
The Archipelago
Measurement Infrastructure

Young Hyun
CAIDA

 7th CAIDA-WIDE Workshop, Nov 2006

Outline

• background
• goals
• architecture
• status

2

Background

• CAIDA’s Macroscopic Topology Project
• represents our main effort in active measurement
• more than 8 years of data collection
• running skitter on 20-25 monitors worldwide
• > 12 billion complete skitter traces (as of Nov 2006)
• CAIDA has used data for

• AS graph poster
• AS ranking
• Internet Topology Data Kit (ITDK)
• various topology analyses

3

Background
• terminology

• skitter tool
• performs parallel traceroutes

• skitter infrastructure
• distributes destination lists to monitors, performs measurements, and collects

traces
• skitter tool + other software + web server

4

Introduction

• Archipelago (Ark) is CAIDA's next generation active
measurement infrastructure

• software + hardware (machines)

• replaces skitter infrastructure
• skitter infrastructure = currently deployed software = means

• Ark is an upgrade to the means of the Macroscopic
Topology Project

• the Project will go on, and skitter-like measurements will be
main focus of Ark

5

Introduction

• Ark will have minimal impact on researchers currently
using skitter data

• same type of data (just in different file format)
• same type of global, large-scale traceroute measurements

• Ark will have greater impact on researchers wanting to do
active measurement

• allows sophisticated, dynamic, etc. destination lists for skitter-like
measurements

• better employ available resources to get more bang for buck

• beyond traceroute measurements

6

Introduction

• Ark is an infrastructure, not a tool
• concerned with system-level issues

• security, data management, software distribution, communication, scheduling, ...

• accommodates open-ended set of tools
• traceroute, ping, one-way loss, bandwidth estimation, DNS performance, router

alias resolution, ...

• could be used for passive measurement but geared toward active
• passive measurement: simple, few locations, high data volume
• active measurement: complex, highly distributed, low data volume

7

Goals

• a step toward a community-oriented measurement
infrastructure

• collaborators can run vetted measurements on security-hardened
platform

• general public can perform highly-restricted measurements
• tailored for network measurement -- not broad-scope distributed

experimental platform
• inspired by PlanetLab but not PlanetLab

8

Goals

• greater scalability and flexibility
• scalability in system management, monitor deployment,

measurement efficiency, resource utilization
• flexibility in measurement method, scheduling, data collection

• platform for measurement tool development,
experimentation, deployment

• raise level of abstraction with high-level API and scripting language
• factor out security, software distribution, data collection, etc. from

tool development
• inspired by Scriptroute but not Scriptroute

9

Architecture

• topology
• security
• communication & coordination
• software installation & execution
• data storage & management

10

Topology
• Ark is physically composed of measurement nodes

(machines) located in various networks worldwide
• measurement nodes connected to central server (at CAIDA) over

Internet, forming a logical star topology (same as skitter)

11

Architecture

• topology
• security
• communication & coordination
• software installation & execution
• data storage & management

12

Security Features

• multiple levels of trust:
• stranger (general public) -- no trust
• acquaintance -- some trust
• collaborator -- medium to high trust

• secure communication
• process isolation (sandboxing)
• rate & resource limiting
• packet filtering
• fine-grained access control of resources

13

Security Analysis

• “it is secure” has no meaning without context
• secure against what?

• who, what, and where are the threats?
• how do you mitigate each particular threat?

14

Security Analysis

• threat from 3rd party: eavesdropping & taking control
• mitigation:

• all communication over SSL
• custom root certificate; check client & server certificates

• small, well-defined set of open server ports
• base operation: only SSH--all other connections opened out from node
• ports of measurement tools; e.g., server-side of bandwidth estimation tool

• closed membership
• attacker is outsider: only machines of collaborators may join system
• contrast with open systems where first line of attack is to join system

• communication in star topology
• nodes must directly trust only the central server
• no O(n2) node-to-node authentication that can be subverted

15

Security Analysis

• threat from public user: privilege escalation & launching
attacks

• mitigation:
• execute in sandbox

• FreeBSD jail: even root access doesn't compromise system

• restricted measurement capabilities
• traceroute- and ping-like measurements only
• no TCP connections; no UDP packets (not even DNS)

• rate limiting; packet filtering by destination address
• no ability to read/write local files

