
BGPStream: a software framework for live and historical
BGP data analysis

Chiara Orsini, Alistair King, Alberto Dainotti

CAIDA, UC San Diego

ABSTRACT

We present the design and implementation of BGPStream,

an open-source software framework for the analysis of both

historical and real-time Border Gateway Protocol (BGP) mea-

surement data. Although BGP is a crucial operational com-

ponent of the Internet infrastructure, and is the subject of

research in the areas of Internet performance, security, topol-

ogy, protocols, economics, etc., there is no standard and effi-

cient way of processing large amounts of distributed and/or

live BGP measurement data. BGPStream fills this gap, en-

abling efficient investigation of events, rapid prototyping,

and building complex tools and efficient large-scale monitor-

ing applications (e.g., detection of connectivity disruptions

or BGP hijacking attacks). We discuss the design choices

and challenges in the development of BGPStream. We ap-

ply the components of the framework to different scenarios,

and we describe the development and deployment of com-

plex services for global Internet monitoring that we built on

top of it.

1. INTRODUCTION

We present the design and implementation of BGP-
Stream, an open-source software framework1 for the
analysis of historical and live Border Gateway Proto-
col (BGP) measurement data.
Although BGP is a crucial operational component of

the Internet infrastructure, and is the subject of funda-
mental research (in the areas of performance, security,
topology, protocols, economy, etc.), there is no stan-
dard and easy way of processing large amounts of BGP
measurement data. BGPStream fills this gap by mak-
ing available a set of APIs and tools for processing large
amounts of live and historical data, thus supporting in-
vestigation of specific events, rapid prototyping, and
building complex tools and efficient large-scale moni-
toring applications (e.g., detection of connectivity dis-
ruptions or BGP hijacking attacks). We describe the
design choices and challenges in the development of
BGPStream. We present how the components of the
framework can be used in different applicative scenar-

1BGPStream is distributed with the GPL v2 license and is
available at bgpstream.caida.org.

ios, and we describe the development and deployment
of complex services for global Internet monitoring that
we built on top of it.

2. BACKGROUND

The Border Gateway Protocol (BGP) is the de-facto
standard inter-domain routing protocol for the Inter-
net: its primary function is to exchange reachability
information among Autonomous Systems (ASes) [36].
Each AS announces to the others, by means of BGP
update messages, the routes to its local prefixes and the
preferred routes learned from its neighbors. Such mes-
sages provide information about how a destination can
be reached through an ordered list of AS hops, called
an AS path.
A BGP router maintains this reachability information

in the Routing Information Base (RIB) [36], which is
structured in three sets:

• Adj-RIBs-In: routes learned from inbound update
messages from its neighbors.

• Loc-RIB : routes selected from Adj-RIBs-In by ap-
plying local policies (e.g., shortest path, peering
relationships with neighbors); the router will in-
stall these routes in its routing table to establish
where to forward packets.

• Adj-RIBs-Out : routes selected from Loc-RIB, which
the router will announce to its neighbors; for each
neighbor the router creates a specific Adj-RIB-Out
based on local policies (e.g., peering relationship).

Some operators make BGP routing information from
their routers available for monitoring, troubleshooting
and research purposes. BGP looking glasses give users
limited (e.g., read-only) access to a command line inter-
face of a router, or allow them to download the ASCII
output of the current state of the router RIB. Look-
ing glasses are more useful for interactive exploration
rather than systematic and continuous data acquisition.
The latter can instead be implemented either (i) by es-
tablishing a BGP peering session with the monitored
router from a dedicated system (a route collector), or
(ii) through a protocol specifically designed for monitor-
ing purposes, such as OpenBMP [16, 41]. OpenBMP is

1

Figure 1: BGP collection process illustrated. Once a BGP
collector establishes a BGP session with a VP, it maintains a state
and an image of the VP’s Adj-RIB-out table derived from the
updates received through the session. With different periodicity,
it dumps (i) a snapshot of the union of all the Adj-RIB-out tables
(RIB dump) and (ii) the update messages received within that
period from all the VPs (Updates dump).

an open-source implementation of the BGP Monitoring
Protocol defined in an IETF draft [41] and supported by
latest versions of JunOS and Cisco IOS. The protocol
allows a user to periodically access the Adj-RIBs-In of
a router or to monitor its BGP peering sessions. While
OpenBMP can be easily deployed within an AS to mon-
itor its BGP routers, there are currently no projects
which make such data publicly available. Route col-
lectors are often used for this purpose [32, 34, 39]. A
route collector is a host running a collector process
(e.g., Quagga [35]), which emulates a router and es-
tablishes BGP peering sessions with one or more real
routers (vantage points, VPs, in the following). Each
VP sends to the collector update messages (updates)
each time the Adj-RIB-out changes, reflecting changes
to its Loc-RIB (Figure 1).
Normally, a BGP session with a collector is config-

ured as a customer-provider relationship, i.e., as if the
VP was offering transit service to the collector. In this
case, the VP is called full-feed, since it will advertise to
the collector an Adj-RIB-Out which contains the entire
set of routes in its Loc-RIB. This way, the collector po-
tentially knows, at each instant, all the preferred-routes
that the VP will use to reach the rest of the Internet
— a partial view of the Internet topology graph visible
to that router. A partial-feed VP instead, will provide
through its Adj-RIB-Out only a subset of the routes in
its Loc-RIB, e.g., routes to its own networks, or learned
through its customers. Unfortunately, projects pub-
licly providing information acquired by their collectors
do not label VPs as full- or partial-feed, since peering
with a collector is usually established on a voluntary
basis and VP behavior can be subject to change with-
out notice. Therefore, the policy that determines the
Adj-RIB-Out to be shared with the collector must be
dynamically inferred from the data (e.g., size of the Adj-
RIB-Out).
For each VP, the collector maintains a session state

and an image of the Adj-RIB-out table derived from
updates. The collector periodically dumps, with a fre-

quency of respectively few hours and few minutes, (i)
a snapshot of the union of the maintained Adj-RIB-out
tables (RIB dump) and (ii) the update messages re-
ceived from all its VPs since the last dump, along with
state changes (Updates dump).

