traffic originating from IPs geolocated in Egypt, we saw
no sipscan traffic from Egypt, consistent with the sipscan
hosts not acting independently, but rather receiving instructions
from a command & control ‘botmaster’ host (i.e., requiring
bidirectional connectivity) outside of Egypt.

Fig. 4: Snapshot of our “World Map” animation of the sipscan
available at [13] (Wed Feb 2 09:34:00 2011). The animation shows,
in 5:20-minutes of data represented per frame, circles at the geo-
graphical coordinates of source hosts (bots) with size proportional
to the number of hosts geolocated to those coordinates, and color to
the number of packets sent. The animation depicts the spatial and
temporal dynamics of the scan.

To simultaneously represent both the temporal and spatial
dynamics of the event, we created a “World Map” animation
available at [13]. Figure 4 is a single frame of the animation
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Fig. 5: Daily count of unique source IP addresses in packets to port
5060 extracted from DShield sensor data [35]. The unique source
IP count, for the months of January and February 2011, shows an
increase of almost one order of magnitude between the 1st and the
12th of February. Its profile matches the sipscan shown in Figure 2,
suggesting that sensors (darknets and honeynets) in other /8 networks
received the same kind of traffic. The start and end times of the
sipscan are denoted in this graph by the two dashed vertical lines.

(capturing a window of 5 minutes and 20 seconds of data) from
Wed 2 Feburary 09:34:00 2011. The circles are centered at
the geographical coordinates of source IP addresses. For each
time bin, the size of the circle is proportional to the number
of hosts geolocated to those coordinates, whereas the color
reflects the number of packets sent (these two values are not
proportional because, as we show in Section IV, there are both
hosts sending a single probe and hosts sending multiple probes
at different rates). The animation illustrates the traffic volume
and geographic scope of the scan over time. Geolocation of
IP addresses was done using the MaxMind GeoLite database
released on March 1st, 2011, temporally proximate to the
event [45]. The software used to create the animation is an
improved version of the code originally developed at CAIDA
by Huffaker et al. and available at [2]. The animation visually
represents, for the first time, an Internet-wide scan conducted
by a large botnet.

D. A “/0” scan

Observation from the UCSD Network Telescope is limited
to packets destined to the corresponding /8 network. However,
we also discovered evidence that the scan targeted the entire
IPv4 address space (a /0 scan): similar traffic patterns observ-
able on other network segments, and a continuity in source
port usage in the packets we observed.

1) Targeting the UCSD Network Telescope
Even if approximately 15% of addresses of our darknet

were not hit by the scan, the sipscan uniformly targeted the
entire address range of the /8 network. In Section IV-C we
show that the missing (15%) targets may be due to a specific
configuration parameter that would trade completeness of IPv4
address space coverage for redundancy in the utilization of the
bots.

2) DShield repository
We have found circumstantial evidence of sipscan traffic in

the DShield repository [35]. DShield is a constantly updated
repository of scanning and attack reports. In particular it
reports aggregated data of traffic observed on several “sensors”
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Fig. 6: Sipscan UDP packets observed by (i) the UCSD Network
Telescope (y axis, packets per second) and (ii) MAWI WIDE
Samplepoint-F (y2 axis, packets per daily sample of xx minutes).
The samples found on the small link monitored by the MAWI
working group perfectly follow the profile of the sipscan observed by
the UCSD Network Telescope, strongly suggesting that the sipscan
targeted also other /8 networks.

(i.e., small honeynets and darknets) operated by different
participating organizations. Figure 5 shows the number of
distinct source IP addresses per day observed by the DShield
sensors on port 5060 from the 1 January to 28 February 2011.
The large spikes in the traffic profile of the source IP addresses
match the sipscan profile shown in Figure 2, indicating that
the same phenomenon was probably targeting other networks
besides the /8 monitored by the UCSD Network Telescope.

3) MAWI WIDE Samplepoint-F
We also examined traffic traces from a 150Mbps link on a

trans-Pacific line that are made available by the MAWI WIDE
project [30] (link “samplepoint-F”). The trace set is made of
daily traces in pcap format, of 15 minutes each, where the
IP addresses are anonymized and the transport-layer payload
is removed [29]. This anonymization scheme prevented us
for searching the trace specifically for the sipscan packets,
since we can see neither the UDP payload signature nor the
source IP addresses of the packets. Instead, from the analysis
of the sipscan SIP headers (Figure 1), we built a flow-level
signature with the following conditions for each UDP flow: (i)
destination port 5060; (ii) made of a single packet; (iii) flow-
size (in this case matching the packet size) between 382 and
451 bytes. We obtained the packet size range by examining all
SIP header fields that were not fixed size, and how they varied
(e.g. IP addresses in ascii format take between 7 and 15 bytes).
We further sanitized the remaining flows considering some
isolated cases of spikes in the MAWI traces which were using
source ports outside of the most common ranges observed
on the telescope (see Figure 7). The final result, depicted in
Figure 6, is that there are almost no packets matching the
flow-level signature in the days outside of the sipscan, whereas
their profile during that period roughly follows the profile of
the sipscan (The lack of tight precision between the two data
sets in Figure 6 is due to the MAWI samples being coarser-
grained, 15 minutes each once per day, and from a relatively
small link).

