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ABSTRACT 
Anycast has been widely adopted by today’s Internet services, in-
cluding DNS, CDN, and DDoS protection, in which the same IP 
address is announced from distributed locations and clients are di-
rected to the topologically-nearest service replica. Prior research has 
focused on various aspects of anycast, either its usage in particular 
services such as DNS or characterizing its adoption by Internet-
wide active probing methods. In this paper, we �rst explore an 
alternative approach to characterize anycast based on previously 
collected global BGP routing information. Leveraging state-of-the-
art active measurement results as near-ground-truth, our passive 
method without requiring any Internet-wide probes can achieve 
90% accuracy in detecting anycast pre�xes. More importantly, our 
approach uncovers anycast pre�xes that have been missed by prior 
datasets based on active measurements. While investigating the 
root causes of inaccuracy, we reveal that anycast routing has been 
entangled with the increased adoption of remote peering, a type 
of layer-2 interconnection where an IP network may peer at an 
IXP remotely without being physically present at the IXP. The in-
visibility of remote peering from layer-3 breaks the assumption of 
the shortest AS paths on BGP and causes an unintended impact 
on anycast performance. We identify such cases from BGP routing 
information and observe that at least 19.2% of anycast pre�xes have 
been potentially impacted by remote peering. 

CCS CONCEPTS 
• Networks → Routing protocols; Network management; Public 
Internet; 

KEYWORDS 
Internet Routing, Anycast, Peering, Remote Peering 

1. INTRODUCTION 
IP anycast is widely used in modern Content Delivery Networks 
(CDNs) [6], Domain Name System (DNS) [14, 21], and Distributed 
Denial of Service (DDoS) protections [21]. With anycast, the same 
IP address(es) is announced from multiple locations, and the Border 
Gateway Protocol (BGP) is responsible for directing clients to the 
site that is the “closest” to them on the basis of “best routing” (i.e., 
AS path), providing reduced latency and improved availability to 
end-users. 

In recent years, researchers have conducted studies to under-
stand and characterize anycast from various angles, such as its 

adoption [8] or the e�ciency in particular services like DNS [18]. 
Due to the insu�cient distinctions between unicast and anycast 
from the perspective of a routing table, the common method to 
identify anycast addresses is through active Internet-wide measure-
ments. Cicalese et al. [8, 9] studied the enumeration and city-level 
geolocation of anycast pre�xes by using latency measurements 
based on the detection of speed-of-light violations. However, the 
latency of ping may not always reliably re�ect the geographic dis-
tance of two IP addresses [4, 34]. Also, active probing requires the 
use of many vantage points to achieve the necessary coverage. 

To overcome these limitations, in this work, we explore a passive 
approach to identify and characterize IP anycast by leveraging BGP 
routing information. Speci�cally, we propose and analyze a set of 
BGP-related features to classify anycast and unicast pre�xes, and 
utilize simple classi�ers to train and predict anycast pre�xes on 
the Internet. The results demonstrate that our passive approach, 
without requiring probing, can achieve 90% accuracy. Furthermore, 
we delve into the instances misclassi�ed by our approach to �nd 
the root causes of inaccuracy. 

The two major assumptions of our approach are that (1) anycast 
pre�xes may have more upstream autonomous systems (ASes) than 
unicast pre�xes, as anycast is announced from multiple physical 
locations and peering with transit providers at di�erent places, and 
(2) the distance between such upstream ASes will be topologically 
larger than that in the scenarios of unicast pre�xes (i.e., more hops 
in AS paths), as some of them are geographically distant from others. 
However, in our false positives, we also �nd some unicast pre�xes 
falling into such a category. Through a deeper analysis, we identify 
that many of these cases involve remote peering [7, 23]. 