The most popular projects operating route collectors
and making their dumps available in public archives
are RouteViews [32] and RIPE RIS [39]. They cur-
rently operate 18 and 13 collectors respectively, which
in total peer with approximately 380 and 600 VPs dis-
tributed worldwide (this number increases every year).
Analyzing data from multiple VPs is of fundamental
importance for most Internet studies, since each router
has a limited view of the Internet topology and, even
when full-feed, a VP shares only part of this information
(the preferred routes). Moreover, macroscopic Internet
phenomena visible through the routing infrastructure
(e.g., outages, cyber attacks, peering relationships, per-
formance issues, route leaks, router bugs) affect Internet
routers differently, as a function of geography, topology,
router operating system and hardware characteristics,
operator, etc.. RIB dumps provide an efficient sum-
mary of changes to BGP routing tables with a coarse
time granularity that is sufficient for several classes of
studies [20,26–28]. In contrast, Updates dumps carry a
lot of information to be processed, but offer a complete
view of the observable routing dynamics, enabling other
types of analysis and near-realtime monitoring applica-
tions [21,22,30,44].
Such a distributed and detailed — even if partial –

view of the inter-domain routing plane, generates large
amounts of data. RouteViews and RIPE RIS collectors
save a RIB dump every 2 and 8 hours and an Updates
dump every 15 and 5 minutes, respectively. In 2015
an Adj-RIB-Out from a full-feed peer contains approx-
imately 550k routes (each route includes an AS path
toward a different network prefix) and on average gener-
ates about 1.5K updates every 5 minutes. Both projects
save RIB and Updates dumps in a binary format, stan-
dardized by the IETF, called the Multi-Threaded Rout-
ing Toolkit (MRT) routing information export format
[6]. The size of compressed dump files is currently be-
tween 10KB and 100MB for RIB dumps and between
1KB and 10MB for Updates dumps. RouteViews and
RIPE RIS archives date back to 2001 and 1999 respec-
tively, enabling longitudinal studies relevant to under-
stand the evolution of the Internet infrastructure and its
impact in other fields. The full archives of compressed
files are about 8.9TB and 3.7TB, currently growing at
the rate of 2TB per year.
The most widely adopted software for BGP data anal-

ysis in the research community [2, 4, 8, 23, 37, 40, 43] is
libBGPdump [38], an open source C library that pro-
vides a simple API to parse BGP dumps in MRT format
and deserializes MRT records into custom data struc-

2

tures. It is distributed along with a command-line tool,
bgpdump, that outputs MRT information read from a
file in an ASCII format. Often researchers directly use
the command-line tool to translate entire BGP dumps
into text, and then parse the ASCII output to further
process or archive the data. Although bgpdump has
been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).
A solution that provides both retrieval simplicity and

real-time access is BGPmon [1, 33, 45], a distributed
monitoring system that retrieves BGP information by
establishing BGP sessions with multiple ASes and that
offers a live BGP data stream in the XML format (which
also encapsulates the raw MRT data). Despite the fact
that BGPmon enables rapid prototyping of live mon-
itoring tools, it currently provides access to a limited
number of VPs (compared to the vast number of VPs
connected to RIS and RouteViews infrastructures), and
it cannot be used for historical processing.
On the other hand, in the context of live monitoring,

the major issue with popular public data sources such as
RouteViews and RIPE RIS, is their file-based distribu-
tion system and thus the latency with which collected
data is made available. Our measurements [14] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.
The research community recognizes the need for bet-

ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [7]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming
developments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

3. DESIGN OVERVIEW

3.1 Goals

We designed the BGPStream software framework with
the following goals:
– Efficiently deal with large amounts of distributed

BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed vantage points.
– Offer a time-ordered stream of data from heteroge-

neous sources. BGPStream aims at providing a unified
sorted stream of data from multiple collectors and col-
lecting projects, i.e., interleaving into a single timeline
the records they generate. Record-level sorting (rather
than interleaving dump files) is important in at least
two cases: (i) when analyzing long time intervals where
it is infeasible to buffer the entirety of the input data
in order to perform time alignment, and (ii) when at
least one of the input data sources provides a continu-
ous stream of data (rather than a discrete dump file),
since such a stream cannot be interleaved at the dump
file level.
– Support near-realtime data processing. BGP mea-

surement data is fundamental to monitor the health of
the global Internet. We support live monitoring ap-
plications consuming continuous streams of BGP data.
We will consider two modes of operation: (i) histori-
cal - all the BGP data requested is available before the
program starts; (ii) live - the BGP data requested be-
comes available while the program is running. In live
mode, the time available for processing data is bounded;
as such, the BGPStream stack of components, plus the
user application, must process data faster than it is gen-
erated by VPs/collectors. Therefore, one of our objec-
tives is to minimize processing latency caused by BGP-
Stream, thus maximizing the processing time available
to user applications.
Live mode also introduces the problem of sorting records

from collectors that may publish data at variable times.
Any solution to this problem, involves a trade-off be-
tween: (i) size of buffers, (ii) completeness of data avail-
able to the application, (iii) latency. Since such a trade-
off should be evaluated depending on the specific goals
and resources of the user application, we design BGP-
Stream to perform best-effort record interleaving in live
mode and we defer to the application the choice of a
specific solution (in Section 7, we provide a concrete
example of such a solution to support our infrastruc-
ture for live Internet monitoring).
– Target a broad range of applications and users. Po-

tential applications of BGPStream are both in the field
of network monitoring and troubleshooting as well as
scientific data analysis. The target user base should not
be limited to the availability of high-performance com-
puting and/or cluster infrastructure. The BGPStream
framework makes available a set of tools and APIs that
suit different applications and development paradigms
(e.g., historical data analysis, rapid prototyping, script-

3

BGPCorsaro

Meta-Data Providers Data Providers

BGP data acquisition

BGP record extraction, sorting, and packaging

libBGPStream

BGPReader PyBGPStream

Plugin 1 … Plugin N

Broker
CSVfile

SQLite

RIPE RIS

RouteViews
Archive

REMOTE REMOTELOCAL LOCAL

Figure 2: BGPStream framework overview. The BGP-
Stream framework is organized in three layers. From bottom
up, these are: data and meta-data access, records extraction and
packaging (libBGPStream), and record processing (BGPReader,
PyBGPStream, BGPCorsaro).

ing, live monitoring).
– Scalability. Since the pervasiveness of BGP VPs is

key to monitoring and understanding the Internet in-
frastructure, the number of VP supported by collector
projects continually grows. In parallel, the technolog-
ical challenges (e.g., near-realtime detection of sophis-
ticated man-in-the-middle attacks) require solutions of
increasing complexity and computational demand. We
designed BGPStream to enable deployment in distributed
architectures (Section 7 shows an example use in a cus-
tomized distributed environment). BGPStream is also
suited for use in a “Big Data” environment: e.g., Spark’s
[3] native Python support makes BGPStream usable in
such an environment out-of-the-box (Python bindings
to the main BGPStream library are discussed in Sec-
tion 6).
– Easily extensible. Though our solution is designed

to work with current standards and the most popular
available data sources, we designed the entire frame-
work as a stacked and modular architecture, facilitating
support for new technologies and data sources. BGP-
Stream is indeed a project under evolution and is part of
a coordinated effort with data providers, developers of
complementary technologies, and users, to advance the
state of the art in BGP monitoring and measurement
data analysis [7].
In the next section we provide an overview of the

main components of the BGPStream framework, whereas
design and development choices are further discussed in
Sections 4, 5, and 6.

3.2 Overview of Components

The BGPStream framework is organized in three lay-
ers: data and meta-data access, records extraction and
packaging, and record processing (Figure 2).

