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ABSTRACT
The limitations of a BGP-inferred AS-level topology are generally
understood, but the impact of various types of missing links on var-
ious topology properties and characteristics remains an open ques-
tion. As part of CAIDA’s continuing work to improve the com-
pleteness, accuracy, and richness of the measured AS-level Internet
graphs, we developed a methodology to combine different types of
data into a comprehensive (“combined”) Internet topology.

Our methodology has three steps: deriving a base graph from
AS paths observed in publicly available BGP by breaking AS paths
into AS links; augmenting this base graph with traceroute-derived
inferred AS links (corresponding to only the first AS hop in the
traceroute, for methodological reasons); and extracting AS level
topology data from multilateral peering registration information in
European Internet eXchange Point (IXP) route server data. Specif-
ically, we examined how the introduction of 241,459 additional
peering links (a 136% increase over the BGP graph) and 144 addi-
tional nodes (0.3% increase) inferred from traceroute and Internet
eXchange (IX) data changed the topological properties of the AS-
level graph originally derived from the BGP data. Notably, only
6.8% of the ASes in the original BGP-based graph gained addi-
tional links. Of those ASes, links were primarily added to medium
degree ASes, and ASes classified as edge ASes remained largely
unaffected. For all four metrics we used to define the peripheral
part of the graphs (customer cone, coreness, eccentricity, node be-
tweenness), the change of the relative size of this part was 3%
or less between the BGP-based and the combined graphs (see Ta-
ble 6). One of the primary insights of this exercise is that for the
largest and smallest degree ASes, BGP measurements capture con-
nectivity characteristics well, but for many middle-degree ASes,
additional connectivity not visible in global BGP data repositories
is revealed by traceroute-based inferences.
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1. MOTIVATION
Topology maps of the Internet are indispensable for character-

izing this critical infrastructure and understanding its properties,
dynamics, and evolution. Most Internet mapping methods have
focused on characterizing and modeling the network structure at
the level of interconnected Autonomous Systems (ASes). AS-level
topologies (or graphs) annotated with business relationships be-
tween the ASes provide insights into technical, economic, policy,
and security needs of the growing and evolving Internet ecosystem.
As part of CAIDA’s continuing work to improve the completeness,
accuracy, and richness of the measured AS-level Internet graphs,

graphs links nodes
c/p peer total total

BGP-derived 93,539 83,852 177,391 46,177
traceroute-derived 0 7,166 7,166 2,432

IX-derived 0 264,803 264,803 1,555
combined 93,539 325,312 418,851 46,321

Table 1: Number of nodes and links derived from various data
sources. The numbers of nodes and links in the combined graph
are fewer then the sum of those values in the partial graphs due
to overlap across data sources.

we developed a methodology to combine data from three different
types of sources – BGP data, traceroute-inferred first hop AS links,
and IXP-peering information from registration databases, into a
comprehensive (“combined”) Internet topology. This document
presents this methodology for creating a combined topology graph,
as we applied it to these three different sets of macroscopic Internet
topology data gathered in 2014. We then quantitatively compare
the BGP-only graph that we previously used, to this larger graph
that leverages other sources of information. We perform this com-
parison in terms of basic graph-theoretic metrics, reflecting both
the characteristics of links and nodes in each graph as well as each
graph as a whole.

This exercise provides qualitative as well as quantitative insights
into the value of the additional data sources relative to the canoni-
cal approach to AS-level topology inference and analysis, and we
offer guidelines for how to apply these insights in practice. For
example, we found that the peering inferences from IXP data tend
to enrich connectivity between nodes with moderate degrees (i.e.,
neither well-connected hubs, nor nodes with few neighbors). This
result is consistent with the means of acquiring the data, and of
the economics of the Internet peering ecosystem. That is, the data
comes directly from IXP route server databases, which tend to re-
flect a rich mesh of multilateral peering among nodes present at
that IXP, rather than transit relationships between a small customer
and a larger provider. The larger providers tend to not peer directly
with moderately sized (or smaller) networks; instead they seek to
cultivate such networks as customers. Similarly, the smaller net-
works tend to procure transit services from large ISPs until they
are large enough themselves to negotiate peering relationships with
other moderately sized (or larger) networks.

2. METHODOLOGY
Our methodology involves the following three steps. First, we

derive a base graph from AS paths observed in publicly available
BGP data [1, 2] by breaking AS paths into AS links [3]. A ma-
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(a) The AS degree distribution roughly follows a power law in the
BGP-derived graph. The addition of 241,460 new peering links de-
rived from the traceroutes and IX data noticeably changes this be-
havior: the number of ASes with degrees between 20 and 200 de-
creased, while the number of ASes with degrees > 200 increased.
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(b) The CCDF of the AS degree distribution. The additional peer-
ing links increase the percentage of ASes with degrees more then
230 from 0.4% to 2.9% of nodes. This change is an observable
manifestation of the “flattening” of the Internet AS topology due
to an increasing number of peering connections.