Remote peering allows a network to peer at an Internet exchange 
point (IXP) without a physical presence within the IXP’s infrastruc-
ture, either over a long cable or over IXP’s reseller partners that 
provide IXP layer-2 access. Remote peering enables the fast deploy-
ment of connectivity to an IXP and reduces cost. However, it also 
brings unintended impact on global routing due to its invisibility 
at layer-3, breaking the assumption that the peered autonomous 
systems are physically close and provide a short path for transport-
ing tra�c. As such, we investigate the impact of remote peering on 
anycast routing by using passive methods and validate our analysis 
through traceroute results. 

The remainder of this paper is organized as follows. We introduce 
the background of anycast and remote peering §2. We present our 
methodology to identify anycast pre�xes in §3. We investigate 
inaccuracies in our method in §4 and the impact of remote peering 
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on anycast routing in §5. We survey related work in §6 and conclude 
the paper in §7. 

2. BACKGROUND 

2.1 BGP and Anycast 
Border Gateway Protocol (BGP) [25] is the de facto inter-domain 
routing protocol, designed to exchange reachability information 
among autonomous systems on the Internet. BGP selects a best AS 
path based on various attributes (e.g., the shortest path) to reach 
the speci�c destination. 

Anycast [2] is a network addressing and routing methodology 
by which a collection of servers announce the same IP address from 
multiple geographically distributed sites. As routers usually choose 
the shortest AS path, the user requests sent to an anycast address 
are routed to the topologically nearest endpoint. As a result, anycast 
has many advantages over unicast such as reduced latency, load 
balancing, DDoS mitigation, and improved robustness. 

2.2 Remote Peering 
Peering is a relationship where two networks exchange tra�c di-
rectly rather than through a transit provider. Remote peering [7, 23] 
is a new peering type where a network peers at an IXP through 
layer-2 remote peering providers such as resellers without a physi-
cal presence in the IXP’s infrastructure. Fig. 1 shows an example of 
remote peering. Remote peering can be implemented with standard 
methods like MPLS (Multi-Protocol Label Switching) and VPNs (Vir-
tual Private Networks) in layer-2, and provide bene�ts such as low 
cost, increased connectivity, and easy management. Nevertheless, it 
also has some drawbacks such as degradation of performance, loss 
of resilience, and di�culty for layer-3 management [23]. Further-
more, due to the invisibility at layer-3, BGP routers are not aware 
of remote peering and may select as the shortest path a route where 
the actual endpoints are far from one another. 

Colocated 
Router 

Custumer 
network 

Customer 
network IXP 

Remote Local 
peering peering 

Reseller Network (PoPs) 
(Remote peering provider) 

Figure 1: Local and Remote Peering Models 

3. METHODOLOGY 
In this section, we describe the datasets and the features we pro-
pose to extract from passively-collected BGP data for the purpose 
of identifying anycast routing. Using a reference dataset as near-
ground-truth, we characterize the behavior of such BGP-related 
features in the wild. We then employ standard classi�cation meth-
ods, decision tree and random forest, to train and evaluate the 
e�ectiveness of our approach for anycast detection using our pro-
posed classi�cation features. The repository including scripts and 
data used in our study is available at [1]. 
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3.1 Datasets 
BGP Routing Information. The datasets we used to detect and 

characterize anycast pre�xes are from the RouteViews project [30] 
and RIPE’s Routing Information Service (RIS) [28]. In RouteViews 
and RIPE RIS, servers receive BGP information by peering with 
other BGP routers, often at large IXPs. We use CAIDA’s BGPStream 
[24] to collect and process the data from RouteViews and RIPE RIS. 

Anycast Dataset. We use the anycast pre�x list obtained through 
active measurements by Cicalese et al. [8] as near-ground-truth, 
which provides a conservative estimation of Internet anycast usage. 
The detection method in [8] is based on speed-of-light violations: if 
the latency measurements from multiple vantage points towards the 
same target exhibit geo-inconsistency, the target is classi�ed as any-
cast. They validated their method and scrutinized the dataset they 
make publicly available [3] using ground-truth collected through 
protocol-speci�c techniques (e.g., DNS CHAOS requests or DPI 
over HTTP). 