1. The data and meta-data access layer provides
to the upper layer information about BGP data
availability as data annotations. One of the chal-
lenges in analyzing BGPmeasurement data is iden-

tifying and obtaining relevant data. Both Route
Views and RIPE RIS make data available over
HTTP, with basic directory-listing style indexes
into the data. Identifying the appropriate files for
large-scale analysis (across multiple collectors and
long time durations) involves either manual brows-
ing and download, or scripting of a crawler tai-
lored to the structure of each project’s repository.
Downloading the data, may itself take a significant
amount of time (e.g., all data collected in 2014 is
≈2TB). Moreover, since both projects continually
add new data to their archives as it is collected
(Section 2), near-realtime monitoring requires cus-
tom scripts to periodically scrape the websites and
download new data. This layer hides all of these
complexities through meta-data providers: com-
ponents that provide access to information about
the files hosted by local or remote data reposito-
ries (the Data Providers, e.g., the Route Views and
RIPE RIS archives). (Section 4).

2. The record extraction and packaging layer is
implemented by libBGPStream, the core library
of the framework (Section 5), which provides the
following functionalities:

• Transparent access to concurrent dumps (i) from
multiple collectors, (ii) of different collector projects,
and (iii) of both RIB and Updates type.

• Live data processing.
• Data extraction, annotation and error checking.
• Generation of a sorted (by timestamp) stream of
BGP measurement data.

• An API through which the user can specify and
receive a stream.

3. The record processing layer consists of all the
components that use libBGPStream’s API. We dis-
tribute BGPStream with the following indepen-
dent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII for-
mat; pyBGPStream, Python bindings to the lib-
BGPStream API; BGPCorsaro, a tool that uses
a modular plugin architecture to extract statistics
or aggregate data that are output at regular time
bins. These components are compared in Figure 3
by contrasting their ease of use against computa-
tional efficiency.

4. META-DATA PROVIDERS

A meta-data provider is a component that provides
access to information about the files hosted by data
repositories (the Data Providers, e.g., the Route Views
and RIPE RIS archives). In order to provide to BGP-
Stream users a unified query interface to retrieve streams
of data from different data providers, we designed a web

4

Figure 3: BGPStream record processing toolkit. Compares
record process components by contrasting their ease of use (y
axis) against computational efficiency (x axis).

service called BGPStream Broker which provides the
following functionalities:

• Provide meta-data to libBGPStream

• Load balancing

• Response windowing for overload protection

• Support for live data processing

The Broker continuously scrapes data provider repos-
itories, stores meta-data about every new file into an
SQL database, and answers HTTP queries to identify
the location of files matching a set of parameters. An
instance of the Broker is hosted at the San Diego Su-
percomputer Center at UC San Diego and is queried by
default by a libBGPStream installation, allowing BGP-
Stream to be used “out-of-the-box” on any Internet-
connected machine. However, since we release the Bro-
ker as open source, an organization can deploy their own
instance, potentially supporting custom (e.g., private)
repositories.
The Broker stores only meta-data about files avail-

able on the official repository, not the files themselves.
This approach minimizes the potential for a bottleneck
since queries to, and responses from, the Broker are
lightweight, with the actual data being served by ded-
icated data provider archives. This configuration also
makes it simple to add support for additional data providers,
as well as provide load-balancing and redundancy as the
Broker can transparently round-robin amongst multiple
mirror servers or adopt more sophisticated policies (e.g.,
requests sent from UC San Diego machines are normally
pointed to campus mirrors). The collected meta-data
includes: collector name (e.g., route-views2), data type
(i.e., rib or updates), dump time, and dump duration.
The Broker is queried via an HTTP API that returns

data in the JSON format. The API accepts as parame-
ters: lists of collectors, dump types (RIB dumps and/or
Updates dumps), and time intervals. The response con-
tains a list of meta-data describing MRT files matching
these parameters, sorted by time and type, and with
the following parameters: url, the HTTP URL of the
dump file; project, the collection project that owns

the file; collector, the name of the collector that gen-
erated the dump; type, the type of MRT dump file
(RIB, or Updates); initialTime, the nominal time that
the dump was begun; duration, the number of seconds
worth of data that the dump file contains (for RIB this
is fixed to 120 seconds).
To prevent the Broker from being overwhelmed by

large requests, each response will contain a window with
at most 2 hours worth of dump files and the client will
send additional queries to receive the subsequent win-
dows. However, when processing data in live mode,
we need to take into account the distributed and asyn-
chronous nature of BGP data collection, which causes
data from different collectors and projects to become
available to the broker at different times. Therefore, it
is possible that when queried for window Wi the bro-
ker has new data available for window W(i−n). The
client does not change the requested time interval be-
tween queries, because it is used by the Broker to check
previous windows for newly arrived data. Instead, to
obtain the next window of data from the broker, the
client repeats the original query setting two additional
parameters:

• minInitialTime, which is used to define the start
of the new window requested. The client sets it
to the maximum of (initialT ime + duration) for
each file returned in previous query results. This
effectively moves the new window to begin imme-
diately following the previous result set.

• dataAddedSince, which is set to the value of the
time attribute returned by the broker in the pre-
vious response (this is the timestamp of when the
Broker queried the database). This is used by the
broker to identify files added to the database since
the last query.2

While the Broker Data Interface is the primary data
access interface, we also provide three other interfaces
for small-scale analysis of local files: Single file, CSV
file, and SQLite. The single-file data interface allows
at most one RIB and one Updates file to be provided
directly to BGPStream, much like the legacy BGPdump
application. The CSV file and SQLite data interfaces
allow a local (private) MRT archive to be used with
BGPStream. However, the CSV data interface is not
suitable for live monitoring due to the need to lock the
file when adding records, whereas the SQLite interface
suffers degraded performance when the database holds
meta-data for a large number of files. The following
sections assume that the Broker is used as the Data
Interface.

5. LIBBGPSTREAM

2This feature may be disabled by omitting the
dataAddedSince parameter.

5

5.1 libBGPStream API

The libBGPStream user API provides the essential
functions to configure and consume a stream of BGP
measurement data and a systematic organization of the
BGP information into data structures. The API de-
fines a BGP data stream by the following parameters:
collector projects (e.g., Route Views, RIPE RIS), list
of collectors, dump types (RIB/Updates), time inter-
val start and either time interval end or live mode. A
stream can include dumps of different type and from
different collector projects.
Listing 1 shows sample code that uses the BGPStream

API to print out all the announcement and withdrawal
messages for a specific prefix as observed by VPs con-
nected to rrc00 (a RIPE RIS collector) and route-views2
(a Route Views collector) in the given time interval.
Any program using the libBGPStream C API consists
of a stream configuration phase and a stream reading
phase: first, the user defines the meta-data filters (lines
15-19), then the iteratively requests new records to pro-
cess from the stream (lines 25-42).
Listing 1 can be converted into a live monitoring pro-

cess simply by setting the end of the time interval to
-1.