This finding is important because the anonymization tech-
nique used for MAWI traces preserves matching prefixes and
IP classes between IP addresses [29]. The analysis of this data
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Fig. 7: Distribution of the source port numbers (bin size = 100) The
most common range is 1025-5000, used by several versions of OSs
from the Microsoft Windows family.

therefore revealed that, on average, 8 different /8 classes were
targeted every day by the packets traveling on this link.

4) Exploiting source-port continuity
The positive correlations of our data source with the DShield

and MAWI data sources convinced us that the sipscan hit
other /8 networks as well as our own. We also found the
following evidence that the sipscan most likely targeted all
the /8 networks in the IPv4 address space.

We identified a few bots scanning at a roughly constant pace
over several days. Analyzing the sequence of source ports in
their scanning packets revealed that some of these bots used
incremental source ports within a specific range assigned by
the operating system. For example, Windows XP and other
Microsoft operating systems assign a new ephemeral source
port in the range 1025-5000 by incrementing a global counter
for each opened TCP or UDP socket [48]. We inferred how
many other connections/sessions a bot opened between each
probe sent to the darknet by following the sequence of source
ports the bot used and “unwrapping” them, taking into account
their range. In [43], Li et al. used the same methodology to
estimate the global scope of botnet scans. We could only apply
this technique to the few persistent bots (see Section IV-B)
running on an operating system configured to assign source
ports in this manner.

Figure 8 depicts the behavior of three of these bots (the
bot number indicates its rank based on the number of probes
they sent). The continuous lines represent the count of probes
(a UDP packet plus at least one TCP SYN packet) ob-
served by the UCSD Network Telescope (y axis), whereas
the dashed lines represent the number of connections/sessions
opened by each bot as inferred by unwrapping its source
port numbers (second y axis). For each bot the two curves
follow approximately the same trend, suggesting that the view
from the telescope is representative of the global behavior
of the bot. The UCSD Network Telescope covers 1/256th
of the entire IPv4 address space, so a uniformly random
scanning bot will probe this /8 darknet approximately every
256 probes, or every 512 new connections opened (every probe
includes a UDP and TCP connection attempt). We find these
subclass of bots actually hitting our darknet every 570 packets
(on average), which would be consistent with their hosting
computer opening other connections/sessions unrelated to the
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Fig. 8: Estimating the global scan scope by exploiting source port
continuity in scanning bots: continuous lines represent the count of
probes (a UDP packet plus at a least one TCP SYN packet) observed
by the UCSD Network Telescope (y axis), whereas the dashed lines
represent the number of connections/sessions opened by each bot as
inferred by unwrapping its source port numbers (second y axis). Each
bot probes the darknet on average (approximately) every 285 global
probes, suggesting that during its absence reaches the remaining 255
/8 networks in the IPv4 address space.

scan, such as legitimate user activity or communication with
the botmaster. In the next section we will show how the bots
select their target IP addresses by first incrementing the most
significant byte. Therefore we can assume that the external
255 probes from the bot reach all the other /8 networks in the
IPv4 address space. In Section IV we will also explore another
feature of the data in Figure 8: the bots proceed at different
rates and are active over different time intervals. We will refer
to this finding later in the paper.

IV. ANALYSIS PART II: PROPERTIES OF THE SIPSCAN AND
OF THE BOTNET

A. Reverse IP Sequential order

A first manual observation of the sipscan destination ad-
dresses revealed that the bots were coordinated, presumably by
a botmaster, to choose targets in a pre-defined sequence while
scanning the entire IPv4 address space. Such coordination has
not yet been documented in botnet-related research literature
(see Section II). Even more interesting, the target IP addresses
incremented in reverse-byte order – likely to make the scan
covert. Reverse-byte order scanning was considered in the
context of supporting network-friendly Internet-wide service
discovery [40], but was discarded for being difficult to extrap-
olate metrics from partial scans. A pseudo-random approach
in selecting target addresses was also used as a technique for
non-aggressive Internet-wide measurement surveys [33]. But
to the best of our knowledge, this reverse-byte order scanning
has been neither empirically observed in malicious scans nor
discovered in botnet source code.