However, we also notice that some pre�xes strongly suggested 
as anycast by our method are not included in their dataset. We 
manually check and, through traceroute measurements, verify that 
most of them are indeed anycast pre�xes. 

3.2 BGP-related Features 
Due to the di�erent deployment patterns between anycast and 
unicast, we leverage BGP routing information to characterize any-
cast pre�xes. We propose and explore the following BGP-related 
features that could be used to identify anycast pre�xes: as an any-
cast pre�x is announced from multiple locations, some of its peer 
ASes should not be close to one another, both geographically and 
topologically. 

N - Number of upstream ASes: We count the number of unique 
upstream ASes of each pre�x. Given a pre�x announced by ASn , 
we de�ne upstream ASes as the set of ASn ’s neighbor ASes that 
are connected to ASn with either a customer-to-provider relation-
ship (i.e., ASn ’s transit providers) or a peer-to-peer relationship, 
according to CAIDA’s AS Relationships Dataset [5]. 

P1 - Percentage of upstream AS pairs whose distance is 
more than 1: We de�ne the distance between two ASes as the least 
number of AS hops between them in the observed paths. For each 
pre�x, we construct all the AS pairs between its upstream AS neigh-
bors and label the number of AS pairs as P . We then identify the 
fraction of those AS pairs whose distance is more than one, i.e., 
P1 = Pdist>1/ P . 

P2 - Percentage of upstream-AS pairs whose distance is 
more than 2: Similarly, P2 is de�ned as the fraction of those AS 
pairs with distance more than two, i.e., P2 = Pdist>2/ P . Note 
that we propose P1 and P2 based on the assumption that the up-
stream ASes of an anycast pre�x are more likely to be remote, both 
geographically and topologically. 

MD - Maximum distance between upstream ASes: MD is the 
largest distance of two upstream ASes of a pre�x. This variable 
tries to capture that upstream ASes for anycast pre�xes are more 
spread out compared to unicast. 

ML - Maximum length of AS paths: ML represents the length 
of the longest AS path observed for a pre�x. AS paths towards 
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Figure 2: Distributions of the 5 classi�cation features we propose for (1) anycast/unicast from the near-ground-truth dataset 
(§3.3) and (2) False Positives/False Negatives from our passive classi�cation (§4) 

anycast pre�xes tend to be shorter, since they are announced from 
multiple locations. 

3.3 Feature Validation 
Given the features we proposed in §3.2, we explore their potential 
for identifying anycast pre�xes by analyzing their behavior with 
respect to pre�xes labeled in the near-ground-truth dataset. 

N : Figure 2(a) shows the distributions of the number of upstream 
ASes, where we can see that the two classes of pre�xes are clearly 
distinguishable from each other. Most anycast pre�xes (90.2%) have 
more than 17 upstream ASes, while 69.5% of unicast pre�xes only 
have one or two upstream ASes. This is consistent with the intuition 
that the routes towards an anycast pre�x would be highly varied 
due to the geographically distributed deployment. 

P1: Figure 2(b) shows the distributions of P1. Obviously, P1 of 
anycast pre�xes is much larger than P1 of unicast pre�xes. Specif-
ically, P1 is greater than 0.33 for 91.9% of anycast pre�xes, and 
smaller than 0.07 for 78.1% of unicast pre�xes. A larger P1 for any-
cast pre�xes implies that the upstream ASes are relatively far from 
one another because the upstream ASes of an anycast pre�x are 
more geographically and topologically distributed. 

P2: Similar to P1, from Figure 2(c), P2 is smaller than 1% for 95.4% 
of unicast pre�xes but larger than 7% for 73.7% of anycast pre�xes. 

MD: Figure 2(d) shows the distributions of maximum distance 
between upstream ASes for anycast and unicast pre�xes. About 
83.1% of anycast’s MD is greater than 8 but 76.8% of unicast pre�xes’ 
MD is smaller than 1. 