5.2 Interface to Meta-Data and Data Providers

To access data and meta-data from the providers,
the library implements a “client pull” model, which (i)
enables efficient data retrieval without potential input
buffer overflow (i.e., data is only retrieved when the user
is ready to process it) and (ii) supports live mode.
To implement this model, the system iteratively alter-

nates between making meta-data queries to the Broker
(using the protocol described in Section 4), and opening
and processing the dump files that are returned. When
the Broker returns an empty dump file set, the system
signals to the user that the stream has ended. In live
mode however, the query mechanism is blocking: if the
Broker has no data available, a polling cycle will begin,
periodically re-issuing the request to the Broker until
either the response from the Broker contains new files
for processing, or libBGPStream receives an interrupt
signal.

5.3 Data structures and error checking

libBGPStream requires BGP dump files to comply
with the MRT format [6]. Dumps are composed of
MRT records, whose type is specified in their header [6].
An update message is stored in a single MRT record,
whereas a RIB dump is made of multiple MRT records.
Specifically, a collector dumps in each MRT record com-
posing a RIB dump, information related to a single pre-
fix. The BGPStream record structure contains a de-
serialized MRT record, as well as an error flag, and
additional annotations related to the originating dump

Listing 1 BGPstream prefix monitoring. An exam-
ple program that uses the BGPStream API to print out all
the announcement and withdrawal messages for a specific
prefix as observed by VPs connected to rrc00 and route-

views2. To use the BGPStream API, programs first con-
figure the stream (lines 15-19) and then iteratively request
records from the stream (lines 25-42).

int main(int argc, const char **argv) 1

{ 2

bgpstream_t *bs = bgpstream_create(); 3

bgpstream_record_t *record = bgpstream_record_create(); 4

bgpstream_elem_t *elem = NULL; 5

char buffer[1024]; 6

7

/* Define the prefix to monitor for (2403:f600::/32) */ 8

bgpstream_pfx_storage_t my_pfx; 9

my_pfx.address.version = BGPSTREAM_ADDR_VERSION_IPV6; 10

inet_pton(BGPSTREAM_ADDR_VERSION_IPV6, "2403:f600::", &my_pfx.address.ipv6); 11

my_pfx.mask_len = 32; 12

13

/* Set metadata filters */ 14

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "rrc00"); 15

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "route-views2"); 16

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_RECORD_TYPE, "updates"); 17

/* Time interval: 01:20:10 - 06:32:15 on Tue, 12 Aug 2014 UTC */ 18

bgpstream_add_interval_filter(bs, 1407806410, 1407825135); 19

20

/* Start the stream */ 21

bgpstream_start(bs); 22

23

/* Read the stream of records */ 24

while (bgpstream_get_next_record(bs, record) > 0) { 25

/* Ignore invalid records */ 26

if (record->status != BGPSTREAM_RECORD_STATUS_VALID_RECORD) { 27

continue; 28

} 29

/* Extract elems from the current record */ 30

while ((elem = bgpstream_record_get_next_elem(record)) != NULL) { 31

/* Select only announcements and withdrawals, */ 32

/* and only elems that carry information for 2403:f600::/32 */ 33

if ((elem->type == BGPSTREAM_ELEM_TYPE_ANNOUNCEMENT || 34

elem->type == BGPSTREAM_ELEM_TYPE_WITHDRAWAL) && 35

bgpstream_pfx_storage_equal(&my_pfx, &elem->prefix)) { 36

/* Print the BGP information */ 37

bgpstream_elem_snprintf(buffer, 1024, elem); 38

fprintf(stdout, "%s\n", buffer); 39

} 40

} 41

} 42

43

bgpstream_destroy(bs); 44

bgpstream_record_destroy(record); 45

return 0; 46

} 47

(Table 1).
To open MRT dumps, we use a version of libBGP-

dump [38] that we extended to: (i) read remote paths
(HTTP and HTTPS), (ii) support opening and read-
ing from multiple files in parallel from a single process,
and (iii) signal the event of a corrupted read. libBG-
PStream uses the latter to set the status field in the
BGPStream record to not-valid if the BGP dump file
cannot be opened (e.g., the website that we are trying to
access is temporarily down) or if the dump is corrupted
(e.g., the MRT length in the header is not compatible
with the size of the file). libBGPStream also marks
records that begin or end a dump file, allowing users to
collate records contained in a single RIB dump.
An MRT record (and therefore a BGPStream record)

may group elements of the same type but related to
different VPs or prefixes, such as routes to the same
prefix from different VPs (in a RIB dump record), or

6

Table 1: BGPStream record fields.

Field Type Function

project string project name (e.g., Route Views)
collector string collector name (e.g., rrc00)
type enum RIB or Updates
dump time long time the containing dump was begun
position enum first, middle, or last record of a dump
time long timestamp of the MRT record
status enum record validity flag
MRT record struct de-serialized MRT record

!"#$

%%&%% %%&'(%%&)%%%&%(%%&'% %%&*% %%&*(

!!"#$

!%&

'()*+,-

!./-

'()*+,-

!./- 01(2+342,2,35$#3!6,-7

82+(2+3-+9,*:

8;,96*((01<3-,+3$35=3!6,-7 8;,96*((01<3-,+3&35>3!6,-7

Figure 4: Intra- and inter-collector sorting in libBGP-
Stream. An example showing how RIB and Updates dumps
generated by a RIPE RIS collector (RRC01) and a Route Views
collector (RV2) are interleaved into a sorted stream. The 30 min-
utes (10 files) of BGP data are first separated into two disjoint
sets (of 6 and 4 files) based on overlapping file time intervals.
Then a multi-way merge is applied separately to the two sets,
yielding the stream depicted at the bottom.

announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures (Table 2). We do not currently expose all
the BGP attributes contained in a MRT record in the
BGPStream elem; we will implement the remaining at-
tributes in a future release.

Table 2: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, announce-
ment, withdrawal, or state message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on type

5.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping

time intervals3, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector
sorting). Since each file can be seen as an ordered queue
of records, in practice, libBGPStream performs a multi-
way merge [24].
To reduce the computational cost of sorting records,

we perform multi-way merging separately on disjoint
sets of files from the dump file queue (given the cur-
rent number of collectors in Route Views and RIS, the
dump files queue can contain up to ≈500 files). How-
ever, to ensure correct sorting, files with overlapping
time intervals need to be in the same set. This problem
is exacerbated by the fact that the duration of Updates
dumps vary between projects.
We minimize the number of files per set by iteratively

applying the following process until the queue is empty:
(1) initialize a new set with the oldest file in the queue;
(2) recursively add files with time intervals overlapping
with at least one file already in the set; (3) remove the
set of files from the queue. Such sets currently contain
up to ≈150 files4.
For each set, libBGPStream simultaneously opens all

the files in the set and iteratively (i) extracts the old-
est MRT record from such files, and (ii) uses the MRT
record to populate a BGPStream record (Figure 4).
As noted in Section 3, sorting in live mode is best-

effort and needs to be managed also by the user appli-
cation. In Section 7.2, we provide an example of such
a solution tailored to a specific live monitoring applica-
tion.

