dK-series and hidden hyperbolic metric spaces

Dmitri Krioukov

dima@caida.org

A. Jamakovic, P. Mahadevan, F. Papadopoulos, K. Fall, A. Vahdat, and M. Boguña

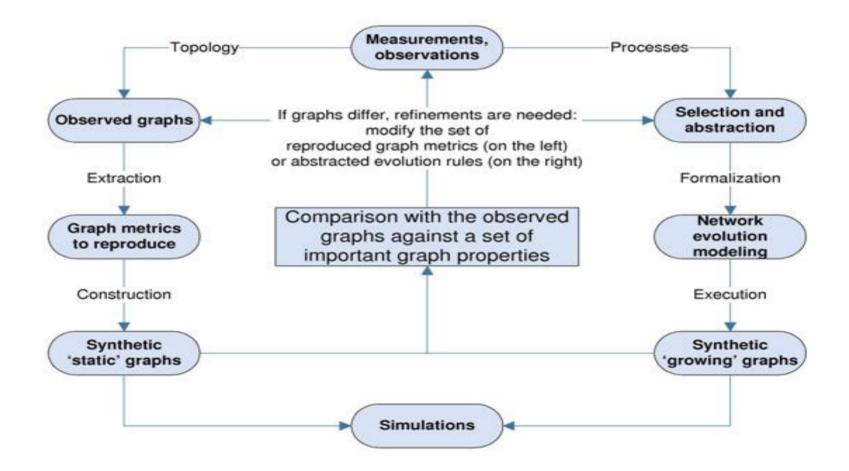
Telefonica, June 26th, 2009

Motivation: topology analysis and generation

■ New *routing* and other protocol design, development, testing, etc.

- Analysis: performance of a routing algorithm strongly depends on topology, the recent progress in routing theory has become topology analysis
- Generation: empirical estimation of scalability: new routing might offer Xtime smaller routing tables for today but scale Y-time worse, with Y >> X
- Network robustness, resilience under attack, worm spreading, etc.
- Traffic engineering, capacity planning, network management, etc.
- Motifs: are they really functional building blocks?
- In general: local vs. global network properties, network structure vs. function, and "what if" scenarios, better predictive power

Network topology research



Important topology metrics

- **#** Spectrum
- **Distance distribution**
- **H** Betweenness distribution
- **H** Community structure
- **#** Motif distribution
- **#** Degree distribution
- **#** Assortativity
- **#** Clustering

Problems

No way to reproduce most of the important metrics simultaneously

No guarantee there will not be any other/new metric found important

Our approach

Look at inter-dependencies among topology characteristics

- See if by reproducing most basic, simple, but not necessarily practically relevant characteristics, we can also reproduce (capture) all other characteristics, including practically important
- Try to find the one(s) defining all others

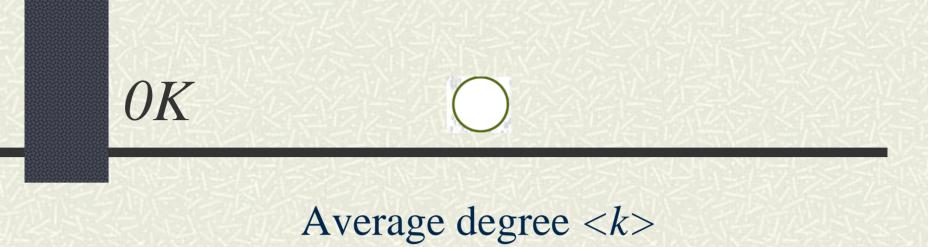
Outline

- **Introduction**
- **■** *dK*-*:
 - *dK*-distributions
 - *dK*-series
 - *dK*-graphs
 - *dK*-randomness
 - *dK*-generator (Orbis)
- \blacksquare *dK*-randomness of real networks
- Hidden hyperbolic metric spaces as an explanationConclusion