• not even as root--system immutable flag

16

Security Analysis

• threat from collaborator: privilege escalation & denial of
service (DoS) of Ark itself

• mitigation:
• enforce levels of confinement: completely open to restricted
• optional sandbox (FreeBSD jail)
• optional rate limiting & packet filtering
• fine-grained access control of files & privileged resources (e.g., raw

sockets)
• filesystem resource limits
• FreeBSD jail-based CPU & memory resource limits
• partitioning of communication space for privacy and to prevent

interference
• full protection against DoS not possible

• concerned more about accidental DoS than intentional

17

Security Model

• requirements
• fine-grained authorization mechanisms for

• reading and writing files
• transferring measurement data and other files between hosts
• accessing privileged or confidential resources (e.g., raw sockets, SNMP counters)
• opening communication channels
• installing, executing, and stopping measurement software

• scalability
• ability to delegate management

• delegate authorization duties for a subset of nodes
• allow hosting organization to set site-specific maximum privileges

• e.g., nothing beyond traceroute
• finer control than coarse configuration settings

18

Security Model

• rejected approach: access control lists (ACL)
• ACL is a list of (user, rights) pairs attached to object

• e.g., [(Alice, read/write), (Bob, read)] for file /data/stuff.txt

• authorization: look up identity of principal in ACL, and grant
enumerated rights

• drawbacks:
• requires authentication to establish identity
• identity must be established across machines
• ACLs must be kept up-to-date across machines and in the face of

network failure or partitioning
• potential for inconsistent or incomplete ACLs

• that is, hard to correctly implement policy across machines

• hard to delegate authorization duties
• hard to pass along access rights to others

19

Security Model

• chosen approach: capabilities
• a capability is an unforgeable object reference combined with list of

rights
• possession of a capability is necessary and sufficient authorization
• access is granted by passing capabilities from one process to another

20

Capabilities

• advantages:
• no authentication required (no identity checks)
• no need to establish identities
• no ACL-like metadata that must be kept up-to-date
• no possibility for inconsistency or incompleteness since no metadata

exists
• can delegate authorization duties by granting authorization

capability
• can selectively grant rights to others
• can enforce Principle of Least Privilege

21

Capabilities

• potential drawbacks and difficulties:
• hard to track exactly who used a resource
• hard to enumerate all principals who can potentially access a

resource
• hard to revoke capabilities on per-principal basis
• confinement problem--hard to control willful propagation of

capabilities
• not compromise of system, just Alice intentionally giving (sharing) a capability to

Bob

• these issues may or may not
• exist in a given implementation of capabilities
• matter for a given use of capabilities

22

Capabilities

• real-world examples of capability-like objects:
• car keys

• car doesn't check your identity before starting engine
• can give car keys to valet without worrying about valet entering your house

• stickers for hybrid cars that permit driving in carpool lanes
• police officer enforces carpool lane by checking for presence of sticker--simple &

quick

• police officer does not need to check every license plate against complete list of
authorized vehicles

• auto dealer can (theoretically) give out stickers to car purchasers

• carnival tickets
• tickets can be sold in multiple booths at different locations without requiring

coordination or record keeping

• ride operators simply check for possession of ticket

23

Capabilities

• technical example: Unix file descriptor
• integer value refers to open file with particular rights (read/write) in

kernel
• can’t forge file descriptor
• necessary & sufficient: I/O system calls work on file descriptor

• pass open file descriptor from one process to another via (local)
socket to grant access

• Principle of Least Privilege
• the process receiving an open file gains no more access than the file

24

Capabilities

• capabilities implementation:
• internal capabilities:

• functional object reference that can only exist within system
• can directly dereference to access object

• file descriptors for access to files, raw sockets, and tuple space regions

• external capabilities:
• non-functional object reference that can exist outside system

• can store on disk, email to someone, etc.
• must indirectly dereference to access object

• crypto-based implementation:
• care about authenticity and integrity of capabilities
• similar in concept (digital signature) to X.509 certificates but for objects and

rights, not for principals (people)
• use keyed-hash message authentication code (HMAC; RFC 2104):

• compute: MAC = HMAC(Object ID, Rights, Key)
• capability is (Object ID, Rights, MAC)

25

Architecture

• topology
• security
• communication & coordination
• software installation & execution
• data storage & management

26

Communication & Coordination

• a measurement infrastructure is a distributed system with
many components that must work together in complex ways
toward a common goal

• ability to communicate is absolutely necessary but not
sufficient in this environment

• must go beyond communication to coordination
• coordination is about ...