6. RECORD PROCESSING

While users can write code that directly uses the ser-
vices offered by theBGPStream C API, we distribute
BGPStream with three solutions that will require writ-
ing much less (or no) code and fit a variegate set of
applications.

6.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the
BGPStream records and elems matching a set of filters
given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command
line and scripting tools for parsing ASCII data.
BGPReader can be thought of as a drop-in replace-

ment of the analogous bgpdump tool (a command line

3We define the time interval associated with a dump file as
the time range covered by the timestamps of its records.
4We also use this set creation algorithm in the Broker to
ensure that files with overlapping intervals are returned in
a single window. Since the overall time interval of a set of
overlapping files is normally either 15 or 30 minutes, a 2
hour window will commonly contain approximately 8-16 file
sets.

7

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.
Even if an application implemented in Python using

pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).
In Listing 2, we show a practical example related to a

research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10-7
10-6
10-5
10-4
10-3
10-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability
mass function of the difference in length between the shortest AS
path observed in BGP and in the undirected graph for the same
<VP, origin> pairs. The y axis is logarithmic up to 10−1 and
then linear. Almost 70% of the paths observed do not experience
inflation (x = 0).

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in
a set of BGP RIB dumps and the corresponding short-
est path computed on a simple undirected graph built
using the AS adjacencies observed in the AS paths. The
program reads the 8am RIB dumps provided by all RIS
and Route Views collectors on August 1st 2015, and ex-
tracts the minimum AS-path length observed between a
VP and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with
no loops, where links are not directed) and we compute
the shortest path between the same <VP, origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <VP, origin> AS pairs and
shows that, in more than 30% of cases, inflation of the
path between the VP’s AS and the origin AS accounts
for 1 to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of

8

Time (UTC)

Origin ASes [y2]# Prefixes [y1]

26. Jan5. Jan 12. Jan 19. Jan
0

20

40

60

80

100

0

1

2

#
 p

re
fi
x
e

s

#
 o

rig
in

 A
S

e
s

Figure 6: Monitoring of GARR (AS137) IP space using
the pfxmonitor plugin. The green line reports the number of
unique prefixes announced over time, the blue line reports the
number of unique origin ASes that are currently announcing such
prefixes. The spikes of the origin AS timeseries identify four hi-
jack events in which AS 198596 announces part of the IP space
belonging to AS137.

records, BGPCorsaro can easily recognize the end
of a time bin even when processing data from mul-
tiple collectors.

Both the core and the plugins of BGPCorsaro are
written in C in order to support high-speed analysis of
historical or live data streams. In Section 7, we describe
a deployment of BGPCorsaro that runs 24/7 as a part
of our global Internet monitoring infrastructure.
As a sample plugin, we describe a stateful plugin that

monitors prefixes overlapping with a given set of IP ad-
dress ranges. For each BGPStream record, the plugin:
(1) selects only the RIB and Updates dump records re-
lated to prefixes that overlap with the given IP address
ranges. (2) tracks, for each <prefix, VP> pair, the ASN
that originated the route to the prefix. At the end of
each time bin, the plugin outputs the timestamp of the
current bin, the number of unique prefixes identified
and, the number of unique origin ASNs observed by all
the VPs.
We used this plugin to process data from all available

Route Views and RIPE RIS collectors for January 2015,
setting the time bin size to 5 minutes, and providing as
input to the plugin the IP ranges covered by the 78
prefixes originated by AS137 (GARR, the Italian Aca-
demic and Research Network) as observed on January
1st, 2015. Figure 6 shows a graphical representation of
the two time-series generated by the plugin: the number
of unique announced prefixes (in green) and number of
unique origin ASNs (in blue). While a small oscillation
of the number of prefixes announced is expected (as pre-
fixes can be announced as aggregated or de-aggregated),
in 4 cases the number of unique announcing ASes shifts
from 1 to 2, for about 1 hour. Through manual anal-

ysis, we found that, during these spikes, a portion of
GARR’s IP space (specifically, 7 /24 prefixes) was also
announced by TehnoGrup (AS 198596), a Romanian AS
that appears to have no relationship with GARR. The
event on January 7th is reported as an hijack attack
by Dyn Research [29], and given the similar nature of
the other three events visible in the graph (1st, 7th and
8th of January), the plugin output suggests that three
additional attacks occurred. Although this approach
cannot detect all types of hijacking attacks, it is still a
valid method to identify suspicious events and serves to
demonstrate the capabilities of BGPCorsaro.

7. MONITORING THE GLOBAL INTERNET

In this section, we describe how we use BGPStream to
develop and deploy our global BGP monitoring infras-
tructure supporting research into macroscopic Internet
events. The purpose of this section is (i) to highlight
how BGPStream enables the development of a complex
monitoring system with stringent requirements, and (ii)
to exemplify how additional challenges that arise in such
complex BGP monitoring tasks — and which we do not
address by-design in BGPStream – can be solved.
In the IODA research project [13], we constantly mon-

itor the Internet to detect and characterize phenomena
of macroscopic connectivity disruption [11] [12]. We
combine information from different types of measure-
ment, such as active probing, passive traffic analysis,
and BGP data. In the case of BGP, our objective is to
understand whether a set of prefixes (that, e.g., share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then it is very
likely that the prefix itself is undergoing an outage.
Another class of events that we are interested in de-

tecting and analyzing is BGP-based traffic hijacking
[10]. The most common hijacks manifest as two or
more distinct ASes announcing exactly the same pre-
fix, or a portion of the same address space, at the same
time. In order to detect such events, it is essential to
compare the prefix reachability information as observed
from multiple VPs. For example, in the case of a hijack
with a man-in-the-middle attack [9], the Internet can
be divided into two parts: one polluted by the illegit-
imate announcement, and one that still maintains the
legitimate path towards the destination prefix.
Therefore, in order to monitor the Internet for these

events in a timely fashion, we need to maintain a global
(i.e., for each and every VP) view of BGP reachability
information updated with fine time granularity (e.g.,
few minutes). In general, a continuously updated global

9

Figure 7: BGPStream framework deployment for live
monitoring. For each collector, we run an instance of BGP-
Corsaro with the routing-tables plugin, which maintains, in a
hash table, the observable LocRIB of all the VPs of the collector.
At the end of each time bin (e.g., 1 minute) each BGPCorsaro
pushes its hash table to the BGPViewServer that, in turn, ag-
gregates hash tables with the same timestamp into partial BGP
views and publishes them once they become complete. Such data
can be further processed by the BGPViewConsumers, which han-
dle the results of their computation to a Time Series Monitoring
system.