Manual examination of a sequence of 20 million addresses
is practically infeasible; even its visual representation is a
challenge. We used a visual map based on the space-filling
Hilbert Curve [47], [54] to verify that the target IP addresses
incremented in reverse-byte order for the three bytes that we

could observe (the most significant byte is fixed in our data
to the /8 of the darknet observation point).
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Fig. 9: Examples of Hilbert’s space-filling curves: orders 1, 2 and 3.

The Hilbert curve is a continuous fractal curve that can be
used to map one-dimensional data into two dimensions filling
a square, such as shown in Figure 9. Other researchers have
effectively used the Hilbert space layout to visualize results of
Internet-wide scanning or other Internet-wide data [22], [33].
The original order of the data is preserved along the Hilbert
curve in two dimensions, and conveniently displays data that
is structured in powers of two. Hilbert curves of order 4, 8,
and 12 have 28, 216, 224 points, respectively, which in turn
correspond to the masks for Class C (/24), Class B (/16),
and Class A (/8) address blocks in the IPv4 numbering space.
When mapping IP addresses to these two-dimensional Hilbert
curves, adjacent address blocks appear as adjacent squares,
even CIDR blocks (in between Class A, B, and C block sizes)
are always represented as squares or rectangles.

We visualized the progression of the IP addresses targeted
by the sipscan through an animation. Each frame represents
the IPv4 address space of our darknet using a Hilbert curve of
order 12, in which each cell corresponds to one IP address of
the darknet, thus varying the 3 least significant bytes through
all the possible combinations. The curve is displayed as a
bitmap of size 4096x4096, with each pixel being assigned an
IP address. For each frame, the pixels corresponding to the IP
addresses that have been probed prior to that point in time are
highlighted. We also added a brightness decay effect to better
highlight the addresses probed in the last few frames while
displaying the animation.

Drawing the Hilbert curve using IP addresses sequenced in
their natural byte order does not reveal a particular pattern in
the target progression, showing the square uniformly filling
across the 12 days of the scan. This animation of target
progression is available at [13]. In contrast, reversing the order
of the three varying (i.e., least significant) bytes yields a repre-
sentation that clearly illustrates the reverse sequential IP order
rigorously followed by the sipscan: throughout the 12 days
all the bots “march” together toward filling the entire address
space. Figure 10 shows the frame for 5 February 2011 11:47
GMT from the full reverse-byte order animation available at
[13]. This animation proves the strong coordination of bot
activity: the progression is strictly observed by all the bots for
the entire execution of the scan, independent of (i) variations
in global scanning speed, (ii) the rates at which different bots
proceed (see Section III-D), (iii) the large number of hosts
involved at the same time and thus the possible distributed
architecture of the botnet (e.g., multiple C&C channels).
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Fig. 10: Snapshot of our animation representing the progression over
time of the IP addresses targeted by the sipscan [13]. The darknet
address space is represented as a Hilbert curve of order 12 in which
the order of the three least significant bytes of each address is reversed
before mapping it into the curve. Highlighted pixels correspond to
IP addresses that have been probed up to that time (5 Feb 2011
11:47 GMT, in this frame). The animation proves the reverse-byte
order progression is rigorously followed by the bots during the entire
12 days, independent of the varying rate of the sipscan. [The above
snapshot is a modified version of the original frame from the reverse
byte order animation at [13]; we over-emphasized the fading effect
to better illustrate, in a single picture, the path the scan took through
the address space.]

We also created a composite animation which combines
both the natural and reverse byte order heatmaps with the
world map animation into a single synchronized view of both
the sources and the targets of the sipscan. This composite
animation is available at [13].

The reverse IP sequential order used in this scan has
significant implications. Observing this scan from a generic
/24 network, would result in a very low number of packets per
day: the average speed, during the largest phase of the scan
– from the 2nd to the 6th of February – increments the least
significant byte 34 times per day, unlikely to be detected by
many automated systems [41]. This stealth technique is even
more effective when combined with the constant turnover of
bots that we illustrate in the next section.

