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# We cannot really design truly large-scale systems (e.g.,
Internet)

m We can design their building blocks (e.g., IP)

m But we cannot fully control their large-scale behavior
m Since they acquire some elements of self-organization, or self-
evolving (self-*) behavior beyond our control
# Let us study existing large-scale networks and try to use
what we learn 1n designing new ones

m Discover “nature-designed” efficient mechanisms that we can
reuse (or respect) in our future designs



Internet

# Microscopic view (“‘design’)
m [P/TCP, routing protocols
m Routers
m Per-ISP router-level topologies

# Macroscopic view (“‘non-design”)

m Global AS-level topology is a cumulative result of local, decentralized,
and rather complex interactions between AS pairs

m Surprisingly, in 1999, it was found to look completely differently than
engineers had thought
m [t is not a grid, tree, or classical random graph
m [t shares all the main features of topologies of other complex networks
m scale-free (power-law) node degree distributions (P(k) ~k 7,y € [2,3])
m strong clustering (large numbers of 3-cycles)
# The big problem i1s that “design” has now to deal with “non-
design”
m Routing protocols have to find and promptly update
paths to all destinations in the Internet
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Routing practice

# Global (DFZ) routing tables

m 300,000 prefix entries (and growing)
m 30,000 ASs (and growing)

# Routing overhead/convergence
m BGP updates

m 2 per second on average

m 7000 per second peak rate

m Convergence after a single event can take up to tens of
minutes

# Problems with design?
® Yes and no



Routing theory

# There can be no routing algorithm with the number
of messages per topology change scaling better than
linearly with the network size in the worst case

# Small-world networks are this worst case

® [s there any workaround?

®’ If topology updates/convergence is so expensive,
then may be we can route without them, i.e., without
global knowledge of the network topology?

® Let us look at the existing systems




Milgram’s experiments

# Settings: random people were asked to forward a
letter to a random 1ndividual by passing it to their
friends who they thought would maximize the
probability of letter moving “closer” to the
destination

& Results: surprisingly many letters (30%5) reached
the destination by making only ~6 hops on
average

#t Conclusion:

m People do not know the global topology of the human
acquaintance network

m But they can still find (short) paths through 1t



Navigability of complex networks

# In many (if not all) existing complex
networks, nodes communicate without any
global knowledge of network topologies

# How 1s this possible???
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Hidden metric space explanation

All nodes exist in a metric space

Distance 1n this space abstract node similarities

Network consists of links that exist with probability that
decreases with the hidden distance

More similar/close nodes are more likely to be connected
The result 1s that all nodes exist 1n “two places at once”:

m anetwork
m a hidden metric space
So that there are two distances between each pair of nodes

m the length of shortest path between them in the network
m hidden distance



Greedy routing (Kleinberg)

& To reach a destination, each node forwards
information to the one of its neighbors that
1S closest to the destination in the hidden
space



Hidden space visualized

Observable network topology
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Questions raised by the approach

# What 1s the hidden space?

# What are the node positions 1n 1t?
# What 1s the connection probability?

# How efficient is the greedy routing process?

m How often greedy-routing paths get stuck at nodes that
do not have any neighbors closer to the destination than
themselves

m How closely greedy-routing paths follow the shortest
paths in the network
# What topologies are navigable, 1.e., congruent
w.r.t. greedy routing, 1.e., make 1t efficient?




Hidden spaces are metric spaces

it Using the simplest metric space (a circle),
we show that

m the triangle inequality 1n hidden spaces

m transitivity of being similar/close
explains
m strong clustering in real networks

m transitivity of being connected

# It also explains their self-similarity



Self-similarity of complex networks
(existing knowledge)

# Self-similarity w.r.t. rescaling (of distances, time,
etc.)

m Fluctuations at phase transitions
m Fractals

# Fractal dimension
m Box covering procedures

# Complex networks
m Degree distributions are self-similar
m Some networks are self-similar w.r.t. box covering

m But no distance rescaling since these networks are
small worlds



Self-similarity of complex networks
(new perspective)

If complex networks are embedded in hidden metric
spaces, then distance rescaling in “large-world” hidden
spaces 1s equivalent to degree renormalization

# W.r.t. this degree renormalization, all of the following are
self-similar 1n real networks and modeled networks with
metric spaces underneath

m degree distribution
m degree correlations
m clustering

# Only degree distributions are self-similar in maximally
random networks with degree distribution of real or
modeled networks