Figure 1: AS degree distributions for December 2014 data set (Section 3.1.1).

jor limitation of such a BGP-derived graph stems from the fact that
any given BGP monitor sees only a small fraction of the overall
topology. One reason for this partial view is that BGP specifies that
at each hop, routers must forward only the optimal paths based on
local preferences, rather than announcing all paths. Business rela-
tionships between ASes also limit the set of forwarded paths: while
an AS’s customers will potentially see all of its links, its peers and
providers will only see its customer links. Thus, publicly available
BGP data (Route Views and RIPE RIS) provide good coverage of
customer-provider links, but are less suitable for observing peer-
ing links: a BGP-derived graph includes peering links immediately
connected to either a provider of a BGP collection point, or this
provider’s provider, but in general it substantially undersamples
peering links. To improve peering link coverage, we have examined
two additional data sources: traceroute data continuously collected
by our Ark measurement infrastructure [4] and routing relation-
ship data registered with public route servers at Internet eXchange
Points (IX) [5].

The second step of our graph-constructing methodology is to
process traceroute data collected by Ark monitors to discover previ-
ously unobserved links (i.e., those not visible in BGP) that involve
each Ark monitor’s hosting AS and this AS’s neighbors. Since
customer-provider links are generally visible in BGP, we infer these
links to be peering (i.e., not transit).

A classic problem with deriving AS links from traceroute mea-
surements is that the obvious approach – mapping IP addresses to
their origin ASes and thus converting IP links to AS links – is prone
to inferring false peering links with neighbors of actual peers. One
cause of such misinference happens when multiple ASes attach to
the same router and the router responds to a TTL-expired message
with an outbound interface address on the forwarding path rather
than the inbound interface on the receive path. Another misin-
ference risk is the missing link problem, where the only address
observed on customer Y’s router comes from provider X’s router,
and subsequent in the traceroute path we see an interface from Z,
a neighbor of Y, therefore inferring a link between X and Z where
none exists.

To mitigate this problem, we use Luckie, et al.’s methodology [6]
to collapse observed interfaces into routers and infer which AS

owns each router. The ownership findings are based on IP-to-AS
mapping derived from public BGP data (using [7]), list of peering
prefixes from PeeringDB [8], and CAIDA’s inferred business AS
relationships [3]. Then we convert the observed IP path into an
AS path using the router ownership information (rather than map-
ping each observed IP to AS directly) and add the first interdomain
AS link in the resulting path to the AS graph. Accurately inferring
subsequent interdomain links observed in traceroute requires over-
coming the natural sample bias in traceroute [9], i.e., poorer vis-
ibility into distant networks, which limits our ability to assemble
constraints. To validate this approach, we compared the inferred
peering links with observed ones for 17 Ark monitors that were co-
located with BGP monitors in October 2014. We found that 97%
of the traceroute-inferred peering links were visible in BGP. We ex-
pect a similar level of coverage for peering link inferences we made
for Ark monitors not co-located with BGP monitors.

In our third step, we examine data from 13 large European Inter-
net eXchange Points (IXPs). By juxtaposing route server data with
a mapping of BGP community values, we infer peering links that
cross those exchanges: the IX-derived or multilateral peering [10].

Here we report on our analysis and curation of BGP, tracer-
oute, and IX datasets collected in December 2014, in which we
merged all obtained links to create a new combined topology. Ta-
ble 1 shows the basic statistics of each partial and the total com-
bined AS graphs. Compared to the basic BGP-derived graph, the
combined graph grew from 46,177 ASes with 177,391 links to
46,321 ASes with 418,850 links. We assume that the BGP data
captures all customer-provider links [11], which implies that the
two graphs have the same number of customer/provider links (in
this case 93,539), while the additional data we used to augment the
graph contributes only new peering links – in this case the number
of peering links, nearly tripled increasing from 83,868 to 241,459.
Note that we have no access to traffic data so we are not in a posi-
tion to judge how important these links are to global traffic flow.

3. TOPOLOGY CHARACTERISTICS
We compared our new combined AS-level topology with a straight

BGP-based topology using a set of metrics described in [12]. Our
tool topostats [13] calculates these metrics under a strictly geo-
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(a) The coreness distribution. The leftmost column includes ASes with
coreness of 0. For small values of coreness (< 22), the distribution
follows a power law and is similar in both graphs. Due to additional
links in the combined graph, the coreness of 3.2% of ASes exceeded
the previous maximum of 76 in the BGP-derived graph, reaching the
new maximum of 409.
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(b) The average coreness as function of node degree. Coreness val-
ues are largely unchanged for ASes with degrees < 100. For larger
ASes, the coreness increased, raising the maximum value observed
in the graph from 76 to 409.

Figure 2: Coreness, i.e., the maximum k such that the node remains the k-core but is removed from the k + 1-core, for December
2014 data set (Section 3.1.3).

metric interpretation of the graphs: undirected, with policy-free
routing via the shortest paths. We subdivide our metrics into two
categories: metrics describing local connectivity in a graph (Sec-
tion 3.1) and characteristics of the global structure of the topology
(Section 3.2). Table 2 summarizes all calculated metrics for the
BGP-based and the combined graphs.

