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Abstract. Looking glasses (LG) servers enhance our visibility into In-
ternet connectivity and performance by offering a set of distributed van-
tage points that allow both data plane and control plane measurements.
However, the lack of input and output standardization and limitations in
querying frequency have hindered the development of automated mea-
surement tools that would allow systematic use of LGs. In this paper
we introduce Periscope, a publicly-accessible overlay that unifies LGs
into a single platform and automates the discovery and use of LG ca-
pabilities. The system architecture combines crowd-sourced and cloud-
hosted querying mechanisms to automate and scale the available query-
ing resources. Periscope can handle large bursts of requests, with an
intelligent controller coordinating multiple concurrent user queries with-
out violating the various LG querying rate limitations. As of December
2015 Periscope has automatically extracted 1,691 LG nodes in 297 Au-
tonomous Systems. We show that Periscope significantly extends our
view of Internet topology obtained through RIPE Atlas and CAIDA’s
Ark, while the combination of traceroute and BGP measurements allows
more sophisticated measurement studies.

1 Introduction

Measurement and monitoring tools are essential to many Internet research and
engineering tasks, ranging from topology discovery to detection of security threats
and network anomalies. However, the development of such tools is challenged by
the decentralized nature of Internet infrastructure. For years, researchers have at-
tributed measurement artifacts to the limited coverage of available measurement
vantage points [14, 17], which has motivated revision of Internet measurement
practices. Large-scale distributed measurement projects either crowd-source the
hosting of traceroute vantage points [28, 7, 27, 1], or leverage cooperation from
academic networks [25]. Network operators deploy their own monitoring infras-
tructure, including Looking Glass (LG) servers, which enable remote execution
of non-privileged diagnostic tools, such as traceroute, ping or BGP commands,
through a web interface. Although the primary purpose of LGs is operational,
i.e., to debug connectivity and performance issues, LGs have also expanded re-
searchers’ cartographic and monitoring capabilities [30, 15, 20, 23, 19, 29].

LGs have two characteristics that benefit Internet research. First, LGs often
permit the execution of both traceroute and BGP queries, offering data and
control plane views from the same location. Second, in contrast to crowd-sourced



traceroute monitors that are deployed at end-hosts (e.g. home clients), LGs are
typically deployed near or at core and border routers. Despite these advantages,
the use of LGs has been sporadic due to design features that limit their use
for scientific studies that require systematic and repeatable measurement. First,
LGs do not form a unified measurement network of homogeneous probes, such
as the RIPE Atlas or Ark infrastructures. Each LG is independently owned
and operated; there is no centralized index of available LGs, nor standardized
querying or output formats. Furthermore, LG command sets change over time,
there is attrition of LG infrastructure, and because LGs are generally intended
for low-frequency (manual) querying, operators often configure query rate limits
to mitigate the risk of DoS attacks against them (or using them).

In this paper we introduce Periscope, a platform that unifies the disparate
LG interfaces into a standardized publicly-accessible querying API that sup-
ports on-demand measurements. The core of the Periscope architecture is a
central controller that coordinates queries from multiple users to prevent con-
current requests to the same LG from violating rate limits configured by that
LG. The controller dispatches LG requests to crowd-sourced and cloud-hosted
querying instances, which scale as necessary to handle large bursts of queries.
A parser transforms the LG results into a set of standardized output formats
(JSON and iPlane), and aggregates them in a repository for future analysis. A
daemon checks periodically for changes in the HTML interfaces of the LGs, and
automatically extracts and updates the LG configurations. The Periscope API
and the repository of raw data are publicly accessible to authenticated users.1

This paper describes the Periscope architecture and how each Periscope
component tackles the challenges related to LG measurements. We compare
Periscope’s querying capabilities and coverage with those of two major measure-
ment platforms (RIPE Atlas and Ark). Finally, we demonstrate the utility of
having colocated BGP and traceroute vantage points with two case studies in-
volving the validation of IP-to-AS mapping, and the geolocation of border router
interfaces.

2 Architecture

We have four design goals to mitigate four key challenges related to using de-
ployed LGs for systematic measurement:

– There is no authoritative list of active LGs. Periscope must automatically
discover, extract and validate LG specifications from various sources.

– LGs are volatile, both in terms of availability and specification. Periscope
must detect changes and automatically update LG specifications.

– There is no input/output standardization across LGs, so Periscope must
translate query requests to the format supported by each individual LG and
the output of individual LGs to a user-friendly format.