The main observation ③

Graphs are structures of *connections* between nodes

dK-distributions as a series of graphs' *connectivity* characteristics



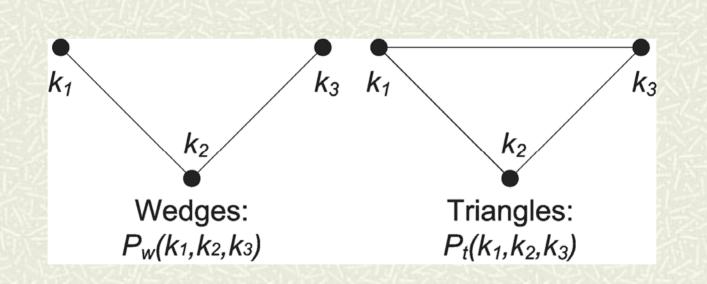
Degree distribution P(k)

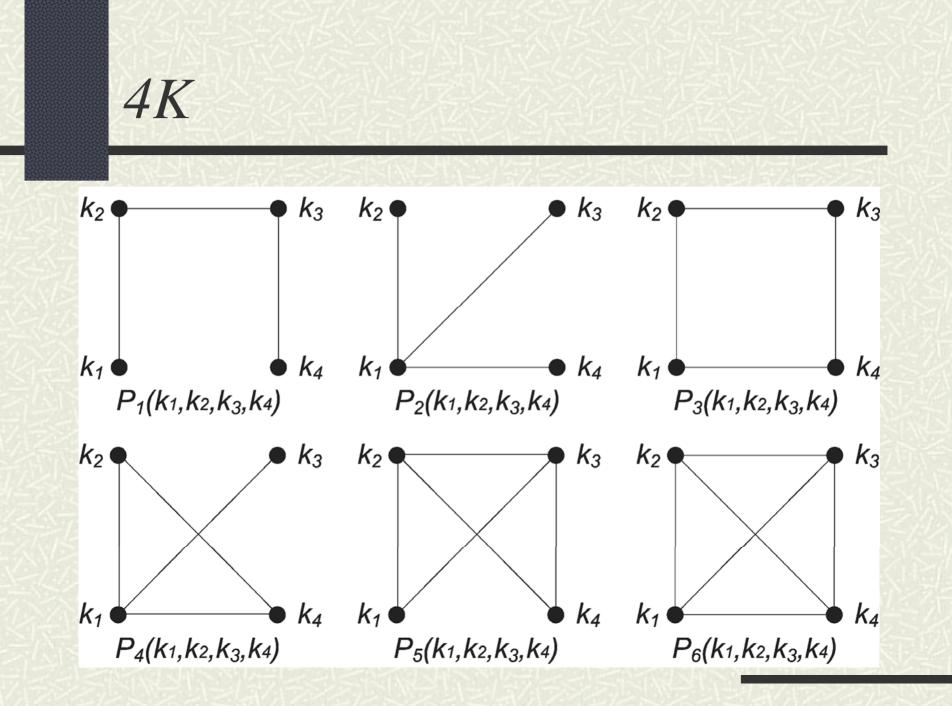
Joint degree distribution $P(k_1, k_2)$

3K

"Joint edge degree" distribution $P(k_1, k_2, k_3)$

3K, more exactly

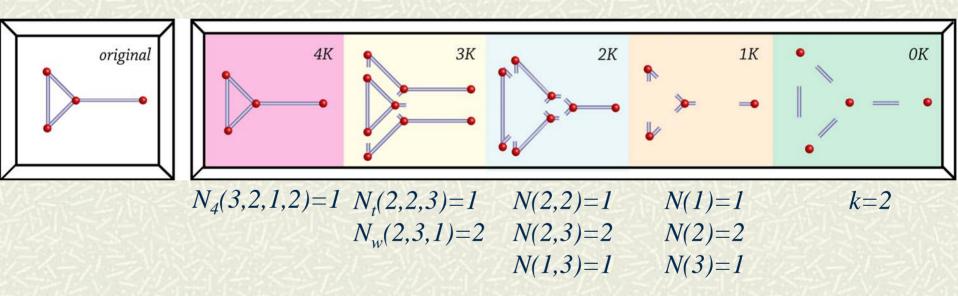




Definition of *dK*-distributions

dK-distributions are degree correlations within simple connected graphs of size *d*

dK-decomposition example



Definition of dK-series P_d

Given some graph G, graph G' is said to have property P_d if G"s dK-distribution is the same as G's