ML: Figure 2(e) shows the distributions of the longest AS paths 
for anycast and unicast pre�xes. The ML of most anycast pre�xes 
(93.3%) is smaller than three hops, while only 18.3% of ML for 
unicast pre�xes are less than three. Anycast usually has a shorter 
maximum AS path than unicast, because anycast tra�c is typically 
routed to the closest replica. 

3.4 The Classi�er 
To further validate the e�ectiveness of identifying anycast from BGP 
paths, we use a combination of our proposed features to build simple 
(decision tree and random forest) classi�ers and train them with the 
near-ground-truth datasets by using the scikit-learn library [31] in 
Python. 

The (near-)Ground-Truth. The anycast dataset is described 
in §3.1. We use the monthly-re�ned datasets from 1/2017 to 6/2017 
and retrieve the labeled anycast pre�xes from a complete snapshot 
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Table 1: Number of Pre�xes in Classi�cation 

total training testing 

Anycast 3,907 2,609 1,298 
Unicast 728,010 487,775 240,235 
total 731,917 490,384 241,533 

Table 2: Evaluation of Classi�ers 

precision recall f1-score 

Decision Tree 90.98% 89.45% 90.21% 
Random Forest 93.94% 89.52% 91.68% 

Table 3: Percentage of Mis-Classi�ed Instances 

Anycast Unicast Overall 
Decision Tree 10.55% 0.05% 0.10% 
Random Forest 10.48% 0.03% 0.09% 

of BGP data by RIPE NCC and RouteViews on 6/1/2017. In total, 
we extract 3,907 anycast pre�xes and label the remaining 728,010 
pre�xes as unicast. 

Evaluation of the Classi�ers. We manually divide the labeled 
pre�xes into exclusive training and testing sets, where 66% of the 
dataset is used for training and the rest is used for testing. We 
use class-weights to handle unbalanced class sizes in the dataset. 
Table 1 shows the detailed breakdown. 

Table 2 lists the evaluation results of anycast classi�cation using 
respectively a random forest and a decision tree classi�er. Our re-
sults show that both classi�ers can achieve high accuracy (more 
than 90%). Table 3 lists the percentage of incorrectly classi�ed in-
stances. The fractions of incorrectly-labeled anycast pre�xes in the 
two classi�ers are 10.55% and 10.48%. For unicast, the misclassi�ca-
tion rates are as low as 0.05% and 0.03%, respectively. 

4. ANALYZING MISCLASSIFICATION 
After using BGP-related features to classify anycast and unicast 
pre�xes, we further inspect the instances of false negative (anycast 
pre�xes wrongly labeled as unicast pre�xes) and false positive (uni-
cast pre�xes wrongly labeled as anycast pre�xes) to understand 
the causes of inaccuracy. For false negatives (0.05% and 0.03% in the 
decision tree and random forest classi�ers respectively), we iden-
tify that they are mainly caused by geographically distributed au-
tonomous systems. By manually examining false positives (10.55% 
and 10.48%), we �nd that the anycast dataset we used does miss 
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Table 4: Anomaly in FN Table 5: Anomaly in FP are actually true positives, due to the incompleteness of the anycast 
Feature Value % in FN 

N 1 46.80 
P1 |N ,1 0 18.90 

P2 |N ,1,P 1,0 0 14.82 
MD  4 82.27 
ML > 3 57.85 

Feature Value % in FP 
N > 3 99.06 
P1 0.5 82.22 
P2 0.07 77.78 
MD 4 78.09 
ML  3 77.78 

some cases that are highly likely to be anycast. Also, we discover 
that the emerging remote peering introduces unintended impact 
on the anycast routing, which essentially reduces the distinction 
between anycast and unicast in our BGP-related features. 

The distributions of the studied features of false positives (FP) 
and false negatives (FN) are also presented in Figure 2, which shows 
that the feature distributions of FN are similar to those of anycast 
pre�xes and the feature distributions of FP are similar to those of 

near-ground-truth dataset (which indeed has been generated using 
a conservative approach [8]). 