1 A user requests access through email describing the intended use and we issue a
unique security token which he/she uses to sign measurement requests.
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– LGs are intended for low-frequency querying and will block clients that ex-
ceed the configured querying rate limitations. Periscope should support mul-
tiple concurrent users without violating any LG limits.

2.1 Workflow of Periscope system

Figure 1 describes the Periscope workflow for integrating LGs into its querying
system, which is repeated every month to update the list of supported LGs.The
starting point of Periscope’s workflow is the discovery of active LG servers,
using public web sources that publish LG URLs, including PeeringDB [5] and
traceroute.org. The system can easily integrate other listings of LG servers as
they become available. Since these sources are non-authoritative, the published
URLs may be stale or unresponsive. A Web Crawler visits each link and filters
out pages that respond with HTTP errors.

To determine whether the collected URLs correspond to LGs, we attempt
to automatically detect whether the HTML source contains web forms of LG
interfaces. The automatic detection utilizes the fact that most LG deployments
are based on open-source projects that determine the structure of the expected
queries, the output format and the corresponding web interfaces [16]. We have
processed seven popular open source projects [6, 13, 3, 12, 11, 10, 2] and created
a template for each implementation, which describes the HTTP elements and



Table 1: Template for the input parameters of the Version6 LG [12].
.

Input name Input type Expected values Meaning

query radio [bgp, trace, ping] [sh ip bgp, traceroute, ping]
addr text * Query target

router select * Router identifier
protocol select [IPv4,IPv6] IP version

the HTML parameters that comprise the input and output interfaces. Table 1
shows an example of such a template.

A Web Scraper extracts the <form> elements from the HTML code of active
LGs and compares the input fields with the corresponding fields of each template
to test for matches. A match occurs when each input field in the form is described
in the template. It is not necessary for the extracted HTML form to have all
input fields in the template, because some LGs may support only a subset of
commands. For example, the template of Table 1 has three parameters that
must be implemented (query, addr, router) and one optional parameter (protocol
version) which when omitted defaults to IPv4.

When a form matches an LG template, Periscope generates a JSON config-
uration file that describes the interface of the LG, including the request HTTP
method, the input parameters and their permissible values, the mapping of in-
put combinations to network commands and the HTML elements that enclose
the reply. The JSON configuration is used by the Query Parser to translate
measurement requests to the format supported by each LG. When a form does
not match with a template, the Web Scraper searches for LG-specific keywords
(such as the name of network commands), to determine if the form contains LG
inputs. If such keywords are found, we parse the form manually and update the
LG templates as necessary to enable the automatic processing of similar forms
in the future.

The final step of the workflow is to test the correctness of the auto-generated
LG configurations. A Health Checker uses the Query Parser to issue measurement
requests and process the replies. If the output is empty or if an HTTP error code
is returned, the Health Checker will signal the error and mark that LG for manual
inspection. The Health Checker runs these tests periodically to detect changes
in LG templates, input parameters, or the response HTTP status.

2.2 Components of Periscope architecture

Figure 2 illustrates how components of Periscope’s architecture inter-operate
to satisfy measurement requests. Periscope exposes a RESTful API that can be
used to query the available LGs, request new measurements, and retrieve results.
Every request is logged in the Repository which works as a broker between the
API and the rest of the Periscope components.

An LG Client receives measurement requests submitted to the Repository
and translates them to LG queries. The LG Client executes requests through Se-



lenium [9], a web browser automation suite2 that interacts with the LGs through
a headless (without screen) browser according to the JSON configuration file
produced at the end of the Periscope workflow.

If LGs did not impose query rate limits, Periscope could transmit all mea-
surement requests directly to LGs from a single LG client. But most LGs bound
the number of requests a given client IP can submit during a given time interval.
For example, the Telephone LG [11] software logs the time and IP address of
queries in a database, and checks subsequent queries against the last query from
the same IP address; if it is less than a configured timeout (e.g., 1 minute), the
LG drops the query. If Periscope had only a single LG Client (or multiple LG
Clients behind the same public IP address), concurrent Periscope users would be
limited to single-user querying frequencies. Although Periscope aims to prevent
query rate violations, we also want to avoid very limited querying frequencies
that would make Periscope impractical. For Periscope to scale to multiple users
while being faithful to the per-user LG query rate, the system runs multiple LG
client instances, using one IP address per end user.