B. Bot Turnover

The scanning statistics in Table I, in particular the number
of unique source IPs (about 3 million), total number of probes
(about 20 million), and the average number of destinations a
source targets (6.85), suggest that there is a large turnover in
the use of the bots. Figure 11 shows the constant use of new
bots throughout the entire scan, except for the interval from
approximately 7 February 00:00 GMT to 11 February 12:00
GMT, which exhibits significantly reduced botnet activity. The
continuous line with square symbols shows the cumulative
percentage of bots that probed our darknet over the 12-day
scan. Its linear slope indicates a constant arrival of new bots
participating in the scan. To partially take into account the
effect of dynamic IP address assignment, we also plot the
cumulative sum of unique /24 networks containing the source
IP addresses (continuous line with circles). The slope of this
curve proves that new bots take part in the scan for its entire
duration.
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Figure 12 shows the distribution of the number of packets
sent by each bot. The diagram on the left uses a log-log scale
to show all the data, whereas the diagram on the right uses
a linear scale to zoom in to the left side of the distribution
up to 10 packets. More than 1 million bots (more than 1/3 of
the total) sent a single probe and never participated further
in the scan. The number of bots that sent more than 100
packets during the scan is two orders of magnitude smaller.
This difference suggests rapid turnover of bots during the scan.
We hypothesize that this behavior is related to how the C&C
channels managed and assigned tasks to bots. For example, a
C&C channel may assign a list of target IP ranges to a queue
of bots, in which case it is unlikely that a single bot could
reach the head of the queue twice. In such a situation, bots
that reappear in the scan would have likely been assigned to
a C&C channel with a smaller pool of bots.
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Fig. 12: (left) Full histogram of packets sent per bot (log-log scale);
(right) zoomed histogram of packets sent per bot for bots that sent
up to 10 packets (linear axis) Most bots sent few packets, e.g., over
a third of the bots sent a single packet during the entire scan.

In combination with the reverse-byte order property of the
scan, the high bot turnover rate makes the scan impressively
covert. Not only would an automated intrusion detection
system on a /24 network see only 34 packets to the same
port in a single day, but they would most likely arrive from

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2013.2297678

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

34 distinct IP addresses, making detection highly unlikely (see
Section VI.

C. Coordination and Adaptation

1) Coverage and Overlap
The scan fails to cover the entire darknet’s /8 address space,

probing only 86.6% of it (Table I). On the other hand, there
is a non-negligible overlap in terms of bots hitting the same
target: about 5.7 million IP addresses were probed by more
than one bot, and on average a targeted IP is probed by 1.39
distinct bots. Whether probed zero, one, or multiple times,
the probed IP addresses are scattered all over the address
space without clusters or holes, in both the standard and
reverse representation of the address bytes. These properties
– coverage and overlap of target addresses – are independent
of the number of bots active at any given time, the overall
rate of the scan, or specific subnets being scanned. But we
did discover a correlation between coverage and overlap in
targets, which we believe is likely a function of a parameter
of the scan configured by the botmaster to support trading off
completeness and redundancy of scanning.

(a) Coverage (b) Overlap
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Fig. 13: Different phases (A, B, C) of the scan characterized by
different but correlated rates of coverage and overlap of the target IP
space, (a) Slice of the Hilbert-curve map (with reversed-byte order IP
addresses) highlighting areas of different density indicating different
coverage of the target space. (b) shows the same phenomenon in terms
of overlap: the lit pixels in the map represent target addresses probed
by more than one bot. The three regions perfectly match between
the two maps. (c) Scanning source IPs throughout scan, showing the
transitions from Phase A to B and from Phase B to C.

The representation with the Hilbert curve of the probed
IP addresses in reverse byte order reveals three regions with
different densities. These regions are labeled A, B, C, in a
detail of the Hilbert-curve map in Figure 13(a) and corre-
spond to three different phases of the scan as indicated in

Start time Jan 31 21:00 Feb 1 00:45 Feb 1 11:20
# of probes 179,143 486,394 19,590,184
% of IP space covered 93.81% 76.27% 86.98%
Average bots per target 1.66 1.01 1.40

TABLE II: Characteristics of the three phases of the scan, with
different coverage and overlap of the target address space, show a
trade-off between the two properties.

Figure 13(c). Brighter areas indicate a greater coverage of the
corresponding address space: the scan starts with a very high
percentage of targets probed (“A”), after few hours a parameter
is changed and the coverage significantly drops (“B”), finally
the parameter is adjusted again and an intermediate level
of target coverage remains for the rest of the scan (“C”).
The same regions are visible in Figure 13(b), where we use
the Hilbert-curve map to highlight the overlap in targets: IP
addresses (in reverse-byte order) that were probed more than
once are depicted in white.