view can be useful in many other applicative scenarios,
such as tracking AS paths containing a particular AS,
verifying the occurrence of a route leak, spotting new
(suspicious) AS links appearing in the AS-graph, etc.
We implement our live monitoring system using the

distributed architecture sketched in Figure 7. On top
of BGPStream and BGPCorsaro, we implement three
mechanisms:

• A solution to efficiently and accurately reconstruct
the observable LocRIB of each VP (as discussed in
Section 2, the LocRIB is fully observable only from
full-feed peers; for simplicity, in this section we will
refer to the observable LocRIB generically as the
routing table of the VP): we developed a BGPCor-
saro plugin, called routing-tables, that performs
this operation at regular intervals of 1 minute (Sec-
tion 7.1). We run one BGPCorsaro instance per
collector in order to distribute the computation
across multiple CPU-cores and/or hosts (the cur-
rent prototype system runs on 2 machines, each
with 12 CPU cores). Each BGPCorsaro instance
pushes data to a system called BGPViewServer
via a message queue.

• A synchronization mechanism that — in live mode
– aligns data published with variable timing by
multiple collectors: through a synchronization buffer,
the BGPViewServer merges into BGP views the
output from BGPCorsaro instances as it becomes
available and publishes on average one BGP view
every minute (Section 7.2).

TIMESTAMP

REACH-ATTR

main cell

A/W

TIMESTAMP

REACH-ATTR

Shadow cell

VP

Prefix

Figure 8: A cell of the multi-dimensional hash table used
by the routing-table BGPCorsaro plugin to maintain the
state of a prefix for a VP. The cell carries the prefix reachabil-
ity attributes as observed by a VP and is updated by announce-
ments, withdrawals, and RIB dump records.

• Analysis modules that implement data manipula-
tion routines (e.g., for event detection or extrac-
tion of statistics to output as time series) on a BGP
view, which we call BGPViewConsumers (Section
7.3). The communication between the BGPViewServer
and the consumers follows a publish-subscribe model.

7.1 Reconstructing VPs routing tables

Since RIB dumps are currently dumped every 2 or 8
hours by Route Views and RIPE RIS, the routing-tables
plugin uses a RIB dump as a starting reference and then
relies on the Update dumps to reconstruct the evolution
of the routing table, using subsequent RIB dumps for
sanity checking and correction.
We save state and routing table information in a data

structure organized as a multi-dimensional hash table,
which provides insertion and lookup with average time
complexity of O(1) and exploits the data redundancy
of BGP routing tables from multiple VPs to reduce its
memory footprint. At a high level, this structure is
a matrix with prefixes and VPs as row and column
indexes, respectively. Each cell in the matrix (Fig-
ure 8) contains the reachability-attributes for the
prefix (e.g, the AS path), the timestamp of when the
cell was last modified by an Update dump record, a
A/W flag that indicates whether such operation was
an announcement or a withdrawal, and a shadow cell,
a similar structure except for the absence of the A/W
flag.
The shadow cell is used to store data from a new

RIB dump record before it is applied: we apply all the
records from a RIB dump only if none of them is marked
as corrupted by BGPStream. A RIB dump is uniquely
identified by the BGPStream record fields <project, col-
lector, type, dump time>, and the plugin recognizes its
last record through the position field. Each time the last
record of a (not corrupted) RIB dump is received, the
information in the shadow cells in the columns (VPs)
associated with the corresponding collector is compared
to their respective main cells and merged: if the time-
stamp in the shadow cell is more recent, then its data
is copied in the main cell (and the A/W flag is set to

10

UP
UP

RIB Application

DOWN
RIB Application

DOWN

update RIB/update

RIB/update

RIB end

RIB start

RIB end

RIB start

State Established State DownCorrupted Record

consistent routing table

unavailable routing table

12

3 4

RIB/update

Figure 9: Finite State Machine for the maintenance of a
VP’s routing table. The state chart is made of two macro states
that represent the availability or the unavailability of a consistent
routing table, each of them having two internal states. Transitions
between states are triggered by the reception of a specific BGP
record, in italics. The Finite State Machine always starts in the
down state, then it usually moves to down-RIB-Application, and,
for the vast majority of time, it oscillates between up and up-
RIB-Application.

“A”).
In Figure 9, we describe the process of maintaining a

VP routing table as a finite state machine which models
the state of the VP. When the plugin starts, the VP’s
routing table is unavailable (bottom macro-state in Fig-
ure 9) and the VP is in state down (1). When a new
RIB dump starts, the VP’s state moves to down-RIB-
application state (2). During this phase, the plugin pop-
ulates the shadow cells with the information received
from the RIB dump records and the main cells with
Update dump records. The VP’s state becomes up (3)
once the entire RIB dump is received, when in this state
the routing table is determined to be an accurate rep-
resentation of the VP’s routing table. Each time a new
announcement or withdrawal record arrives, it modifies
the main cell, whereas if a new RIB dump starts, the
VP’s state transitions to up-RIB-application (4), a state
similar to (3) but whereby the RIB dump records mod-
ify the shadow information of the cells. Once the RIB
ends the shadow and main cells are merged and the VP
transitions to state (3) again.
In addition, a corrupted record forces the state to be

down, as it is not possible to reconstruct a consistent
routing table from corrupted data; the reception of an
Updates dump record carrying a state message (gener-
ated by the collector) with the Established code5 [36]
moves the VP’s state to up, whereas the reception of
a state message carrying any other code notifies that

5Each collector maintains, for each VP, a Finite State Ma-
chine (FSM) that is representative of the status of the BGP
session between the VP and the collector itself. When the
FSM maintained by the collector for a specific VPs tran-
sitions to the Established state, it means the session has
been established and the VP will start sending BGP update
messages shortly.

the connection between the VP and the collector is not
established, and therefore, the VP is considered down6.

7.1.1 Accuracy and Performance

In order to evaluate how accurate are the VP routing
tables that the plugin maintains, we compare the in-
formation in the current and shadow cell and we count
the number of prefixes that were inactive in the cur-
rent state and yet are active in the RIB, as well as the
number of prefixes that were active in the current state
but inactive in the RIB. We find that mismatches are
caused by unresponsive VPs for which we do not have
state messages (e.g., Route Views), or cases in which
the collector does not apply all inbound updates mes-
sages before starting its RIB dump, but it applies them
afterwards, even if they have been already assigned a
timestamp. RIS error probability is 10−8, Route Views
error probability is 10−5, where error probability is de-
fined as the number of mismatching prefixes over the
sum of all VPs’ prefixes across 31 collectors (we com-
puted this probability observing one year of data).
To benchmark the routing-tables plugin, we processed

2 years of data (Aug. 2013 to Aug. 2015) generated by
31 collectors, and find that on average, a day of data is
processed in ≈110 minutes (10x faster than realtime).
We also performed benchmarking of the system in live-
mode (Aug. 19 to Sep. 19 2015): each BGPCorsaro
instance requires, on average, 5 minutes to process 5
minutes of data generated by a single collector. Of these
5 minutes, <4 seconds are spent on the actual process-
ing, the remaining time is spent waiting for new data
to be available.