Our first approach of assigning different public IPs to LG clients is by crowd-
sourcing their hosting as User Agents in end-user machines. As of December
2015 we had crowd-sourced 5 Periscope LG Clients. Because the Periscope
client is software-based, we can extend coverage using cloud-hosted Virtual Ma-
chines (VMs), where each VM instance has a public IP address from the cloud
provider’s address space. Periscope uses two cloud platforms: Google Compute
Cloud (GCC) and Amazon Web Services (AWS). Each VM Instance hosts a
single LG Client. The elasticity of cloud resources allows Periscope to start VM
instances only when needed to satisfy request volume, and terminate them when
not in use. Periscope needs as many LG Clients as the maximum number of
users that concurrently query a single LG. Periscope first attempts to satisfy the
requests using the active crowd-sourced User Agents; if it needs more agents, it
launches VM instances.

A central Controller assigns measurement requests to LG Clients; it has a
global view of system resources and coordinates execution of LG queries so as to
stay within the LG query limits. The controller manages the number of cloud-
hosted instances, and every crowd-sourced instance sends a keep-alive message
every 5 minutes to inform the Controller that they can still accept measurements.
When Periscope receives a new measurement request, the Controller decides
when to dispatch it and which Client instance will execute it. The Controller’s
logic is based on two LG-specific variables that restrict the maximum number
of concurrent queries submitted to an LG3:

1. A timeout that expresses the minimum time interval between two consecutive
LG queries by the same user

2 Although most requests can be satisfied with simple HTTP requests, Selenium allows
easier handling of HTTP sessions and cookies.

3 We derived empirically conservative values for the timeout and number of slots for
each LG.



Data: A set of measurement requests M for lg, and a set of active instances I
Result: Assignment of a client instance i ∈ I ′ ⊇ I for each m ∈M

1 for m ∈ M do
/* Timestamp of next permitted user query */

2 m.ts ← lastQuery(m.user, lg) + lgTimeout(lg)
/* Queue measurements in asceding m.ts order */

3 mQueue.add(m)

4 end
5 while mQueue 6= ∅ do
6 measurement = mQueue.pop()
7 slots ← totalSlots(lg) - activeSlots(lg)

/* Wait until the next measurement can be executed */

8 while (now() < measurement.ts) || (slots < 1) do
9 wait()

10 end
11 assignedInstance ← false
12 for i ∈ I do

/* Timestamp of next permitted instance query */

13 i.ts = lastQuery(i, lg) + lgTimeout(lg)
14 if i.ts > now() + lgTimeout(lg) then
15 assignedInstance ← i
16 break

17 end

18 end
19 if assignedInstance is false then
20 assignedInstance ← newCloudInstance()
21 end

22 end

Algorithm 1: The Controller’s algorithm to assign concurrent measure-
ment requests for an LG to the appropriate Client instances.

2. A number of query slots that indicate the maximum number of queries that
Periscope will accept for an LG at any given moment.

Essentially, the timeout expresses a user-specific limit while the query slots
impose a user-wide limit. If an LG has no available query slots it cannot be
queried even if a user has not queried this LG for a period longer than the
timeout. Algorithm 1 presents the Controller’s decision process. For each query
request the Controller calculates its execution time based on the timestamp of
the last query from the same user toward the same LG, and the timeout of the
LG (line 3). If the query does not conform to either of the two rate limits, it
is queued inside the Controller (line 9) until the timeout expires and if at least
one slot becomes available. When a query exits the queue, the Controller will
choose an eligible Client instance to execute it. An instance is eligible if it has
not executed a query to the same LG for a period longer than the timeout (line
15). If no active Client instance is eligible to execute the query, the Controller
will request a new cloud-hosted instance (line 21). The required number of active
Client instances will therefore depend only on the number of concurrent queries



Fig. 3: Geographical distribution of LG VPs.
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to the same LG from different users, and not on the total number of active users
or queried LGs.

3 Analysis

3.1 Coverage and Capabilities

As of December 2015 Periscope has extracted LGs for 297 Autonomous Systems.
Periscope had automatically generated the configuration for 262 of these LGs;
35 LGs were not based on any of these initial templates and we parsed them
manually. The LG-to-ASN mapping is not always readily available. In these cases
we determined the IP address of the LG host and mapped it to an ASN using the
longest prefix matching method. To get the IP address of the router that hosts
each LG, we execute traceroutes against a machine under our control on which
we run tcpdump to capture the incoming traceroute packets and extract the
source address. We use the same technique to determine the traceroute protocol
used by each LG. We found that 266 LGs use UDP probes, and 31 LGs use ICMP
Echo Request probes. Whenever an LG supports both protocols, Periscope uses
ICMP traceroute.