3.1 Local connectivity
This section describes the results of computation of three types

of metrics that describe local characteristics of the graph – degree,
clustering, and coreness – and their implications.

3.1.1 Degree
An AS’s degree is the number of nodes with a direct link to this

AS in the AS graph. The average AS degree is k̄ = 2m/n, where
n is the number of ASes (nodes) and m is the number of links in
the graph. Adding the 241,460 new links derived from traceroute
and IX data more than doubled the average AS degree, increasing
it from 7.7 to 18.1. The maximum observed degree increased from
4,333 to 4,484.

Figure 1(a) presents the AS degree distributions for both (the
BGP-based and combined) graphs using a log-log scale with de-
grees (the x-axis) binned into 10 bins per decade. Figure 1(b) plots
the CCDF of the AS degree distribution on a log-log scale. Com-
parison of the degree distributions for the two graphs shows that the
additional links in the combined graph do not follow a power law
distribution for ASes with degrees greater than 10. The number of
ASes with degrees less than 10 did not change, the number of ASes
with degrees between 10 and 230 decreased; and the number of
ASes with degrees greater than 230 increased from 0.5% of the to-
tal for the BGP-derived graph to 2.9% of the total for the combined
graph. These changes in the long tail of the degree distribution
represent the so-called “flattening” of the Internet AS topology:
an increasing number of peering links that has altered the previ-
ous model of hierarchical AS connectivity best approximated by a
power law of the degree distribution.

Another degree-related metric is the average neighbor connec-
tivity (ANC) knn(k) defined as the average degree of the neigh-

bors of nodes of degree k. Table 2 shows the average values of
this metric, ¯knn, that is, ANC averaged over all degree values in
the graph. For comparison between graphs of different sizes, we
normalize ANC by its maximal possible value n− 1 (reachable in
full mesh graphs). The normalized average ANC is only 9% higher
in the combined graph than in the BGP-derived one; the difference
is small because there is no noticeable increase in degrees for most
ASes (those with degree < 10, which comprise 91% and 90% of
the total for the BGP and the combined graph, respectively).

3.1.2 Clustering
Local clustering is defined as the fraction of an AS’s neighbors

connected by a direct link. A clustering value of 0 means that none
of an AS’s neighbors connect to each other, while a value of 1
means that they all interconnect.

Figure 3(a) shows the local clustering distribution for our graphs,
plotted using linear bins (0.02 wide) on the x-axis and log scale on
the y-axis. The distribution is almost uniform across the [0, 1] range
of possible local clustering values except for the large peaks at the
ends of the interval. The addition of peering links in the combined
graph increased the fraction of ASes with a local clustering value
of 1 from 18% to 22% of the total, while the fraction of ASes with a
local clustering value of 0 decreased from 59% to 55%. Figure 3(b)
shows that for both graphs, local clustering is almost constant for
ASes with degrees < 100 and generally follows a power law for
larger degrees, with exponent -0.86. High values of local cluster-
ing for medium-degree ASes (200 < k < 500) in the combined
graph reflect the fact that these ASes tend to peer with each other.
Peering links tend to increase the robustness of connectivity for
those nodes: the more interconnected are the neighbors of a given
node, the higher path diversity around the node. (Section 3.2.2 de-
scribes how the increase in available path diversity affects another
topological metric: link betweenness.)

The mean local clustering metric shown in Table 2 rose from
0.28 to 0.34. Table 2 also includes the clustering coefficient de-
fined as the percentage of 3-cycles among all connected AS triplets
in the entire graph; it increased almost 10-fold from 0.054 to 0.47.
The drastic difference in the impact of additional links on the mean
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(a) Local clustering distribution. Except for the peaks at the extreme
values of 0 and 1, ASes appear to be uniformly distributed across pos-
sible values of local clustering.
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(b) Average local clustering as function of AS degree. For small
degrees < 70, the average local clustering is nearly constant and re-
mains mostly unchanged in the combined graph. For larger degrees
the average local clustering is decreasing as power law with expo-
nent -0.86. In the combined graph, the local clustering noticeably
increased for ASes with degrees > 200.

Figure 3: Local clustering (fraction of an AS’s neighbors that are directly connected) for December 2014 data set (Section 3.1.2).

local clustering and clustering coefficient stems from the difference
in how these two metrics weight nodes. The mean averages across
all nodes, but nodes with degrees< 60 comprise about 98% of both
graphs; Figure 3(b) shows that for those lower-degree nodes, clus-
tering remained essentially the same – thus, there is only a 21%
increase in mean local clustering in the combined graph. In con-
trast, the clustering coefficient counts node triplets, and since large
degree nodes participate in many more triplets than small degree
nodes, they contribute more to this metric. Figure 3(b) shows a
large increase in clustering for nodes with degrees > 200, which
explains the large increase in the clustering coefficient.