• scheduling
• starting and stopping
• controlling and guiding
• satisfying dependencies and maintaining ordering
• preparing for and cleaning up
• distributing and collecting

27

Coordination Facility

• coordination is usually implemented in ad-hoc manner on
top of communication facility

• general facility for directly implementing coordination is
valuable

• abstracts away programming details
• lowers barrier to implementing remotely controllable components
• easier to understand and verify correctness of coordinated behavior
• easier to re-use or adapt coordination patterns

28

Tuple Space

• Ark provides a general coordination facility: tuple space
• tuple space is a distributed shared memory coupled with certain

operations
• basic idea of tuple space originated in the Linda coordination

language developed by David Gelernter in the 1980's
• further developed and refined over the years by many researchers

29

Tuple Space

• tuple space contains tuples
• multiset: can have any number of tuples with the same value

• tuples are an ordered collection of values of possibly mixed
type (int, float, string, ...)

• can have any number of components
• up to users to define meaning of tuples

• meaning rests solely on implicit convention
• advantage: no formal (database-like) schema required or declared

• examples:
• ("composer", "Bach", 1685, 1750)
• ("Bach", 1011, "Cello Suite No. 5 in C minor")
• ("J.A. Bach", "J.S. Bach")
• ("J.S. Bach", "C.P.E. Bach")
• ("J.S. Bach", "W.F. Bach")

30

Tuple Space

• tuple space is an associative memory
• match user-supplied template against all tuples
• template is like a tuple except it can have wildcards (*)

• (("J.S. Bach", "C.P.E. Bach"))
• (("J.S. Bach", *))

• template matches tuple if
• template and tuple have same number of components, and
• values at corresponding positions in template and tuple match:

• literal value only matches the same value
• wildcard always matches any value of any type

• examples of template matching:
• (("J.S. Bach", "C.P.E. Bach")) matches ("J.S. Bach", "C.P.E. Bach")
• (("J.S. Bach", *)) matches ("J.S. Bach", "C.P.E. Bach")
• (("J.S. Bach", *)) does not match ("J.S. Bach", 1685, 1750)
• (("J.S. Bach", *, *)) matches ("J.S. Bach", 1685, 1750)
• ((*, 1685, *)) matches ("J.S. Bach", 1685, 1750)

31

Tuple Space

• 3 fundamental tuple space operations:
• write(tuple)

• adds a tuple

• read(template)
• returns a copy of a matching tuple (tuple remains in tuple space)
• blocks until a matching tuple is added to the tuple space

• take(template)
• removes matching tuple from tuple space and returns it
• blocks until a matching tuple is added to the tuple space

32

Tuple Space

• properties beneficial for coordination:
• designed explicitly for concurrency

• burden of locking shared space on system, not on user
• automatic mutual exclusion: system guarantees that only one process can remove

a given tuple with take operation

• operations block waiting for matching tuple
• supports decoupling in time
• reader and writer processes may have different or non-overlapping lifetimes

• tuples are not addressed to an explicit recipient
• supports decoupling in space
• reader and writer processes don't need to know the identity or location or even

existence of each other

• allows dynamically changing, open-ended set of participants

33

Tuple Space Coordination Examples

• semaphores
• enforce mutual exclusion in resource access or use
• e.g., use semaphore to prevent concurrent probing into a given AS or

prefix, or use multi-valued semaphores to restrict the degree of
probing parallelism

• take(“AS701”); doit(); write(“AS701”)

• set allowed level of parallelism or concurrent access by varying
number of “semaphore” tuples seeded in tuple space:

• e.g., to allow two concurrent probes into AS701, prep the tuple space with write
(“AS701”); write(“AS701”)

• code to use semaphores remains unchanged from the case of single-valued
semaphore

34

Tuple Space Coordination Examples

• barrier synchronization
• block fast-running tasks until all tasks reach a certain point in

processing or execution, after which all tasks become unblocked
• e.g., want all measurement tasks to start at same time at beginning of each stage of

a multistage measurement

• one implementation approach: for 3 processes, A, B, & C:
• A: write(“A-done”); take(“B-done”); take(“C-done”)