7.2 Inter-collector alignment in live mode

At the end of a 1-minute time bin, each BGPCorsaro
instance pushes data from its hash table to the BG-
PViewServer. Such data is merged into a partial BGP
view corresponding to its time bin. A BGP view is con-
sidered complete when all the BGPCorsaro instances
have contributed to it.
We solve the problem of synchronizing data published

with variable timing by multiple collectors, in a live
monitoring context, by: (i) buffering partial BGP views
in a sliding window based on their time bins; (ii) slid-
ing the window each time data from a new bin arrives;
and (iii) publishing a BGP view either when all the
BGPCorsaro instances have contributed to it (complete
view) or when it expires, i.e., its time bin is no longer
covered by the window (partial view).
We dimension the length of the sliding window based

on empirical observations (over a period of 12 months)
6Route Views does not dump state messages in their Up-
dates dumps, hence it is possible for the plugin to maintain
a stale routing table for a VP that is actually down. To mit-
igate this problem, we also declare a VP down if none of its
routes are present in the latest RIB dump from its collector.

11

Time (UTC)
Visible IQ prefixes [y2] EarthLink (AS50710) [y1] ScopeSky (AS50597) [y1]

Elsuhd (AS197893) [y1] Hayat (AS57588) [y1] Hilal Al-Rafidain (AS198735) [y1]

22. Jun 6. Jul 20. Jul29. Jun 13. Jul
0

100

200

300

50

150

250

350

0

100

200

300

400

500

600

700

#
 p

re
fi
x
e

s #
 p

re
fix

e
s

Figure 10: Visible Iraqi prefixes (June, 20- July, 20 2015).
The blue color indicates the number of prefixes observable in BGP
that geolocate in Iraq (y2), the remaining metrics are stacked
and show the number of unique prefixes announced by 5 Iraqi
providers (y1). There is an observable series of outages that starts
on June 27, and ends on July 15: the outages happen at a regu-
lar frequency, for a period of about 3 hours, between 2:00am and
5:00am UTC. Such outages have been reported by [5, 15, 18], ac-
cording to the press the government ordered a complete shutdown
of Internet service in the country for three hours.

of the latency at which data providers publish dumps
and considering the trade-off with memory footprint:
when processing data from all Route Views and RIPE
RIS collectors (31), a 30 minute sliding-window buffer
requires ≈60GB of memory and causes 99% of BGP
views to be published because they are complete rather
than expired.
The BGPViewServer is a potential bottleneck in our

distributed architecture: as the number of collectors
grows, so does the amount of data that the server must
receive, process and publish every minute. Although
this is not a problem given current data volumes, we
architected the server to process each time bin inde-
pendently of others, allowing multiple server instances
to be run (potentially on separate hosts), with BGP-
Corsaro processes distributing data amongst them in a
round-robin fashion.

7.3 BGPViewConsumers

A BGPViewConsumer is an independent process that
receives BGP views from the BGPViewServer using a
publish-subscribe paradigm. We developed two BG-
PViewConsumers aimed at near-realtime detection of
per-country and per-AS outages (Figure 7). Both con-
sumers select the prefixes observed by full-feed VPs,
i.e., those that announce at least 400,000 IPv4 pre-
fixes or 10,000 IPv6 prefixes (similarly to the heuris-
tic in [28]), and continuously monitor their visibility.
Specifically, they compute the number of prefixes that

are geo-located to each country as well as the number
of prefixes announced by each single AS. Each time a
BGPViewConsumer finishes processing a BGP view, it
sends the results of its computation to a Time Series
Monitoring system, which permanently stores them, per-
forms automated detection, and enables data visualiza-
tion.
In Figure 10, we show the output of the per-country

and per-AS outages consumers over a period of 1 month,
(June, 20 to July, 20 2015), selecting only the visibility
results associated with Iraq and 5 of the biggest Iraqi
ISPs. The noticeable drops, in terms of number of vis-
ible prefixes, identify a sequence of country-wide Inter-
net outages that the government ordered in conjunction
with the ministerial preparatory exams [5, 15,18].
Similarly, we developed consumers that continuously

analyze AS paths in the BGP views, looking for sus-
picious announcements (e.g., multiple unrelated ASes
announcing overlapping portions of the address space,
or creating a new edge in the AS graph) as part of
a detection system to identify BGP hijacking events
[10]. Timely detection of suspicious BGP events en-
ables triggering on-demand data-plane measurements
(i.e., traceroutes), which are useful to correlate infor-
mation from the control and data planes and identify
potential mismatches (such as in the presence of man-
in-the-middle attacks).

8. CONCLUSIONS

BGPStream targets a broad range of applications and
users. We hope that it will enable novel analyses, de-
velopment of new tools, educational opportunities, as
well as feedback and contributions to our platform. We
also plan to make available, as Web services, global live
monitoring platforms based on the architecture briefly
discussed in Section 7.
As mentioned (Section 2), BGPStream development

is part of a collaborative effort with other researchers
and data providers, such as Route Views and BGPMon,
to coordinate progress in this space [7]. We plan to
enable new features in the near future (e.g., exposing
BGP community attributes) and support for more data
formats (e.g., JSON exports from ExaBGP [17]).

9. REFERENCES
[1] Colorado State University. BGPmon.

http://www.bgpmon.io/, 2015.
[2] S. Anisseh. Internet Topology Characterizationon on AS

Level. Master’s thesis, KTH, School of Electrical
Engineering (EES), Communication Networks, KTH
ROYAL INSTITUTE OF TECHNOLOGY, 10 2012.

[3] Apache. Apache Spark. http://spark.apache.org/, 2015.
[4] G. D. Battista, M. Rimondini, and G. Sadolfo. Monitoring

the status of MPLS VPN and VPLS based on BGP
signaling information. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages
237–244. IEEE, 2012.

[5] D. Bernard. Iraqi Internet Experiencing ’Strange’ Outages.
http://www.voanews.com/content/

12

iraqi-internet-experiencing-strange-outages/
2921135.html, 2015.

[6] L. Blunk, M. Karir, and C. Labovitz. Multi-Threaded
Routing Toolkit (MRT) Routing Information Export
Format. RFC 6396 (Proposed Standard), Oct. 2011.

[7] Claffy, Kc. The 7th Workshop on Active Internet
Measurements (AIMS7) Report. To appear in ACM
SIGCOMM Computer Communication Review (CCR),
2016.

[8] M. Cosovic, S. Obradovic, and L. Trajkovic. Performance
evaluation of BGP anomaly classifiers. In Digital
Information, Networking, and Wireless Communications
(DINWC), 2015 Third International Conference on, pages
115–120. IEEE, 2015.