3.1.3 Coreness
An AS graph’s k-core is the subgraph obtained from the original

graph by iteratively removing all nodes of degree k or less [12]: An
AS’s coreness κ is the maximum k such that the node remains in
the k-core but is removed from the k + 1-core.

Figure 2(a) plots the distribution of coreness in both graphs us-
ing a log-log scale with coreness values (the x-axis) binned into 10
bins per decade. Edge ASes of degree 1, as well as ASes of degree
2 connecting them to the main graph, all have coreness 0 (the left-
most column). In both graphs there are slightly more nodes with
coreness of 1 than 0. Additional links in the combined topology
caused a significant increase of its coreness: the average coreness
increased from 3.0 to 11.9, and the maximum coreness of the graph
increased from 76 to 409, with 3.2% of the ASes in the combined
graph having coreness values > 76.

Figure 2(b) shows the average coreness as function of node de-
gree. Horizontal groups of dots indicate peaks in the coreness dis-
tribution at values of 221, 255, 333, 355, and 409. These clusters
do not necessarily mean that many ASes with these degree values
exist. More likely, these peaks reflect a single AS with that degree
acting as a lynchpin for a cluster of interconnected ASes. Thus,
all ASes in this cluster have the same coreness since removal of
the lynchpin AS from the graph causes the removal of the whole
cluster.

3.2 Global structure

3.2.1 Distance
The first global metric we examine is the shortest path length

or the distance between ASes. For each AS, we find the average
distance (AD) between this AS and all other ASes in the graph.
Figure 4(a) (plotted in linear coordinates on both axes) shows that
the average distance distribution changed from a bipolar one with
maxima at 3.1 and 3.6 in the BGP-based graph to a tripolar one in
the combined graph, with maxima at 3.1, 3.5, and 4.0. Although
the combined graph has 2.4 times more links than the BGP-based
one, the overall average path length for the whole graph decreased
by only 1.9% (from 3.75 to 3.68). This insignificant decrease is
unsurprising, since most links added to the combined graph rely
on inferences from IXP data, which reflect pairs of ASes that are
already near each other, so that the new links do not create shortcuts
across the longest paths. Additionally, most paths in the graphs
are already rather short, and there is not much room for further
shortening.

Next, we calculate the average average distance (AAD) for
ASes of a given degree. Figure 4(b) (plotted in log-linear coor-
dinates) shows that for both graphs, AAD behaves as a power law
function of the node degree with exponent of −0.1 in practically
the whole range of observed degrees. Figure 4(b) also illustrates
how additional links in the combined graph affect the AAD. For
ASes with small degrees (< 40), their average distance to other
ASes in the graph decreased, because for those ASes even a few
extra links, while not increasing the degree by much, may dras-
tically influence their connectivity (for example, if an added link
connects a small degree AS to a hub of ASes well connected to
others). At the same time, the AAD increased for medium degree
ASes (40 < k < 250) while for large degree ASes the AAD dis-
tributions overlap. Medium and large degree ASes are already well
connected; therefore, their degree grows due to the addition of new
links, but the average distance remains the same.

Another distance-related graph characteristic is AS eccentricity
defined as the length of the longest shortest path for this AS. The
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(a) The average distance distribution. For each AS, we calculate the
average distance from this AS to all other ASes in the graph. The
distribution changed from bipolar to tripolar while the average path
length decreased from 3.75 down to 3.68.
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(b) We calculated the average average distance for all ASes of the
same degree. This distance metric is a power law function of node
degree with the exponent of −0.1 for both graphs.

Figure 4: Average distance between a given AS and all other ASes in the graph for December 2014 data set (Section 3.2.1).
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Figure 5: AS node eccentricity distribution for December 2014
data set. The additional links shifted the distribution toward
smaller values, with average eccentricity decreasing from 7.6
in the BGP graph to 7.3 in the combined one. The eccentricity
of AS 1299 (Telia) changed from 6 to 5. Telia is the largest
European AS, and the new links in the combined graph derived
primarily from European IXP-based peering adjacencies.

largest eccentricity value is the graph’s diameter and the smallest
eccentricity value is the graph’s radius. Both of these characteris-
tics decremented by one, from 11 and 6 in the BGP graph, to 10
and 5, respectively, in the combined one. The average eccentricity
(averaged over all ASes in the graph) decreased by 3.9%, from 7.6
to 7.3.

3.2.2 Betweenness
Betweenness is the number of shortest paths that cross a given

AS (node) or a link in the graph normalized by its maximum possi-
ble value of n(n− 1) [12]. This metric reflects how central a given
node or link is to the graph. Elements near a bottleneck or the cen-
ter of a cluster have higher betweenness values. Elements periph-
eral to the topology have low values. Most ASes have betweenness
0 (consistent with most ASes located at the edge). We calculate

node and link betweenness using a fast algorithm from [14]. Fig-
ure 6 shows the node and link betweenness distributions in log-log
scale with betweenness values (the x-axis) binned into 10 bins per
decade.