Table II shows statistics calculated separately for the three
phases of the scan. The correlation between coverage and
overlap of the scan is evident, and is consistent with a
probabilistic mechanism in the choice of the targets that can
be configured by the botmaster to trade off completeness
and redundancy of scanning. The finding illustrated in Figure
14 further substantiates the hypothesis that the three phases
correspond to different configurations of the scan. The figure
shows, for each phase, the distribution of the number of
packets sent in each “reverse /16 subnet” (we define a reverse
/16 subnet as the set of all possible IP addresses obtainable
when the least two significant bytes are fixed). The three
curves refer to populations of different size, which explains
the different smoothness of their shapes (e.g., phase C is
considerably longer thus covering a larger number of reverse
/16 subnets). However, all of them are highly centered around
a different value (average values are 395.6 (A), 196.3 (B),
312.6 (C)) and mostly non-overlapping, reflecting a consistent
and distinctive behavior in each phase.
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Finally, in both Figures 13(a) and 13(b), we also observe
better coverage and larger overlap in the transition from one
region to the other, suggesting that the botmaster re-issued a
command to scan those IP ranges to the bots after changing
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the configuration parameter (possibly because the scan was
stopped without collecting the results of the previous com-
mand). The higher coverage in these transition areas provides
further evidence of a probabilistic approach in the choice of
the target IPs (probably happening at the level of the single
bots): re-issuing the commands for that range of target IPs
results in a partially different set of probed targets.

Even given non-negligible redundancy, an average of 1.39
bots hitting the same target is small compared to the large
number of bots involved. Such low redundancy is novel, or
at least undocumented in the literature, which has mostly
reported on bots that independently scan the same address
range in a random uniform fashion [12], [43]. The small
overlap and thus high efficiency in terms of completeness
vs. redundancy achieved by this botnet is an impressive
consequence of strongly orchestrated behavior.

2) Adaptivity
The strong coordination of bot activity is also visible in

terms of adaptation capabilities. Starting around 7 February
00:00 GMT through around 11 February 12:00 GMT, the scan
proceeds very slowly, with only a few active bots (Figure 2).
A possible hypothesis is that most of the C&C channels are
down during this period. However, we observe that the target
IP ranges that would have normally been assigned to these
C&C channels were automatically redirected to those channels
that were still up.
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Fig. 15: Adaptive assignment of target IP ranges to different C&C
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target IP ranges assigned to these bots became denser during this
period, to compensate for the absence of other C&C channels:
continuous lines represent the distance between subsequent target IPs
of each respective bot, showing an order of magnitude decrease in
that time interval.

Figure 15 illustrates this behavior. Dashed lines in the graph
represent the probing rate per hour of the three bots discussed
in Section III-D. During this period the bots do not change
their speed, suggesting that the C&C channel they refer to has
not changed its characteristics in terms of numbers of bots
managed, etc. (i.e., the number of bots competing for a certain
C&C channel does not change, therefore the rate at which
each bot gets assigned a new “reverse” /24 stays the same).

However, over this same time interval we observe a significant
change in the sequences of IP ranges assigned to these bots.
The continuous lines in Figure 15 show, for each of the three
bots, the distance between subsequent target IPs, calculated by
subtracting the target IPs after reversing their byte order and
converting them into 32-bit numbers. The graph shows a drop
of about one order of magnitude in the distance, meaning that
the corresponding C&C channel(s) receive a “denser” list of
targets to compensate for the disappearance of the other C&C
channels.

D. Botnet characteristics

Observing a horizontal scan of this magnitude from such a
large darknet allows unique insight into the characteristics of
the botnet that performed it. The size of the darknet, combined
with the reverse IP sequential ordering of the targets, allowed
the telescope to capture probes across the entire life of the
scan, providing an unprecedented view of the population of
the Sality botnet.

A white paper from Symantec [24] estimated the size of
the Sality botnet at approximately a million bots, by mea-
suring the number of hosts that a ‘rogue’ server under their
control communicated with. We identified a total of 2,954,108
unique source IPs for bots that participated in the sipscan. As
the authors of [63] demonstrate, it is difficult to accurately
determine the size of the botnet population when using source
IP addresses collected from traffic sent by infected hosts.
This difficulty arises due to the effects of dynamic IP address
assignment (DHCP), which can result in several IP addresses
being used by a single bot (especially over a 12-day interval),
and NAT, which can cause multiple bots to appear as a
single IP. However, Figure 11 shows continuous growth in the
number of unique /24 networks hosting bots over the entire
duration of the scan. This diversity of /24 networks can be
used as an approximation for the number of new bots that
arrive over the course of the scan.

We leverage the large population of source addresses ob-
served to further understand how hosts compromised by
botnets are distributed globally. To this end, we determine
the Autonomous System Number (ASN) for each bot using
a Routeviews BGP routing snapshot [64] taken on Monday
14 February 2011 at 12:00 UTC, proximate to the scanning
episode. Using this table, we perform longest-prefix matching
to resolve each source IP to its origin AS.