Definition of dK-graphs

dK-graphs are graphs having property P_d

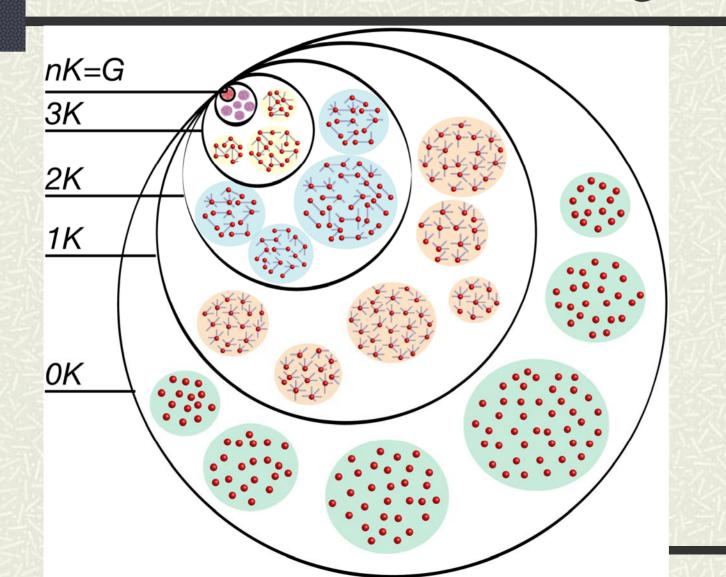
Nice properties of properties P_d

- **Inclusiveness:** if a graph has property P_d , then it also has all properties P_i , with i < d(*dK*-graphs are also *iK*-graphs)
- **Convergence**: the set of graphs having property P_n consists of only one element, Gitself (dK-graphs converge to G)
- **# Constructability**: we can construct graphs having properties P_d (*dK*-graphs)

Convergence...

...guarantees that *all* (even not yet defined!) graph metrics can be captured by sufficiently high *d*

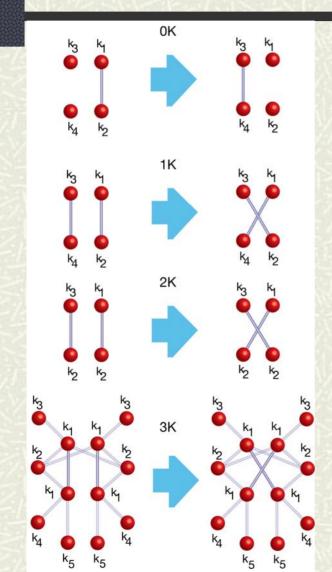
Inclusiveness and convergence



dK-random graphs vs. dK-graphs

- *dK*-graph is a graph that has the same *dK*-distribution as a given graph *G* (*strict definition*)
- *dK*-random graph is a "maximally random" *dK*-graph (*non-strict definition*, but very useful in practice)
 - *dK*-random graph is a graph that has the same *dK*distribution as *G* but that is random in other respects
 - constructing *dK*-graphs, we usually construct *dK*random graphs
 - to construct *dK*-non-random graphs, we have to inventively modify the construction procedures...

dK-randomization: random rewiring preserving the *dK*-distribution



♯ *dK*-randomizing a given graph G, we obtain its dKrandom counterparts These *dK*-random graphs are always similar to each other \blacksquare Graph G itself is called dKrandom if it's similar to its *dK*-random counterparts

dK-generator (Orbis)

- Establish how dK-random a given network G is, i.e., find the minimum d s.t. G is dK-random
- Given a *dK*-distribution (*G* no longer needed!), construct *dK*-random graphs:
 - 1. extract the 1K-distribution from the dK-distribution
 - 2. construct a *1K*-random graph (many methods exist)
 - 3. done if d=1, or set i=2 otherwise
 - 4. extract the iK-distribution from the dK-distribution
 - 5. perform (*i*-1)*K*-preserving iK-*targeting* rewiring, accepting each rewiring step if it moves the graph's *iK*distribution closer to the target extracted *iK*-distribution
 - 6. done if i=d, or set i=i+1 otherwise and go to step 4

Problem

Complexity of dK-series grows hyperexponentially with d – the dominating contribution is from the number of nonisomorphic graphs of size d

So, how *dK*-random are real networks???