The node betweenness distributions (Figure 6(a)) for both graphs
are similar. The maximum node betweenness increased by 6.7%
(from 0.134 to 0.126), but the average node betweenness decreased
by 3%, from 6.0× 10−5 down to 5.8× 10−5.

Figure 6(b) shows that in contrast to similar node betweenness
distributions, the link betweenness distributions are notably differ-
ent. There is a substantial increase in the number of links with
small values of link betweenness in the combined graph. As the re-
sult, the average link betweenness dropped by 58%. The maximum
link betweenness also decreased, from 0.0084 to 0.0071 (by 15%).
The metric of betweenness in some sense reflects the centrality or
importance of an element to the graph. Clearly, the addition of the
new links in the combined graph decreased the relative importance
of any given link while the importance of each AS did not change.

Figure 7 shows that in the BGP-based graph, the node between-
ness is a growing power-law function of node degree with the ex-
ponent value of 1.034. Addition of a large number of peering links
in the combined graph breaks the power law of the degree distribu-
tion for some node degrees, i.e., the degree of some nodes became
much larger, but they continue to conduct the same fraction of the
shortest paths, and therefore their betweenness did not change.

4. ROUTING POLICIES AND TOPOLOGY
In calculating the topological characteristics discussed in Sec-

tion 3, we invoked strictly geometric interpretation of the graphs
assuming policy-free routing via the shortest paths. Yet routing in
the Internet is sometimes constrained by complex interdomain poli-
cies. In this section we compare various characteristics of the two
graphs that take into account the business relationships between
ASes inferred according to CAIDA’s AS Ranking algorithm [3],
and the impact of these relationships on graph properties.

4.1 Customer and Peer Cones
These two metrics, customer and peer cones, attempt to quantify

policy-compliant topological characteristics. For a given ASA, the
customer cone is the set of ASes that pay it, directly or indirectly,
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(a) The AS betweenness distributions are similar for both graphs. The
leftmost column includes ASes with betweenness of 0.
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(b) The link betweenness distribution. Most new links added in the
combined graph have low betweenness.

Figure 6: AS and link betweenness, i.e., fraction of shortest paths that include the AS or link, for December 2014 data set (Sec-
tion 3.2.2).
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Figure 7: The average AS betweenness as a function of AS de-
gree. The betweenness of most ASes did not change. For some
nodes, their degrees increased, but their betweenness remained
the same, resulting in apparently lower betweenness values for
a subset of nodes in the range of degrees between 100 and 1000
in the combined graph.

for transit: A’s customer cone contains the AS A itself, its cus-
tomers, its customers’ customers, and so on. More rigorously, we
define ASA’s customer cone to include ASA and the set of cus-
tomers where AScustomer is a customer of ASA or recursively a
customer of ASA’s customer, and ASA announces AScustomer to
a peer or provider of ASA as observed in BGP paths [3].
ASA’s peer cone is the set of ASes it can reach through its cus-

tomer links or its peers’ customer links; that is, the peer cone in-
cludes the set of ASes in ASA’s customer cone and in its peers’
customer cones. In economic terms, ASA’s peer cone is the set of
ASes that ASA can reach without paying its provider. Note that
this definition does not include the “observed in BGP paths” condi-
tion, since we have many peer links in the combined graph without
corresponding observed BGP paths.

The customer cone by definition is constrained by observed paths,
and the combined graph only includes additional AS links, but no
new paths, so the customer cones are exactly the same in both
graphs (Figure 8(a)). The customer cones tend to be rather small:
99% of ASes have a customer cone size less than 46. The peer
cone sizes (Figure 8(b)) are distributed much more widely, with
10% of ASes having cone sizes greater than 738 in the BGP graph
and greater than 918 in the combined graph. In both graphs, fewer
than 1% of ASes have peer cone size greater than 17, 000.

For both kinds of cones, the distribution of cone sizes is domi-
nated by the maximum at 1: 85% of ASes have only one AS (itself)
in its customer cone and 78% of ASes have only itself in its peer
cone (Figure 8). These ASes constitute the edge of the graph. Addi-
tional links in the combined graph caused only a miniscule change
in the edge ASes: only 0.4% of them increased the size of their
peer cones.

4.2 AS Ranking
Internet full connectivity critically depends on a small clique of

large Internet Service Providers (ISPs) (represented as ASes in the
AS topology) who base routing decisions on a complete table of
Internet routes, and do not use anybody for transit (Full Table No
Transit (FTNT) ASes). Such ISPs can reach every AS in the topol-
ogy either through one of their customers or one of their peers’ cus-
tomers. Determining the members of this clique, which essentially
forms the Internet core, is the first step in our AS relationship infer-
ence algorithm [3]. Discussions with operators have consistently
validated the clique membership.