Each LG may allow the execution of its commands from different vantage
points (VPs) inside the AS network, such as routers in different cities or routers
that have different purposes (e.g. peering versus transit routers). We apply the
same methodology we used for inferring the ASN of each LG, to geolocate an
LG to a city whenever the LG interface does not reveal this information. After
we determine the IP address of each vantage point, we map it to a city using
NetAcuity’s geolocation database [4]. Figure 3 shows the geographic distribution
of LG vantage points that Periscope automatically parsed: 1,691 VPs distributed
over 501 cities in 76 countries. As shown in Figure 4, 40% of the LGs have
more than one city-level vantage point and 20% of the LGs have ten or more
VPs. Figure 5 shows how many VPs support each LG command extracted by
Periscope. Over 75% of the VPs offer both data and control plane measurements;
60% of the VPs support IPv6 commands in addition to IPv4. To determine which
of the LG VPs are located in border routers, we check whether the AS of the
first hop is different from the AS of the LG host. We examine the 416 VPs that
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sourced at least 1000 traceroutes; of those, 222 had all traces going to an internal
next hop, and 194 LGs had at least one trace that went directly to an IXP hop
or a different ASN – these 194 are likely borders (Figure 6).

3.2 Comparison of topological coverage from LGs and Atlas

To compare the topology visible from our set of LGs, Atlas, and Ark VPs,
we executed a traceroute campaign from each platform toward 2,000 targets in
October 2015. At the time of our measurements, Atlas had 7,292 public probes
in 2,779 different ASes across 160 countries, while Ark hadf 107 probes in 71
ASes across 41 countries.

To get an unbiased set of targets, we first collected the IP addresses found
in the iPlane dataset [25], and executed a ZMap scan to keep only IPs that
responded to both UDP and ICMP probes. We mapped IP addresses to their
owner AS, and for each AS we randomly selected one IP address until we had
a target set of 2,000 IP addresses each in a different AS, and spanning 151
countries [4]. This small sample is not necessarily representative of the global
Internet, but it is required due to the probing rate restrictions on LG and Atlas
infrastructure. We executed measurements from all Atlas probes, more than 6
million traceroutes in 2 months, using an account with elevated probing quota.
With the default rate limit, this probing would have taken five years [8].

We compared the number of ASes, AS links and IXPs (based on a list of IXP
prefixes extracted from PeeringDB [5]) observed in each dataset. Traces from
LG vantage points to the target destinations traversed 3109 ASes, 29525 AS
links, and 167 IXPs. The traces from Atlas probes to the same targets traversed
3369 ASes, 55936 AS links, and 171 IXPs, while traces from Ark traversed 1608
ASes, 10237 AS links, and 136 IXPs. Table 2 shows the number of ASes, AS
links and IXPs per dataset, including those uniquely observed in each dataset.
Interestingly, close to half (47%) of AS links seen in the LG traces (13,969 out of
29,525) did not appear in the Atlas or Ark traces, while 26% (809 out of 3109)
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Dataset ASes AS Links IXPs

Observed Unique Observed Unique Observed Unique

LG 3109 809 29525 13969 167 16

Atlas 3369 1464 55936 40620 171 21

Ark 1608 59 10237 1625 136 8

All 4657 - 73348 - 202 -

Table 2: Number of ASes, AS links and IXPs observed in LG, Atlas, and Ark
traces. Many AS nodes and links are uniquely observed in the LG dataset.

of ASes observed in the LG traces were not in Atlas or Ark traces. Finally, 16
IXPs observed in the LG traces were not observed in Atlas or Ark traces.

We compared ASes in each dataset using the customer cone as a metric of AS
size. The customer cone is the number of ASes in the downstream path of a given
AS, namely the number of ASes that can be reached through a customer, and it
expresses the influence of an AS in the transit market [24]. Figure 7 shows the
distribution of the customer cone sizes of ASes uniquely visible in the LG, Atlas
and Ark datasets. ASes unique to each of the datasets significantly differ in cone
size. LGs tend to capture more peripheral and stub ASes, while Ark and Atlas
capture ASes with larger customer cones, due to the differences in the ASes that
host the VPs of each platform. LGs are typically hosted in large transit providers
that mainly access destination addresses through downstream paths. In contrast,
Atlas and Ark VPs tend to be in eyeball ASes that traverse upstream paths to
reach the same destinations. Comparison of topology visible from the LGs, Atlas
VPs and Ark VPs reinforces our observation that the LG infrastructure provides
a complementary view of topology compared to that visible from the existing
Atlas and Ark infrastructures.
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Fig. 9: When BGP community strings annotate the entry point of a route, com-
bining them with traceroutes can enable city-level geolocation of IP interfaces.