The ASes enumerated in Table III are the 10 most common
across the bots used by the sipscan botmaster. We also list
the AS name and home country extracted from whois data.
Similar to the Conficker [59] and Mega-D [4] botnets, we
see a dominant AS at the top of the list (TTNet), which
alone accounts for over 10% all participating bots, followed
by a long tail of small ASes. However, although the scale
of the leading ASes may resemble other botnets, the networks
featured in the top 10 are quite different (Table IV). Only four
of the ASes in the top 10 of the sipscan appear in the top 10
of either Conficker [59] or Mega-D [59]. Notably, TTNet in
Turkey, which [59] lists in 10th place, represents the largest
AS by more than a factor of two in the sipscan botnet.
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Rank % ASN AS Name Country
1 10.81 9121 TTNet Turkey
2 4.57 8452 TE Egypt
3 4.40 9829 BSNL-NIB India
4 4.22 17974 TELKOMNET Indonesia
5 4.20 45899 VNPT Vietnam
6 3.01 7738 TELEMAR Brazil
7 2.65 8708 RDSNET Romania
8 2.51 24560 AIRTELBROADBAND India
9 2.07 9050 RTD Romania
10 1.94 9737 TOTNET Thailand

TABLE III: Top 10 origin ASes of bots used in the sipscan. As
noted in other work [59], we see a dominant AS at the top of the
list (Turkey, with 10% of the overall bot population), followed by a
long tail. The country and AS name data have been extracted from
whois data for each AS.

Conficker [59] Mega-D [59] Sipscan
Rank ASN Country ASN Country ASN Country

1 4134 China 3352 Spain 9121 Turkey
2 4837 China 3269 Italy 8452 Egypt
3 7738 Brazil 6739 Spain 9829 India
4 3462 Taiwan 9121 Turkey 17974 Indonesia
5 45899 Vietnam 6147 Peru 45899 Vietnam
6 27699 Brazil 19262 USA 7738 Brazil
7 9829 India 4134 China 8708 Romania
8 8167 Brazil 7738 Brazil 24560 India
9 3269 Italy 7418 Chile 9050 Romania

10 9121 Turkey 22927 Argentina 9737 Thailand

TABLE IV: Comparison of the top 10 ASes observed in three
different botnets: the Conficker botnet as surveyed by [59], the Mega-
D botnet as reported by [4], [59], and the Sality (sipscan) botnet. We
observe a trend toward Eastern European countries which have not
featured as prominently in previous botnets.

Both the Conficker and Mega-D AS distributions indicate a
move toward larger representation of bots in Asian and South
American countries, corroborating the results of [59]. How-
ever, we see a considerable rise in bots in Eastern European
countries, which becomes even more apparent on a per-country
level (Table V).

Simply aggregating bots by their ASN can be mislead-
ing because many large organizations/providers have multiple
ASNs. To complement our AS findings, we geolocate the
bot’s IP address using a MaxMind GeoLite database [45]

Mega-D [4] Sipscan
Rank % Country % Country

1 14.82 USA 12.55 Turkey
2 11.74 Russian Federation 12.54 India
3 6.33 Turkey 8.64 Brazil
4 6.32 Poland 7.23 Egypt
5 5.32 Thailand 5.77 Indonesia
6 4.11 Brazil 5.59 Romania
7 3.89 Germany 5.58 Russian Federation
8 3.23 United Kingdom 5.36 Vietnam
9 2.53 India 5.10 Thailand
10 2.25 Spain 3.01 Ukraine

TABLE V: Top 10 Countries of bots used in the sipscan compared
to the Mega-D botnet. Geolocation data for sipscan sources was
obtained using the MaxMind GeoLite database [45]. Aggregating
bots by country rather than AS helps identify regions that are heavily
compromised by bots but have many small ASes, such as the Russian
Federation, which is not in the list of top 10 ASes.

snapshot from March 1 2011 (again, proximate to the scan
episode). Table V presents the top 10 countries for bots in both
the sipscan and the Mega-D botnets [4]. Once we aggregate
bots to a country granularity, the distribution of locations
changes appreciably, with the Russian Federation making an
appearance in the top 10 lists of both Mega-D and sipscan2.

Contrary to similarly large botnets [4], [52], [59], [65], the
sipscan bots do not have a dominant presence in China. China
has been recorded in the top ten lists of these other botnets,
but in the sipscan, China is in 27th place (0.57%) - close to
U.S.’s 29th place position (0.44%). Heatmaps of overall Sality
bot locations [24] also indicate a corresponding lack of Sality
bot presence in China. We believe this under-representation of
China, when compared to previous botnets, may be considered
a limitation of the Sality botnet rather than a specific design
choice by the botmaster. Although the data presented in [24]
is largely in aggregated graphical form, it does appear to
corroborate our findings in terms of geographical distribution.
As noted earlier however, we are able to identify a much larger
bot population.