For the December 2014 data used in this report, we used the
methodology described in [3] to estimate that there were 16 FTNT
ASes. Specifically, we found the largest clique among the top 50
ASes ranked by transit degree (defined as the number of ASes for
which the given AS was observed providing transit in BGP paths).
These ASes matched the list of the “Tier 1” ASes by Wikipedia in
2014 [15]. Although larger ISPs often use more then one AS, the
bulk of their connectivity is usually captured reasonably well by
their primary AS – the one with the largest customer cone. There-
fore, we consider the primary ASes as reasonable proxies for the
corresponding FTNT ISPs.

Some metrics discussed in Sections 3.1 and 3.2 rank ASes as ei-
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(a) Customer cone size distribution. Customer cones are calculated
based on observed paths, and the combined graph does not entail any
new paths, so the customer cones are the same in each graph.
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(b) The peer cone size distributions are similar for sizes < 15, 000.
The number of ASes with peer cone sizes > 15, 000 noticeably in-
creased in the combined graph.

Figure 8: Customer and peer cone size distributions for December 2014 data set (Section 4.1).
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(a) BGP-derived graph
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(b) combined graph

Figure 9: Ranking of the Full Table No Transit (FTNT) ASes by the different metrics. The gray area in each graph shows ranking
above 20. The eccentricity metric does not differentiate nodes, since 346 ASes had an eccentricity value of 6. Peer cone size would
appear to be a better of AS routing influence then customer cone, with two additional FTNT ASes ranked in the top 20. Coreness
and Clustering are the furthest from being able to capture a metric of AS importance to the global routing system.
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ther larger or more central. For example, transit degree and cus-
tomer/peer cone sizes characterize the relative size of ASes, in
terms of how much of the Internet address space they serve as
providers or peers. Coreness, betweenness, average distance, ec-
centricity, and clustering indicate the relative centrality or impor-

BGP
derived combined

number nodes
total 46,177 46,321

number links
customer/provider 93,539 93,539
peer 83,852 325,312
total 177,391 418,851

AS degree (number of neighbors)
average 7.7 18.1
maximum 4333 4484

average neighbor degree
average (ave.) 692.8 766.4
ave. (normalized) 0.015 0.02
max. (normalized) 0.023 0.024

clustering (number of triangles)
mean local clustering 0.28 0.34
clustering coefficient 0.05 0.47

coreness
average 2.96 11.93
maximum 76 409
minumum 0 0

distance (number of ASes)
average 3.75 3.68
standard deviation 0.85 0.83

eccentricity (number of ASes)
average 7.61 7.31
diameter 11 10
radius 6 5

node betweenness (normalized)
average 6.0x10−5 5.8x10−5

minimum 0 0
maximum 0.126 0.134

link betweenness (normalized)
average 21x10−6 9x10−6

minimum 9.4x10−10 9.3x10−10

maximum 0.0084 0.0071
customer cone size (number of ASes)

minimum 1 1
maximum 26,870 26,870
average 7.6 7.6
percentage with size 1 84.8% 84.8%
90th percentile 2 2
99th percentile 46 46

peer cone size (number of ASes)
minimum 1 1
maximum 46,403 48,203
average 937 1036
percentage with size 1 77.5% 77.1%
90th percentile 738 918
99th percentile 17,219 19,257

Table 2: Summary statistics of both graphs.

correlation between
BGP-derived and combined

eccentricity 0.7229
degree 0.7481

coreness 0.7715
clustering 0.8781
peer size 0.9660

betweenness 0.9666
distance avg. 0.9846
customer size 1.0000

Table 3: Correlation between AS ranking in the BGP-derived
and combined graphs. Rankings by eccentricity are the most
different. Rankings by peer cone size, betweenness, and aver-
age distance are rather similar.

tance of a given AS. Would these metrics rank highly those ASes
known to be at the top of the Internet hierarchy in terms of cus-
tomer/provider relationships? In other words, how well do the
graph-theoretical metrics match and approximate our understand-
ing of the Internet ecosystem?

We define an AS’s rank for a given metric as the number of ASes
with a value of this metric larger or more central than itself. This
definition means that the rank value of the “top” AS for a given
metric is 0. We rank cone size, degree, coreness, betweenness,
and clustering in decreasing order, average distance and eccentric-
ity in increasing order. Figure 9 shows how the metrics we have
discussed rank the FTNT set of ASes. The X-axis plots ASes by
decreasing size of their customer cones. Thus, the ranking by this
metric (the brown line) grows monotonically. However, the ASes
forming the clique do not necessarily have the largest customer
cone sizes: only 13 FTNT ASes are ranked in the top 16 ASes
by customer cone size; the last three (Qwest 209, Telefonica 12956
and Opentransit 5511) are ranked 17, 29, and 32 (in both graphs,
since customer cones did not change).

Ranking by peer cone size (the grey line in Figure 9) most closely
matches the FTNT clique: all clique member ASes are ranked 15 or
higher. This tight relationship is unsurprising given the relationship
between transit degree and inference of peer and customer relation-
ships. In both graphs, the largest clique formed in the top 50 ranked
ASes includes the ASes from the transit degree clique.

Ranking by betweenness (the orange line in Figure 9) is the third
best at reflecting our notion of AS importance: in both graphs, nine
of the 16 FTNT ASes are in the top 16 ranked by this metric, and
only one AS is ranked below 100.