# Evidence that metric spaces do underlie real networks
which are self-similar w.r.t. hidden distance rescaling



Navigability mechanisms

# More navigable networks are networks with

m more heterogeneous node degree distributions

m more hubs

m stronger clustering
m stronger influence of hidden distances on links

m stronger congruency between hidden geometries and observed
topologies
m stronger congruency between greedy and shortest paths

# Greedy routing paths follow navigable path
pattern



Navigable path pattern
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Real networks are navigable
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Hidden geometries

# What hidden geometries are maximally
congruent with the navigability mechanisms
of the observed complex network
topologies?



Hidden metric spaces are hyperbolic

# Network nodes can often be hierarchically
classified
m Community structure (social and biological networks)
m Customer-provider hierarchies (Internet)
m Hierarchies of overlapping balls/sets (all networks)

# Hierarchies are (approximately) trees
# Trees embed i1sometrically in hyperbolic spaces



Hyperbolic geometry

# Geometry in which through a point not
belonging to a line passes not one but
infinitely many lines parallel to the given
line



I Poincare disc model




essellation and tree embeddin




Tessellation art




Geometry properties

Property Euclid. [Spherical Hyperbolic
Curvature 0 1 —1

Parallel lines 1 0 o0

Triangles are  |normal |thick thin

Shape of trian-

A A

Sum of angles |7 > T <

Circle length |27 R |27sin R 27 sinh R

Disc area 2mR* /227 (1 — cos R)|2m(cosh R —1)




Main hyperbolic property

# The volume of balls and surface of spheres grow
with their radius 7 as
eOCI"
where a = (-K)”?(d-1), K is the curvature and d is
the dimension of the hyperbolic space

# The numbers of nodes 1n a tree within or at » hops
from the root grow as
br
where b 1s the tree branching factor

# The metric structures of hyperbolic spaces and
trees are essentially the same (o = In b)



Hidden space 1in our model

# Hyperbolic disc of radius R, where
N = k e®?, N is the number of nodes in the
network and x controls its average degree
m Average degree 1s fixed (by x) to the same

value (~6, like in many real networks) for all
modeled networks



Node distribution

# Number of nodes n(r) located at distance r
from the disc center 1s
n(r) ~e*”
where o = I corresponds to the uniform
node distribution in the hyperbolic plane of
curvature -/



Connection probability

i Connected each two nodes if the distance
between them 1s less than or equal to R



Average node degree at distance r
from the disc center




Average node degree at distance 7
from the disc center

# For a = I, we obtain a terse but exact expression

10°

o Simulation
—Theory

10%

k()
Yot

10"

0
105 5 ~ 10 15

# For other a:
k(r) ~ e P
where
p=aifo =<
S = % otherwise



Node degree distribution

i Is given by the combination of exponentials
to yield a power law
P(k) ~ k7
where
y=1+a/f =
21t o = %; or
2 o. + I otherwise

# The uniform node distribution in the plane
(oo = 1) yieldsy = 3



Node degree distribution in modeled
and real networks
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Degree correlations in modeled and
real networks
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Clustering in modeled and real
networks
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f a modeled network
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Successful greedy paths




Unsuccessful greedy paths




Percentage of successful paths
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Multiplicative stretch
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Robustness of greedy routing w.r.t.
network dynamics

®’ As network topology changes, the greedy
routing efficiency characteristics deteriorate
very slowly

# For example, for y < 2.5, removal of up to
10% of the links from the topology

degrades the percentage of successful path
by less than /%



In summary

® Scale-free networks are congruent w.r.t.
hidden hyperbolic geometries

# This congruency is robust w.r.t. network
dynamics/evolution



Conclusion

# Hidden hyperbolic metric spaces explain,
simultaneously, the two main topological
characteristics of complex networks

m scale-free degree distributions
m strong clustering

# Greedy routing mechanism in these settings may
offer virtually infinitely scalable routing
algorithms for future communication networks

m Zero communication costs (no routing updates!)
m Constant routing table sizes (coordinates in the space)
m No stretch (all paths are shortest, stretch=1)



Problems to solve

# Find the exact structure of hidden metric
spaces underlying real networks

# Find the coordinates of nodes in them