• B: write(“B-done”); take(“A-done”); take(“C-done”)

• C: write(“C-done”); take(“A-done”); take(“B-done”)

• another approach: for general n processes--use counter:
• wait_for_all() {
 (x, n) = take(“working”, *);
 write(“working”, n-1);
 take(“working”, 0);
}

35

Tuple Space Coordination Examples

• distributed data structures
• lists, queues, trees, graphs, ... can be built with tuples
• data structures exist on their own independently of processes
• processes concurrently manipulate these data structures
• provides a foundation for distributed processing and problem solving
• e.g., can implement producer-consumer pattern supporting arbitrary

number of consumers and producers:

36

consume() {
 (x, n) = take(“head”, *);
 write(“head”, n+1);
 (y, val) = take(n, *);
 return val;
}

produce(val) {
 (x, n) = take(“tail”, *);
 write(“tail”, n+1);
 write(n, val);
}

data structure: (1, “Bach”);(2, “Mozart”);(“head”, 1);(“tail”, 2)

Tuple Space Coordination Examples

• Bag-of-Tasks (aka Master-Worker) scheduling
• decompose complex or repetitive jobs and parcel out pieces to

workers
• automatic distribution: no central authority that assigns work
• automatic load balancing: each worker runs at its own pace and a

slow worker doesn't cause faster workers to idle
• e.g., want to probe every routed /24, balancing load across team of

30 machines

37

worker() {
 forever {
 (x, t) = take(“task”, *);
 doit(t);
 }
}

master(tasks) {
 for t in tasks {
 write(“task”, t);
 }
}

data structure: (“task”, “192.168.0.0/24”)

Metadata in Tuple Space

• another important use: store metadata
• system and node configuration

• when node (re)starts up, it looks up its IP address in tuple space and retrieves
configuration

• supports match-making service: find node matching desired criteria (AS, prefix,
performance, measurement capabilities, etc.)

• infrastructure-wide no-probe list
• records network prefixes and host addresses that, due to complaints, should not

receive measurement traffic

38

Tuple Space Features

• tuple space implementation in Ark is far more sophisticated
than basic model described so far

• full list of features:
• multiple tuple space regions
• local & global scopes
• private one-to-one and group communication
• tuple qualities
• scalar & structured types for tuple components
• many operations: non-blocking variants, iteration, ...
• fine-grained per-region privileges

39

Tuple Space Features

• multiple disjoint tuple space regions
• aka, multiple tuple spaces
• partition communication space for privacy and to prevent

interference (cross talk)

40

Tuple Space Features

• two scopes:
• local: tuple space regions local to given node

• only processes on node can access regions

• global: tuple space regions at central server, outside all nodes
• processes from all nodes can access regions
• all inter-node communication happens in global regions; no direct node-to-node

communications allowed

41

Tuple Space Features

• communication patterns:
• private one-to-one communication
• private group communication

• that is, many-to-many communication by subset of processes

• public all-to-all communication
• special case of group communication

• private communication with Ark system services
• special group-like communication: non-member (measurement process)

communicating with a group (processes implementing a system service)

42

Tuple Space Features

• tuple qualities:
• sticky

• sticky tuple can only be removed (with take) by process that wrote it; take
becomes read for all other processes

• precious
• safeguards to prevent loss of tuple following process failure

• auto_increment, auto_decrement
• more convenient use of counter tuples

• types for tuple components:
• scalar types: integer, float, string
• structured types (experimental): lists & hashes

• hash as in Perl, a hash table

• file descriptors
• in local regions only

43

Tuple Space Features

• operations:
• write(tuple)
• read(template); take(template)
• readp(template); takep(template)

• non-blocking versions of read and take
• if a matching tuple currently exists in tuple space, then return it; else return nil

• read_all(template)
• returns all existing tuples that match template

• monitor(template)
• returns all existing tuples that match template, and returns all future tuples that

match

44

Tuple Space Features

• operations (continued):
• p = remember_peer(); forget_peer(p);

write_to(p, tuple); reply(tuple)
• send private one-to-one communication

• take_priv(template); takep_priv(template)
• receive private one-to-one communication

• forward_to(p, tuple)
• send private one-to-one communication with masquerading of sender