Surprisingly, the FTNT ASes are not among the ASes with the
highest degree: this metric (the green line) places only six FTNT
ASes (the same in both graphs) in the top 16, the rest ranked be-
tween 17 and 261 in the BGP graph, and between 26 and 1435 in
the combined graph.

Coreness (the red line in Figure 9) yields a poor representation
of the Internet routing hierarchy. Although four FTNT ASes have
the highest value of coreness in the BGP-based graph (and corre-
sponding rank of 0), this metric ranks the other 12 clique members
far below 100. It performs even worse for the combined graph,
ranking all 16 FTNT ASes near 1000 or lower. This behavior de-
rives from the fact that most links in the combined graph connect
medium ASes, which increases their coreness, and decreases the
relative coreness of other nodes in the combined graph, ranking all
16 FTNT ASes at around 1000 and lower.

Distance-based metrics, i.e., the average distance from a given
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eccentricity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
customer size 8 2 0 9 3 4 1 5 15 6 29 17 8 10 13 11 32 8 2 0 9 3 4 1 5 15 6 29 17 8 10 13 11 32

peer size 6 14 11 0 1 5 10 9 2 4 6 3 6 15 8 12 13 8 7 14 1 3 5 2 4 9 11 8 6 10 16 13 12 15
betweenness 11 11 1 3 10 16 0 22 46 27 71 5 14 9 25 4 + 9 8 1 3 9 17 0 21 46 31 78 6 15 7 24 4 +
distance avg 19 6 1 2 7 17 3 16 36 19 80 28 39 82 58 76 + 28 6 1 3 9 16 2 20 70 28 + 40 57 + + 78 .

degree 28 36 1 3 17 32 0 64 85 + . 8 28 7 56 4 . 44 61 1 3 26 47 0 + . . . 11 44 10 + 4 .
coreness . 0 0 0 0 + + + . . . . . . . . . . . . . . . . . . . . . . . . . .

clustering
rank key: 0-19 0−19 20-99 20−99 + 99−199 . 201−2000 2001+

Table 4: AS Ranking. Lower ranked ASes are intuitively more central to the graph, based on the different metrics of the Full Table
No Transit (FTNT) ASes. Light gray cells have ranks between 0 and 19. Ranks with values between 0 and 99 are show as numbers.
Ranks between 100 and 199 are shown with a ’+’. Ranks between 200 and 1999 have a ’.’. Higher ranks are left blank. A metric
that captures the economic independence of an AS would ideally rank all FTNT ASes in the top 20. Although eccentricity appears to
have the best ranking, ranking all FTNT ASes below 20, an additional 346 ASes also have the same value of eccentricity, rendering it
a useless differentiator. Peer cone size appears a more economically relevant metric then customer cone, with two additional FTNT
ASes ranked in the top 20. Coreness and Cluster are the worst; the clustering metric does not rank a single AS in the top 20.

set of ASes with
metric peripheral central

ecccentricity periphery highest center lowest
betweenness outskirt low interior high

coreness fringe lowest core highest
cone size edge 1 clique member∗

∗member of largest clique in top 100 by transit degree

Table 5: Labels and rank order for different metrics use to de-
fine peripheral and central regions.

AS to all other ASes in the graph, and eccentricity, also do not
match our notion of an AS’ economic importance. Distance places
only five of the FTNT ASes in the top 16. In the BGP-derived
graph, all FTNT ASes (and 330 other ASes!) have the same (high-
est) eccentricity value of 6, and thus all are ranked 0 by this metric.
In the combined graph, the eccentricity of one AS (1299 – Telia)
became 5. (Telia is the largest European AS and the European IXPs
data contributed more than 50% of the new links to the combined
graph – see Section 2.) Therefore, in Figure 9(b) only this AS has
rank 0, while all other ASes have rank 1. We conclude that this
metric does not provide a particularly informative ranking.

Clustering is a poor measure of AS centrality/importance. FTNT
ASes have rather low clustering: this metric ranks all of them lower
than 10, 000 (the black line in Figure 9). Small clustering values
are unsurprising because these ASes at the top of the Internet hier-
archy have high degrees but their immediate neighbors tend to be
smaller than they are, and generally do not have the resources to
interconnect with each other. In contrast, the medium ASes, who
both use and provide transit, have smaller degrees, but are more
likely to connect to other medium-sized ASes as they have a strong
economic incentive to peer with each other and reduce the amount
of traffic they must pay to send via the FTNT ASes (Figure 3(b)).

To elucidate the differences in rankings between the two graphs,
we use the Pearson product-moment correlation coefficient [16]:
perfectly correlated rankings would have a coefficient of 1, and
rankings with no correlation would have a value of 0. Table 3 shows
that the largest differences are in rankings by eccentricity and de-
gree, with correlation values of 0.72 and 0.75, correspondingly.