In addition to analyzing the networks that host the bots,
we also investigated the bots themselves. Output of the p0f
passive OS fingerprinting tool [67] reported that more than
97% of bots were running operating systems of the Microsoft
Windows family. The distribution of UDP source port values
shown in Figure 7 also shows that the majority of packets
fall into the 1025-5000 range of ports, which was used by
Microsoft Windows until Vista and Server 2003. There are,
however, a non-negligible number of bots that p0f identified
as running the Linux operating system. We believe these
machines are likely not bots but rather NAT gateways proxying
packets from infected hosts.

V. BINARY ANALYSIS

We had the opportunity to analyze the binary code responsi-
ble for this scanning. The binary is a separate executable that
Sality-infected computers download via a URL as directed by
the peer-to-peer botnet infrastructure [23], [24]. Although our
work focuses on the Internet measurement aspect of the event,
we partially reverse engineered this code to validate some of
our inferences. Here we summarize the most relevant findings.

We found that each bot contacts a hard-coded IP address
(the C&C channel) in order to receive a probing command
from the botmaster. The command followed by the bots we
observed is one of three different command types that the
binary supports. Through this command, the botmaster sends
the target IP to the bot in the form of an ASCII string (dotted
quad decimal format). By analyzing the code, we verified
that this address is the actual address probed by the bot. In
particular, the bot properly manages the endianness of the
target IP addresses, e.g., when converting the ASCII string
into binary and then when contacting the target.

Each bot reports through the C&C channel the results of a
probe immediately after receiving a response from the victim.
It then selects and probes a new target by incrementing the
most significant byte of the target address received by the

2 [59] only provides Conficker results at an AS level.
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botmaster. This increment is repeated 15 times, for a total of
16 targets probed, each one from a different /8 network. The
bot then sleeps for a fixed amount of time before contacting
the botmaster again to receive a new target IP.

These findings, along with the progression of the target IP
addresses observed through the UCSD Network Telescope,
indicate that both the botmaster and each bot incremented the
target IPs in reverse-byte order, and that the sequence followed
by the scan reflected the original orders of the botmaster
(who was sending addresses as quad decimal dot-separated
ASCII strings). In other words, the reverse byte order probing
was most likely not due to a bug or error in managing the
endianness of the target IP addresses.

Inspecting the binary also revealed that several interesting
properties of the scan would have not been visible by relying
solely on the reverse-engineering the bot binary. For example,
the code running on a single bot shows only the selection of 16
target addresses (whose increments to the most significant byte
could have been attributed to a coding mistake, without the
knowledge of the overall pattern). But analysis of traffic from
the UCSD Network Telescope revealed a heavily coordinated
behavior of many bots around the world, allowing inference
of the mechanisms adopted by the botmaster in orchestrating
the scan.

Finally, our analysis of the sipscan code binary confirmed
the ability of the bots to perform break-in attempts – trying
to register users with the SIP server – based either on brute-
forcing or using specific lists of user/password pairs communi-
cated to the bot by the botmaster. The software included code
to try selected lists of common user/password pairs in case a
web administrative panel was found active on the SIP server,
trying to gain administrative rights. Symantec also reported
the presence of both functionalities in the binary module [23].
It is credible that the purpose of registering users or gathering
full control of the SIP server was to perform fraudolent VoIP
activities [25].

VI. DISCUSSION

Botnets commonly scan large segments of the Internet’s
address space for various purposes, such as infecting or
compromising hosts, recruiting hosts into a botnet, or collating
a list of future targets. Awareness of evolving botnet char-
acteristics and spreading techniques can improve our ability
to navigate and mitigate their impacts. As mentioned in
Section II, although many aspects of botnet behavior have been
documented, we are not aware of any published investigation
of a million node botnet covertly scanning the entire IPv4
space. Most of the available literature are studies of older
generation (pre-2007) botnets that are substantially smaller
in size, scope, and capability than newer-generation botnets.
Studies of newer generation bots have focused on aspects other
than the scanning behavior, such as the command and control,
peer-to-peer infrastructure, or the domain of abuse, e.g., spam
campaigns inflicted by the botnet. We presented a new angle
on the study of new-generation botnets: their scanning activity
as observable in large darknets, most aspects of which cannot
be inferred by reverse-engineering the bot malware.