• pass_access_to(p, file_descriptor, tuple)
• pass arbitrary open file descriptor to another local process
• pass access to tuple space region to another local process

• one mechanism for granting group membership

• chan = new_binding(); chan = duplicate();
chan = global_commons()

• working with channels to tuple space regions

45

Tuple Space Features

• fine-grained per-region privileges:
• can read tuples
• can write tuples
• can write sticky tuples
• can take tuples
• can forward tuples
• can pass access rights (file descriptors)

46

Architecture

• topology
• security
• communication & coordination
• software installation & execution
• data storage & management

47

Software Installation & Execution

• installation & execution rights governed by capabilities
• 3 classes of deployment:

1. script submitted by general public
• single Ruby or Perl script
• runs in extremely restricted language-specific sandbox
• executed immediately; no permanent installation
• rate & resource limited
• no possible access to files
• similar to Scriptroute; want Scriptroute compatibility layer
• jobs submitted through central CGI hosted at CAIDA

2. singleton tool
3. tool bundle: extension of system

48

Software Installation & Execution

• 3 classes of deployment:
1. script submitted by general public
2. singleton tool

• single script or executable
• temporarily installed in a jail and executed once

• once doesn't mean short-lived
• can access resources with appropriate capabilities

• including input & output data files

3. tool bundle: extension of system

49

Software Installation & Execution

• 3 classes of deployment:
1. script submitted by general public
2. singleton tool
3. tool bundle: extension of system

• bundle of files: scripts, executables, shared libraries, and static data
• temporarily/permanently installed
• executed any number of times on demand
• optionally registered as a service
• optional enforced access control and resource limiting
• optionally in jail

50

Software Installation & Execution

• terminology: m-tool -- a measurement tool, referring
generically to script/tool/tool bundle

51

Software Installation & Execution

• execution vs. measurement
• execution: starting a process
• measurement: performing some task upon request
• for tools like traceroute: execution = measurement

• user executes command; command performs measurement and exits

• useful to separate measurement from execution
• execution requires a high privilege, but measurement should not
• use measurement servers to separate measurement from execution
• implementing measurement servers is easy and natural under Ark

• server loop:
1. accept request over tuple space
2. perform measurement
3. write result to tuple space or file

52

Architecture

• topology
• security
• communication & coordination
• software installation & execution
• data storage & management

53

Data Storage & Management

• goals: security and simplicity
• Principle of Least Privilege
• data integrity & confidentiality
• prefer simple file-oriented storage mechanisms

• eschew databases: could have, but want to keep deployment footprint small (on
underpowered machines) and management complexity low

• approach:
• use capabilities for fine-grained access control
• store bulk measurement data in local files and transfer files regularly

to central repository
• use tuple space for modest amounts of data

• results of immediately-executed one-off measurements
• summary statistics of long-running measurements

54

Status

• implemented Ark’s tuple space in Ruby
• implemented Ruby client binding to tuple space

• no other Ark component implemented yet or planned for
short term

• highest priority: working on conservative upgrade of
skitter infrastructure

• replace with tuple space + scamper + misc tools for now
• working on tools

• to control scamper from tuple space
• to have more dynamic destination lists

• e.g., manage teams of monitors probing every /24

• Matthew Luckie making improvements to scamper and writing tool
to “sort” scamper traces into files for download

55

Status

• scamper
• active measurement tool like skitter developed by Matthew Luckie
• primary topology tool in Ark
• better than skitter -- supports:

• IPv4 & IPv6
• TCP-, UDP-, and ICMP traceroutes
• ping
• path MTU discovery
• fine-grained multiplexing of destination lists
• programmatic control via socket
• warts format files with more information than arts++ files

• cycle start & end markers
• measurement metadata (e.g., probing parameters)

56

Status

• hardware expansion of infrastructure
• starting July 2006, CAIDA assumed operational stewardship of the

machines of the National Laboratory for Advanced Network
Research (NLANR)

• NLANR officially ended in June 30, 2006
• currently decommissioning 170 boxes of NLANR’s Active Measurement Project

(AMP)

• will transition several dozen AMP boxes to Ark infrastructure, increasing our
international coverage by 20 countries that never had skitter monitor

• will also gain IPv6 connectivity

57

Thanks!

ark-info@caida.org

58