4.3 Peripheral and central regions of the graphs
In an AS graph annotated with AS business relationships, ASes

with a customer cone size of 1 form the edge of the graph, while
the clique members, which we infer as the FTNT ASes, constitute
the most central part of the graph. Other metrics, such as coreness,
eccentricity, and node betweenness also distinguish the peripheral
and central parts of a graph.

Coreness-based definitions are the fringe and the core: the sets
of ASes with the lowest and the highest coreness. The core of the
BGP graph consisted of 151 ASes with a coreness of 76, while in
the combined graph the core grew to 422 ASes, all of whom had
a coreness of 409. At the same time, the fringe remained practi-
cally unaffected, shrinking from 15,533 ASes in the BGP graph to
15,514 ASes in the combined graph (a 0.1% decrease).

Eccentricity defines the periphery as the set of ASes with the
highest eccentricity (equal, by definition, to the graph diameter),
and the center as the set of ASes with the lowest eccentricity (the
graph radius). In the BGP graph, the center consisted of 346 ASes
with eccentricity of 6. Additional links in the combined graph in-
creased the number of ASes with an eccentricity of 6 from 346
to 1286. However, the eccentricity of just one AS, 1299 Telia,
dropped to 5, making this sole AS the formal center of the com-
bined graph. The graph’s diameter shrank from 11 to 10, but the
graph periphery expanded from 57 ASes in the BGP graph to 93
ASes in the combined one.

There is no rigorous betweenness-based definition of periphery
vs. center, but the shape of the node betweenness distribution (Fig-
ure 6(a)) suggests peripheral and central parts of the graph based on
this metric. We call those the outskirt and interior. 50% of ASes in
the BGP-based graph and 54% of ASes in the combined graph have
betweenness of 0 (the leftmost peak in Figure 6(a)) and comprise
the graph outskirt. The shape of the distribution changes for be-
tweenness values> 4×10−5, where the distribution approximates
a power law function with exponent of 0.88. This region includes
8.2% of ASes in the BGP-based graph and 10.0% of ASes in the
combined graph, representing the graph interior.

Table 6 summarizes the different views of the macroscopic struc-
ture of the two graphs. We conclude that none of the graph-theoretic
metrics we analyzed provides a meaningful approximation of the
peripheral and central graph structures that emerge from analysis
of AS business relationships.
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number of ASes (percentage of the total)
metric customer cone coreness eccentricity node betweenness

Peripheral part BGP-derived 39,142 (85%) 15,533 (34%) 57 (0.12%) 23,343 (51%)
of the graph combined 39,142 (85%) 15,514 (33%) 93 (0.20%) 25,053 (54%)
Central part BGP-derived 16 (0.035%) 151 (0.32%) 346 (0.75%) 4639 (9.99%)
of the graph combined 16 (0.035%) 422 (0.91%) 1 (0%) 4637 (10.04%)

Table 6: The peripheral and central parts of AS graphs as defined by different metrics. Depending on the metric, the results are
wildly scattered. None of the graph-theoretical metrics provides a good approximation to the partitioning based on the actual AS
relationships.

5. CONCLUSIONS
The limitations of a BGP-inferred AS-level topology are well

understood, but the impact of various types of missing links on
various topology properties and characteristics remains an open
question. We examined how the introduction of 241,459 additional
peering links (a 136% increase) and 144 additional nodes (0.3%
increase) inferred from traceroute and Internet eXchange (IX) data
changed the topological properties of the AS-level graph originally
derived from only BGP data.

Only 6.8% of the ASes in the original BGP-based graph gained
additional links. Of those ASes, links were primarily added to
medium degree ASes. For example, ASes with degrees between
20 and 200 make up only 4.5% of ASes in the original BGP-based
graph, but represent 44.2% of ASes that got at least one additional
link. The addition of new links increased the average degree from
7.6 to 18.1 and the fraction of ASes with degrees > 230 grew from
0.5% to 2.9% of the graph.

Given that the new links predominantly came from medium de-
gree nodes, it is unsurprising that the number of ASes classified as
edge ASes remained largely unaffected. For all four metrics we
used to define the peripheral part of the graphs (customer cone,
coreness, eccentricity, node betweenness), the change of the rela-
tive size of this part was 3% or less between the BGP-based and the
combined graphs (see Table 6).

The relative ranking of the ASes was also largely unchanged
across most of the metrics. For customer cone size, average dis-
tance, betweenness, and peer cone size, correlation between the
ranking in the BGP-derived and the combined graphs exceeds 0.97.
Only for degree and eccentricity is the correlation between rank-
ings less than 0.75. The Full Table No Transit (FTNT) ASes were
only ranked in the top 30 by cone sizes and eccentricity. Only clus-
tering and coreness rankings never had at least 9 FTNT’s in their
top-ranked ASes.

If we had to distill these insights into a single sentence, it would
be that for the very large degree and very small degree ASes, BGP
measurements tend to capture their connectivity well, but for many
middle-degree ASes, additional connectivity is revealed by traceroute-
based inferences that is not visible in global BGP data repositories.
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