This work offers contributions in two areas: documenting
and visualizing behavioral aspects of a current generation
botnet, and thoroughly analyzing the multiple synergistic
characteristics of its extraordinarily well-coordinated scanning.
The scan that we analyzed in this study was new, or at least
not previously documented, in four ways. It was sourced by a
current-generation (2011), widely-deployed, peer-to-peer bot-
net (Sality [24]). Although earlier-generation versions of Sality
were first reported in June 2003, it was not until February
2011 that Sality operators deployed a new module designed
to locate and compromise SIP servers in a distributed, heavily
coordinated manner. The population of bots participating in
the scan was several orders of magnitude larger than any
previously documented botmaster-orchestrated scanning. Pre-
vious Internet-wide scanning behavior perpetrated by botnets
was due to worm-spreading modules inside the bot, e.g, in
Conficker, rather than botmaster-coordinated scanning. Not
only was this sipscan coordinated, but it was impressively
well-engineered to maximize coverage, minimize redundancy
and overlap among target IP addresses by scanning bots, and
evade detection by even state-of-the-art intrusion detection
capabilities.

We used the detailed packet traces captured by the darknet
to richly analyze many properties of the botnet, including sev-
eral interacting properties of the botnet’s heavily coordinated
scanning. The size of the botnet, the fact that it was a /0 scan,
i.e., of the entire IPv4 address space, and the reverse-byte
ordering sequence of IP addresses targets were unprecedented
and impressive enough characteristics. Time-series analysis of
the active IP addresses operating as bots revealed an unusually
rapid turnover rate and associated low re-use rate of the bot
population, all tightly coordinated by the botmaster to scan in
a extremely regular, stealth pattern.

In a recent work [41], Leonard et al. performed a stochastic
analysis of horizontal IP scans and of detection techniques
implemented in modern intrusion detection systems (IDS).
The authors formalized under which conditions current IDS
implementations would be able to detect a horizontal scan
(based on pattern, number of source IP addresses used for
probing, etc.) when monitoring a network of a given size.
The numbers we found in the case of the sipscan, show
that detecting a scan with similar characteristics would be
impossible for state-of-the-art IDS implementations. A typical
IDS raises an alert when observing a number of probes, from
a single IP address, greater than a threshold as within a pre-
defined time window ∆s. The longest time window and the
minimum threshold values (i.e., highest detection sensitivity)
in default settings of current IDSes are respectively 3600s and
5 probes (these values try to optimize the false positives/false
negatives trade off, as well as limit memory consumption)
[41]. A scan from approximately 3 million distinct source
IP addresses over a duration of 12 days, load-balancing its
packets across the scanned space, would avoid detection even
by an IDS monitoring an entire /8 network (with ∆s = 3600
and as = 5).

We developed animation and visualization techniques to
facilitate our exploration of the sipscan. The Hilbert-curve map
visualization clearly revealed the strictly ordered reverse-byte
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incrementing behavior of the progression of the entire scan;
without this visualization technique it is not clear that we
would have verified this sequence (for all the three observable
changing bytes). Animations over time [13] exposed the three
phases of the scanning, and juxtaposing the Hilbert maps with
a geographic map of bot activity as well as a traffic time-series
allowed us to simultaneously visualize multiple dimensions of
the scanning behavior. We expect this technique will be useful
for analysis of other large-scale Internet probing behavior [38].

Analysis of this scan provided an eye-opening if ominous
indicator of the more sophisticated capabilities of modern mal-
ware to surreptitiously survey and exploit critical infrastructure
vulnerabilities on a planetary scale. Our darknet packet capture
allowed us to precisely analyze this botnet’s comprehensive
and covert scanning behavior, and in the process we developed
generalizable methods to correlate, visualize, and extrapolate
botnet behavior across the global Internet. Finally, another
contribution of this work is the dataset available at [13], with
detailed information (e.g., timestamp and source IP geoloca-
tion) for each sipscan UDP probing packet we captured.

This work leaves open the question of how to automatically
detect such macroscopic events. In [19] we suggested that the
time series of distinct source IP addresses per destination port
is a better indicator than packet rate, but we also reported
that commonly scanned ports (such as TCP 80 and 445)
receive so much probing traffic that it would be difficult to
spot large-scale coordinated scans with traditional change-
point detection approaches. Novel methodologies should in-
stead correlate distinctive features (such as common source
IP addresses, automatically extracted common substrings in
payload, etc.) from traffic captured simultaneously on different
large darknets and live networks. To support our own and
other efforts to automate the analysis of darknet as well as
two-way traffic, we release as open source the Corsaro [37]
software suite we developed to perform high-speed analysis of
packet trace data, which we used to analyze the sipscan. We
are currently using Corsaro to extract in quasi realtime a large
number (> 1M) of time series from traffic and experiment
with visualization techniques for the identification of specific
scanning patterns.
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