Evolution of the Internet AS-Level Ecosystem

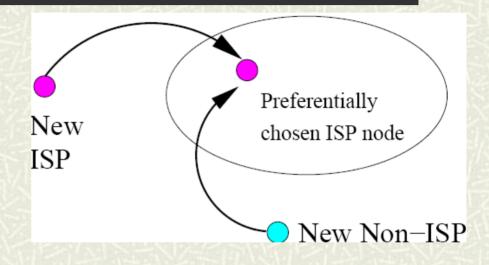
Srinivas Shakkottai Texas A&M University

Marina Fomenkov, Ryan Koga, Dmitri Krioukov, and kc claffy CAIDA/UCSD

Motivation

- Many Internet evolution models exist. Why another one?
- **There is none which would be simultaneously**
 - realistic
 - parsimonious
 - having all its parameters measureable
 - analytically tractable
 - "closing the loop"
- Only a model satisfying all these requirements can shed some light on how the Internet really evolves

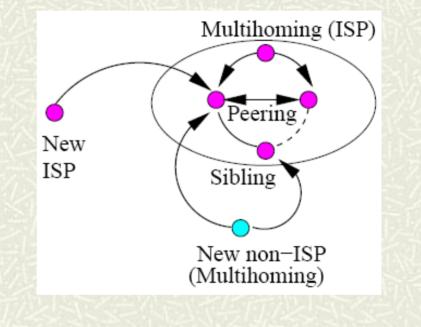
Multiclass preferential attachment: PA + Internet-specific modification


- All ASs can roughly be split into two classes: ISPs and non-ISPs
- New ASs can preferentially attach to ISPs, but they cannot connect to non-ISPs at all, as those do not provide Internet connectivity services
- A majority of ASs (~70%) are non-ISP

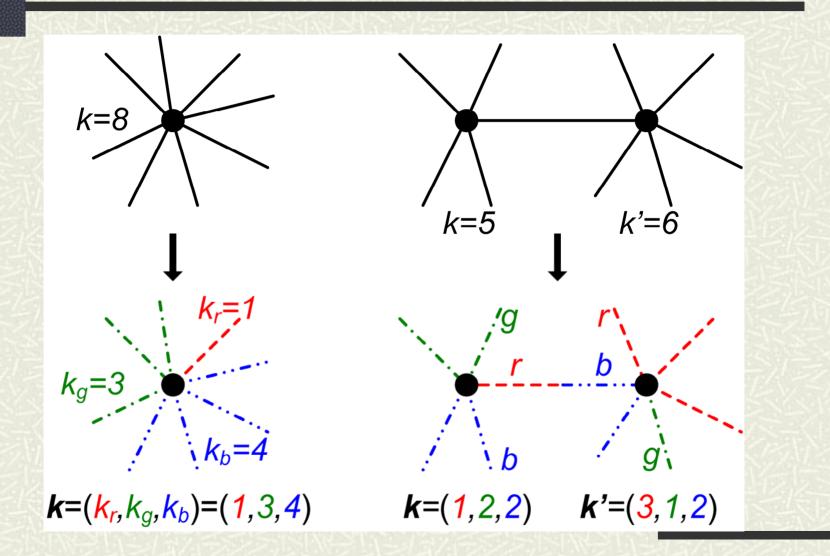
The two key observations

This simple modification of PA captures a bulk of the Internet topology properties
All other improvements and modifications (such as peering, bankruptcy, multihoming, geography, etc.) lead to much finer corrections

ISPs vs. non-ISPs

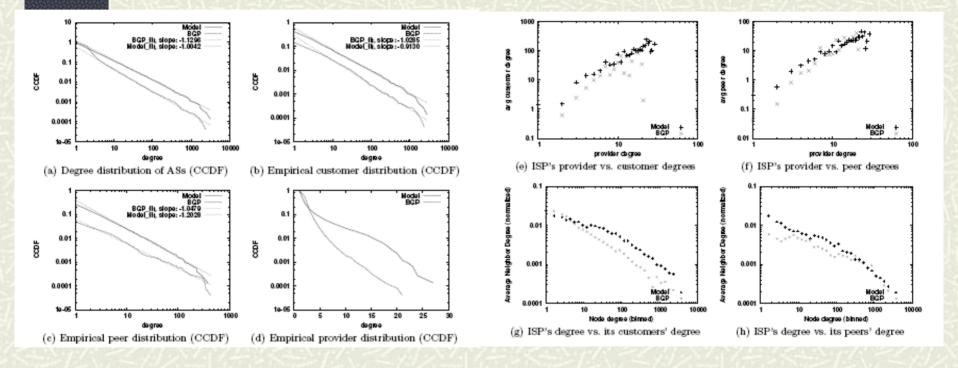

- **♯** Time unit: 1 new ISP
- **H** Non-ISPs per time unit: ρ . The measured value of ρ is $\rho = 7/3$
- Analytic solution for the degree distribution yields $P(k) \sim k^{-2.3}$
- In the real Internet $P(k) \sim k^{-2.1}$

$$P(k) \sim k^{-\left(2 + \frac{1}{1+\rho}\right)}$$


Finer adjustments

- **^{^{¹**} Peering: peering links per} time unit c = 0.70
- **I** Sibling links: $\mu \approx 0$
- **H** Multihoming:
 - ISP's average number of providers $v \approx 2$
 - non-ISP's average number of providers $\gamma = 2 + \frac{1}{1 + 2\nu + m\rho + 2c + \mu}$ m = 1.86
- **#** Analytic solution $\gamma = 2.1$
- **H** Real Internet $\gamma = 2.1$

 $1 - \mu$


Annotated graphs

Model validation

- Reproducing the joint degree distribution (JDD) of the AS Internet annotated with AS business relationships captures all its other properties in synthetically generated networks
- Simulate the model with all its parameters equal to their measured value and compare the JDDs in the modeled networks and the Internet

Validation results

Conclusion

- The Internet appears to evolve according to preferential attachment
 - Preferential attachment, with minor Internet-specific corrections, suffices to explain virtually all properties of the Internet AS-level topology and its evolution
- **#** Most links are from customer to provider ASs
- Therefore to make a step forward and connect our model to "real economics," one needs to explain how customers select their providers
- Popularity of providers, their "brand names," may be a real explanation of preferential attachment in the Internet