However, we do �nd that several unicast pre�xes show a very 
similar deployment pattern to anycast. By mining the correspond-
ing AS paths and the IP geolocation of intermediate network nodes 
from traceroutes, we speculate that the main cause is the emerging 
remote peering deployment. We �nd that 28.61% (91 out of 318) of 
the false positives might be caused by remote peering (§5.1). For 
these 91 unicast pre�xes, the average values of N, P1, P2, MD, and 
ML are 7, 0.38, 0, 2, and 6, respectively. These numbers indicate that 
remote peering will blur the distinction of our features between 
unicast and anycast. We present a detailed study of the potential 
impact of remote peering on anycast routing in §5. 

119 

unicast pre�xes. 120 

False Negative (FN). We misclassify 344 anycast pre�xes as 
unicast. Table 4 shows that several FN features have values that 
are very di�erent from those we �nd in near-ground-truth data 
(shown in Figure 2). For example, based on our heuristics, anycast 
pre�xes should have relatively large N and P1, i.e., more upstream N
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40 

ASes and more pairs with long distance. However, in FN we observe 20 

46.80% of pre�xes with only one upstream AS (N=1). We use RIPEs-
tat Geoloc tool [27] and MaxMind’s GeoLite City Dataset [20] to 
examine the geo-locations of these upstream ASes, and �nd that all 
24 ASes appear in at least three di�erent locations, indicating that 

0 

Ow ners of Fa lse Po stive pr efixe s 

an upstream AS whose geographic presence is largely distributed 
would cause such misclassi�cations. 

Furthermore, given N , 1, there are still 18.90% of anycast pre-
�xes in FN with P1=0 (i.e., no upstream AS pair with the distance 
greater than 1). This could be because some anycast pre�xes are 
not globally distributed (i.e., regional anycast deployment [16]), 
resulting in upstream ASes that are close. Such concentration can 
contribute to abnormal values for P2, MD, and ML as well. 

False Positive (FP). For false positives, the abnormal feature 
values and percentage of the pre�xes with such values are shown 
in Table 5. Table 5 shows that the feature values of such “unicast” 
pre�xes are similar to those of anycast pre�xes. One possible reason 
is that these false positives are indeed anycast pre�xes but have 
been wrongly labeled as unicast in the near-ground-truth dataset, 
which has been actually obtained using a conservative classi�ca-
tion approach, avoiding labeling pre�xes as anycast when active 
measurements provide insu�cient evidence [8]. 

We investigate which organizations originate these pre�xes. Fig-
ure 3 shows the owners that possess at least 2 FP pre�xes. We 
observe that 87.3% of false positive pre�xes belong to IT companies 
or infrastructure providers. It is very likely that such organizations 
have deployed anycast-based services. To validate this intuition, we 
traceroute to these pre�xes from distributed vantage points from 
RIPE Atlas (in US, Brazil, Japan, Australia, South Africa, and Nether-
lands). We successfully reach 117 out of 318 FP pre�xes. We then 
leverage the IP geolocation and latency measurements to manually 
infer the types of these pre�xes based on speed-of-light violations. 
Among these 117 pre�xes, 31 of them show strong evidence of 
anycast routing. Therefore, some of the false positives we obtained 
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Figure 3: Breakdown of the Owners of False Positive Pre�xes 

5. REMOTE PEERING IN ANYCAST ROUTING 
The inspection of false positives suggests that remote peering might 
introduce unintended impact on path selection due to its invisibility 
at layer-3, where the direct (remote) peering at IXPs leads the local 
tra�c to a distant location. Such a case is especially a disservice to 
anycast when some clients are directed to a sub-optimal replica. In 
this section, we attempt to identify the anycast pre�xes that could be 
impacted by remote peering. We retrieve paths (i) towards anycast 
pre�xes and (ii) potentially containing remote peering instances, 
and we validate those paths through RIPE Atlas measurements. We 
then perform latency measurements and present speci�c case stud-
ies to illustrate the practical impact of remote peering on anycast 
routing. 