4 Case studies

The ability to run BGP and traceroute measurements from the same LG VPs
enables sophisticated studies that may not be feasible without combining control-
plane and data-plane routing data.

4.1 Validation of IP-to-AS mapping

Validation of IP-to-AS mapping techniques typically requires comparison of BGP
and traceroute paths obtained from VPs inside the same AS [26]. However, even
among the PoPs of one AS, intra-domain routing may induce different paths
to the same destination. Having traceroute and BGP VPs as closely located
as possible, minimizes this risk, and LGs often support both functions from
the same router. To investigate this potential, we used Periscope to study the
accuracy of IP-to-AS translation when using longest prefix match to map IP
interfaces to ASNs. We randomly selected 500 addresses from the experiments in
section 3.1, and executed concurrent traceroute and show ip bgp measurements
from 10 geographically diverse LGs. We sanitized the collected BGP paths by
removing AS loops, private and reserved ASNs, and we discarded traceroute
paths with unresponsive or unresolved interfaces. We compared the sanitized
BGP and traceroute paths toward a given destination, ignoring IXP hops and
repeated AS hops. Most path mismatches derived from traceroute missed the
last AS-level hop that appears in the corresponding BGP path (Figure 8), which
typically happens when a router interface in a customer AS has an address from
its provider’s IP range [22].

4.2 Geolocation of IP interfaces of border routers

Network operators often use the optional BGP communities attribute to tag a
BGP route with the entry point where it was received by an external peer [18].
However, BGP communities provide only geographical location but not actual
IP interfaces of the border routers. Combining BGP communities with tracer-
oute paths from the same VP allows us to associate the locations encoded in the
communities values to router interfaces, by identifying the interface that corre-
sponds to the border between two ASes (Figure 9). We applied this technique
for the AS286 LG, by executing simultaneous BGP and traceroute queries to-
ward the same targets used in section 4.1. We pinpointed 89 border interfaces,



between AS286 and 58 of its AS-level neighbours, in 18 different cities. All the
inferences agreed with DNS-based geolocation [21], although 23 interfaces had
no corresponding hostname. In contrast, only 38% of the locations derived from
the communities agreed with the NetAcuity database. Through follow-up RTT
measurements we confirmed that the errors in the NetAcuity database.

5 Discussion and Future Work

We presented Periscope, a system that provides a unified interface to thousands
of Looking Glass servers hosted by ISPs around the world. Periscope offers the
capability for users to query any LG server without having to interact with
individual LGs themselves, deal with timeouts and rate-limit issues, or develop
code to automate issuing queries and parse LG responses. We showed that the
topological view obtained from Periscope complements Atlas and Ark, serving
as a valuable addition to the set of measurement platforms. Periscope respects
the user-level limitations imposed by LGs, (a minimum time between successive
queries by the same user to a given LG, and a maximum number of concurrent
queries on the LG) and does not allow users to query at a rate faster than the LGs
allow. Persicope distributes query instances, but measurements are dispatched
through the API and a central Controller, which enforce LG rate limitations that
cannot be overridden by querying instances. Preventing abuse is important, not
only ethically but also because overwhelming the LGs would likely lead to their
decommissioning from public use.

We plan to open Periscope for use by the research and operational community.
We expect that allowing users into the system will be a (somewhat) manual
process initially, mostly to prevent users from gaming the system by registering
multiple user accounts. Beyond that we believe that the system can scale to
many users, primarily because Periscope enforces the same per-user query quotas
that the LGs themselves impose. Consequently, as long as Periscope can employ
more LG clients than the typical number of query slots on a LG, the system can
service user requests at the same rate offered by the LG. CAIDA’s Archipelago [1]
infrastructure already provides 132 active VPs that could be employed as LG
clients. Cloud-hosted and crowdsourced LG clients can augment the set of clients,
and reduce the querying load on each client. We provide documentation on how
to obtain access and use the Periscope API at http://www.caida.org/tools/

utilities/looking-glass-api/.
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