[9] J. Cowie. The New Threat: Targeted Internet Traffic
Misdirection. http:
//research.dyn.com/2013/11/mitm-internet-hijacking/,
2013.

[10] A. Dainotti. HIJACKS: Detecting and Characterizing
Internet Traffic Interception based on BGP Hijacking.
http://www.caida.org/funding/hijacks/, 2014. Funding
source: NSF CNS-1423659.

[11] A. Dainotti. North Korean Internet outages observed.
http://blog.caida.org/best_available_data/2014/12/
23/north-korean-internet-outages-observed/, 2014.

[12] A. Dainotti and V. Asturiano. Under the Telescope: Time
Warner Cable Internet Outage. http:
//blog.caida.org/best_available_data/2014/08/29/
under-the-telescope-time-warner-cable-internet-outage/,
2014.

[13] A. Dainotti and K. Claffy. Detection and analysis of
large-scale Internet infrastructure outages (IODA).
http://www.caida.org/funding/ioda/, 2012. Funding
source: NSF CNS-1228994.

[14] A. Dainotti, A. King, C. Orsini, and V. Asturiano.
BGPStream: a framework for BGP data analysis. https:
//ripe70.ripe.net/presentations/55-bgpstream.pdf,
2015.

[15] Dyn Research. Iraq has had 12 govt-directed Internet
blackouts since 27-Jun. https:
//twitter.com/DynResearch/status/629393185517666305,
2015.

[16] T. Evens. OpenBMP. http://http://www.openbmp.org/,
2015.

[17] Exa-Networks. ExaBGP.
https://github.com/Exa-Networks/exabgp, 2015.

[18] S. Gallagher. Iraqi government shut down Internet to
prevent exam cheating?
http://arstechnica.com/tech-policy/2015/06/
iraqi-government-shut-down-internet-to-prevent-exam-cheating/,
2015.

[19] L. Gao and F. Wang. The extent of as path inflation by
routing policies. In Global Telecommunications Conference,
2002. GLOBECOM’02. IEEE, volume 3, pages 2180–2184.
IEEE, 2002.

[20] V. Giotsas, M. Luckie, B. Huffaker, et al. Inferring complex
as relationships. In Proceedings of the 2014 Conference on
Internet Measurement Conference, pages 23–30. ACM,
2014.

[21] X. Hu and Z. M. Mao. Accurate real-time identification of
ip prefix hijacking. In Security and Privacy, 2007. SP’07.
IEEE Symposium on, pages 3–17. IEEE, 2007.

[22] Q. Jacquemart, G. Urvoy-Keller, and E. Biersack. A
longitudinal study of bgp moas prefixes. In Traffic
Monitoring and Analysis, pages 127–138. Springer, 2014.

[23] E. Karaarslan, A. G. Perez, and C. Siaterlis. Recreating a
Large-Scale BGP Incident in a Realistic Environment. In
Information Sciences and Systems 2013, pages 349–357.
Springer, 2013.

[24] D. E. Knuth. The Art of Computer Programming, Volume
3: (2Nd Ed.) Sorting and Searching. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA,

1998.
[25] C. Labovitz, A. Ahuja, S. Venkatachary, and

R. Wattenhofer. The Impact of Internet Policy and
Topology on Delayed Routing Convergence. In Twentieth
Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), Anchorage,
Alaska, April 2001.

[26] M. Luckie. Spurious routes in public bgp data. ACM
SIGCOMM Computer Communication Review,
44(3):14–21, 2014.

[27] M. Luckie, B. Huffaker, A. Dhamdhere, V. Giotsas, and
k claffy. AS relationships, customer cones, and validation.
In IMC, Oct. 2013.

[28] A. Lutu, M. Bagnulo, J. Cid-Sueiro, and O. Maennel.
Separating wheat from chaff: Winnowing unintended
prefixes using machine learning. In INFOCOM, 2014
Proceedings IEEE, pages 943–951. IEEE, 2014.

[29] D. Madory. The Vast World of Fraudulent Routing.
http://research.dyn.com/2015/01/
vast-world-of-fraudulent-routing/, 2015.

[30] R. Mazloum, M.-O. Buob, J. Auge, B. Baynat, D. Rossi,
and T. Friedman. Violation of interdomain routing
assumptions. In Passive and Active Measurement, pages
173–182. Springer, 2014.

[31] NetworkX Developers. NetworkX.
https://networkx.github.io, 2015.

[32] U. of Oregon. Route Views Project.
http://www.routeviews.org/, 2015.

[33] C. Olschanowsky, M. L. Weikum, J. Smith,
C. Papadopoulos, and D. Massey. Delivering diverse BGP
data in real-time and through multi-format archiving. In
Technologies for Homeland Security (HST), 2013 IEEE
International Conference on, pages 698–703. IEEE, 2013.

[34] PCH. Packet Clearing House. http://www.pch.net/, 2015.
[35] Quagga. Quagga Routing Software Suite.

http://www.nongnu.org/quagga/, 2015.
[36] Y. Rekhter, T. Li, and S. Hares. A Border Gateway

Protocol 4 (BGP-4). RFC 4271 (Draft Standard), Jan.
2006. Updated by RFCs 6286, 6608, 6793, 7606, 7607.

[37] P. Richter. Classification of origin AS behavior based on
BGP update streams. Master’s thesis, Technische
Universitat Berlin, 2010. Bachelor Thesis.

[38] RIPE NCC. libBGPdump.
https://bitbucket.org/ripencc/bgpdump, 2015.

[39] RIPE NCC. Routing Information Service (RIS).
https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris, 2015.

[40] D. Schatzmann, B. Plattner, and W. Mühlbauer.
Identification of Connectivity Issues in Large Networks
using Data Plane Information.

[41] J. Scudder, R. Fernando, and S. Stuart. BGP Monitoring
Protocol. Internet-Draft draft-ietf-grow-bmp-14.txt, IETF
Secretariat, Aug. 2015.

[42] N. Spring, R. Mahajan, and T. Anderson. The causes of
path inflation. In Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’03, pages
113–124, New York, NY, USA, 2003. ACM.

[43] C. Q. Sun and P. F. Ding. Optimization Techniques of
Traceroute Measurement Based on BGP Routing Table. In
Applied Mechanics and Materials, volume 303, pages
2062–2067. Trans Tech Publ, 2013.

[44] M. Wählisch, O. Maennel, and T. C. Schmidt. Towards
detecting bgp route hijacking using the rpki. ACM
SIGCOMM Computer Communication Review,
42(4):103–104, 2012.

[45] H. Yan, R. Oliveira, K. Burnett, D. Matthews, L. Zhang,
and D. Massey. BGPmon: A real-time, scalable, extensible
monitoring system. In Conference For Homeland Security,
2009. CATCH’09. Cybersecurity Applications &
Technology, pages 212–223. IEEE, 2009.

13