5.1 Identifying Remote Peering in Anycast 
We leverage the remote peering data from a publicly available 
dataset, the Remote IXP Peering Observatory [17], in which remote 
peering instances have been identi�ed in 26 large IXPs worldwide. 
To identify BGP paths potentially involving remote peering, �rst 
we construct AS pairs that are connected through remote peering. 
We do so by pairing ASNs that according to [17] are connected 
through remote peering at an IXP (ASrp ), with the member ASNs 
(ASmem ) obtained from the same IXP’s website: RP-AS ! (ASrp , 
ASmem ). We then search for such pairs in all AS paths towards 
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anycast pre�xes.1 If there is any such pair appearing in the AS path 
of an anycast pre�x, we label this pre�x as potentially a�ected by 
remote peering. 

The datasets and results are shown in Table 6. In all large IXPs of 
Europe (AMS-IX, CATNIX, DEC-IX Frankfurt, FranceIX and LINX), 
remote peering has the potential to a�ect more than 10% of anycast 
pre�xes. In total, there are 19.2% (751/3,907) of anycast pre�xes 
potentially impacted by remote peering. 

5.2 Path Collection 
To collect more information on anycast paths potentially a�ected 
by remote peering and further understand its practical impact, we 
conduct active measurements using the RIPE Atlas platform [26]. 
We select RIPE Atlas probes from the ASes that (i) host a BGP mon-
itor and (ii) observe anycast routing paths, and perform traceroutes 
from the probes to the �rst address of anycast pre�xes that are 
potentially a�ected by remote peering (§5.1). On average, we use 
10.3 probes to traceroute a pre�x. We parse the traceroute results 
to map each IP address to its ASN in order to obtain AS paths. Next, 
we look for remote peering AS pairs in these AS paths. If found, we 
collect and label them as paths towards pre�xes potentially a�ected 
by remote peering. 

Table 6 lists details for ASes and anycast pre�xes involved in 
remote peering at each IXP for which we have remote peering 
data [17]. In total, we collect 1,013 AS pairs that are involved in 
remote peering from 26 IXPs. We �nd that 751 anycast pre�xes 
(19.2% of total anycast pre�xes) are reached through BGP paths that 
include an RP-AS pair, and we successfully traceroute 688 of them. 
Since two ASes labeled as a RP-AS pair could also peer locally at 
other IXPs, we then use the traIXroute [22, 32] open-source tool 
to identify the IXP crossings in the traceroutes towards these 688 
pre�xes, looking for IXPs where the remote peering actually occurs. 
This way, we are able to con�rm that 293 of these anycast pre�xes 
are actually a�ected by remote peering, since both the RP-AS pairs 
and the corresponding IXPs are detected in traceroutes. 

We are not able to draw conclusions for the remaining 458 pre-
�xes (out of 751), because (1) some destination IP addresses are 
not reachable, (2) some intermediate IP addresses have no match-
ing ASNs, and (3) traIXroute [32] does not include data from all 
IXPs where the remote peering instances have been detected. Even 
though these limitations lower the validation rates, we still �nd 
a signi�cant portion of anycast pre�xes that are reached through 
paths involving remote peering, which provides a lower bound for 
this phenomenon. 

5.3 Impact of Remote Peering: Performance 
Analysis and Case Study 

Leveraging the traceroute experiments we used in §3.2, we study 
the impact of remote peering by analyzing the performance and 
route selection in real-world case studies. 

Performance Analysis and Case Study. To quantify the per-
formance impact of remote peering on anycast path selection, we 
measure the round-trip time (RTT) to each anycast pre�x from the 

1Here we use the near-ground-truth dataset (which is more conservative in labeling 
pre�xes as anycast). 
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Table 6: Datasets of Remote Peering. (#RP: the number of ASes 
involving remote peering collected from [17]; #mem-AS: the num-
ber of IXP member ASes; #RP-AS: the number of remote peering 
AS pairs collected from BGP information; #RP-Any: the number of 
anycast pre�xes with remote peering AS pairs (RP-AS); %RP-Any: 
percentage of anycast pre�xes with RP-AS in total anycast pre�xes; 
#m-pfx: the number of anycast pre�xes that include RP-AS pairs 
in BGP paths and that can be reached by traceroute; #v-pfx: the 
number of pre�xes where we validated RP-AS through traceroute.) 

IXP #RP 
#mem 
-AS 

#RP 
-AS 

#RP 
-Any 

%RP 
-Any 

#m-
pfx 

#v-
pfx 

AMS-IX 355 821 758 608 15.83 545 165 
BIX 9 65 1 1 0.026 1 0 
BIX.BG 17 79 0 0 0 - -
CABASE† 15 71 0 0 0 - -
CATNIX 9 42 7 568 14.78 568 5 
DE-CIX Fr‡ 367 826 383 520 13.53 520 182 
FICIX 4 34 3 35 0.91 35 0 
France-IX\ 118 369 147 388 10.10 326 71 
HKIX 46 288 15 85 2.21 85 38 
IIX 92 222 0 0 0 - -
INEX 11 101 0 0 0 - -
QLD-IX 4 81 2 31 0.81 31 31 
IX Man] 12 95 5 65 1.69 65 0 
LINX LON1 151 787 224 511 13.30 511 140 
LINX NoVA 9 45 5 36 0.94 36 0 
LONAP 13 200 13 83 2.16 83 60 
MIX-IT 49 241 26 237 6.17 237 43 
NIX.CZ 32 152 17 66 1.71 66 0 
SGIX 8 96 0 0 0 - -
SIX.SK 4 57 0 0 0 - -
SwissIX 48 185 78 135 3.51 147 91 
Thinx 29 183 2 9 0.23 9 0 
TPIX 33 220 0 0 0 - -
TPIX-TW 4 41 1 6 0.16 6 0 
UA-IX 38 189 0 0 0 - -
VIX 32 140 17 97 2.52 97 30 
Total� 1,075 3,377 1,013 751 19.2 688 293 
†CABASE-BUE-IX Argentina; ‡DE-CIX Frankfurt; \ France-IX Paris; ] IX Manchester 
�We remove the duplicated pre�xes. 

same measurements collected in §5.2. Among the successful tracer-
outes, we �nd that 38% (126/332) of RTTs in traceroutes towards 
anycast pre�xes potentially a�ected by remote peering are larger 
than the average RTT of pre�xes without remote peering. In these 
126 traceroute probes, the average RTT towards pre�xes potentially 
a�ected by remote peering is 119.7 ms while the average RTT of 
the other pre�xes is 84.7 ms. An average latency increase of 35.1 
ms. 

In a concrete example, we traceroute to the IP address of the 
DNS D-root from a probe located in Singapore. Ideally, we expect 
that our traceroute can reach the D-root instance in Singapore [29]. 
However, we found that the traceroute goes to Europe via AMS-IX 
and through remote peering, and reach another D-root server in 
Amsterdam, Netherlands, with a 158 ms RTT. Consequently, remote 
peering not only can a�ect performance, but it may also impact 
tra�c engineering or load balancing, potentially routing tra�c 
through to unintended locations. 

DNS Root Sever Anycast Data. We conduct an extensive study 
using a dataset of traceroutes towards anycast addresses provided 
by University of Maryland (UMD) [13], which includes traceroute 
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data from selected probes to C-, D- and K-DNS root server sites. By 
searching for IPs/ASes involving remote peering in paths towards 
such anycast addresses, we identify remote peering in D and K 
root server traces. Speci�cally, we �nd remote peering instances 
located in AMS-IX and DECIX from D-root experiments, and SIX.SK, 
FranceIX Paris, AMS-IX and Linx from K-root experiments. These 
results are consistent with our previous results in §5.2. 

Also in the UMD dataset, we �nd speci�c cases where remote 
peering a�ects anycast routing by taking tra�c on geographically-
long routes. For example, we observed that traceroutes from probes 
in Eastern Russia were routed to Netherlands and Germany, re-
spectively, through routes with remote peering, while there are 
root DNS server instances in Hong Kong and Tokyo. These cases 
con�rm the observations from Li et al. in [18], in which the same 
dataset has been used to study the ine�ciency of anycast path 
selection, and explain the reason why some users cannot reach the 
optimal DNS root sites (although the work from Li et al. does not 
mention remote peering among potential causes). 

6. RELATED WORK 
Anycast deployment and performance have been characterized and 
evaluated by di�erent active probing methods. Madory et al. [19] 
use geolocation of transit IP and geo-inconsistency to detect anycast 
pre�xes. Cicalese et al. [8–10] propose a method for enumeration 
and geolocation of anycast instances based on latency measure-
ments. Vries et al. [12] propose a method that maps anycast catch-
ments via active probes to provide better coverage. 

Anycast-based Internet Services. Fan et al. [14] combine the 
CHAOS queries with traceroutes and use new IN records to sup-
port open recursive DNS servers as vantage points to detect and 
study anycast-based DNS infrastructures. Calder et al. [6] study 
the performance of an anycast CDN and �nd that some clients are 
directed to a sub-optimal front-end. Moura et al. [21] study the 
Nov. 2015 event of Root DNS attacked by DDoS from the anycast’s 
perspective. Giordano et al. [15] perform a passive characterization 
study on anycast tra�c in CDNs and present temporal properties, 
service diversity, and deployments of anycast tra�c. 

Schmidt et al. [11] investigate the relationship between IP any-
cast and latency from four Root DNS nameservers. Their key results 
show that geographic location and connectivity have a stronger 
impact on latency than the number of sites. Li et al. [18] perform a 
study on anycast’s route selection and performance using D-root 
Server traces, and they validate that equal-length AS paths are 
the main reason for anycast latency in�ation. Wei et al. [33] study 
the service (in)stability of anycast services. They con�rm that a 
small number of users are a�ected by the instability of anycast, 
potentially caused by the load balancers on the path. 

Remote Peering. Castro et al. [7] present a systematic study of 
remote peering at IXPs using ping-based methods. They discuss 
the impact of remote peering on Internet reliability, security, and 
economies. Nomikos et al. [23] perform a comprehensive measure-
ment study of remote peering, and they achieve very high accuracy 
and coverage levels by combining RTT measurements with other 
domain-speci�c information like facility locations, IXP port capac-
ity, and private connectivity. They study the features and trends of 
remote peering, showing that remote peering may route tra�c to 

more distant destinations. Their work does not focus on anycast 
pre�xes though. 

7. CONCLUSION 
We presented a passive method to study IP anycast by utilizing BGP 
data. We proposed a set of BGP-related features (thus not based 
on active measurements) to classify anycast and unicast pre�xes. 
Extracting data from RouteViews and RIPE RIS, we evaluated the ef-
fectiveness of our proposed approach against a near-ground-truth 
dataset based on active-probing measurements [8]. The evalua-
tion results show that our approach achieves high classi�cation 
accuracy—about 90% for anycast and 99% for unicast—and is also 
able to detect anycast pre�xes incorrectly labeled as unicast in the 
near-ground-truth dataset. 

In addition, while delving into the causes of inaccuracy, we 
found indication that remote peering might have an unintended 
impact on anycast routing. We investigated this phenomenon by 
combining regular traceroutes, measurements executed with the 
traIXroute [22, 32] open-source tool, BGP data from RouteViews 
and RIPE RIS, and data from the Remote IXP Peering Observatory 
[17]. Our study showed that remote peering has the potential to 
a�ect 19.2% of the anycast pre�xes and we con�rmed via tracer-
oute measurements that around 40% of such pre�xes were indeed 
impacted by remote peering. We also revealed that remote peering 
could increase transmission latency by routing tra�c to distant 
suboptimal anycast sites. 
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