Outline

- **#** Introduction
- **■** *dK*-*
- \blacksquare *dK*-randomness of real networks
 - Networks considered
 - Methodology
 - Internet
 - Web of trust

Hidden hyperbolic metric spaces as an explanationConclusion

Networks considered

Communication: the Internet

- AS-level (skitter)
- "Router"-level (HOT)
- **#** Social:
 - Web of trust (PGP)
 - Paper co-authorship network (arXiv)
- **#** Biological:
 - Protein interactions (yeast Saccharomyces cerevisiae)
- **Transportation:**
 - US airport network
- **#** Technological:
 - Western US power grid
- **#** Few others
 - including a dolphin acquaintance network!

Main finding

All networks are *3K*-random at most
AS-level Internet is *1K*-random
Airport network is *2K*-random
Except the power grid
Not *3K*-random at all

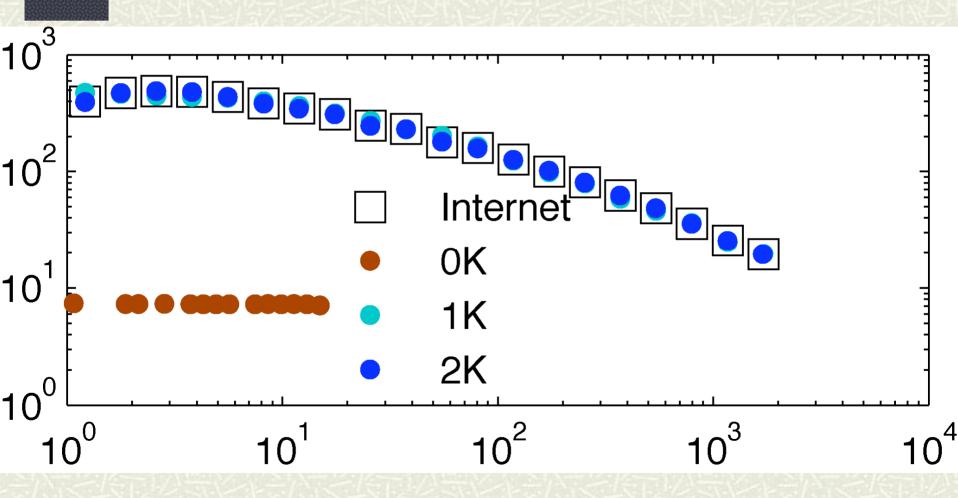
Methodology

To show that a network is dK-random, it is sufficient to show that the difference between the (d+1)Kdistribution in the network and in its dKrandomizations is statistically nonsignificant

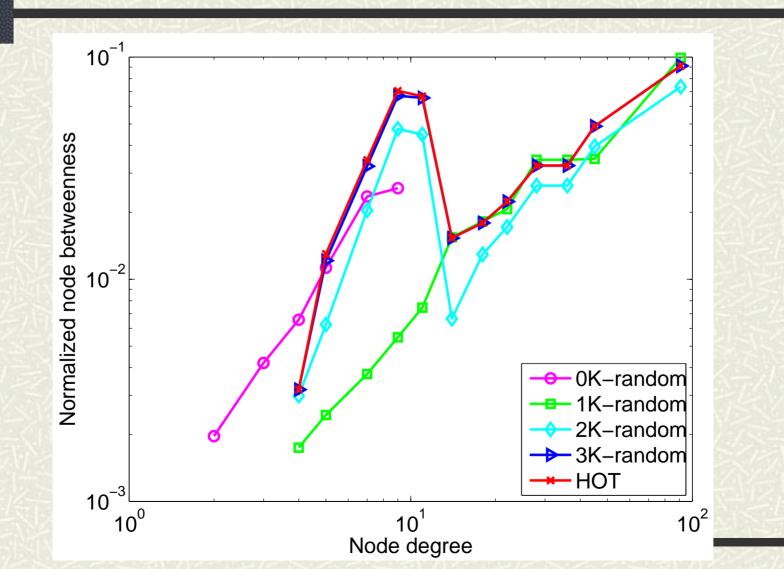
• We compute the statistical significance of motifs of size 4

- Just for fun, we also compute many other metrics and compare them between the network and its *dK*randomizations
 - microscopic (degree distribution, correlations, clustering; motifs belong here, too)
 - mesoscopic (community structure)
 - macroscopic (distance and betweenness distributions)

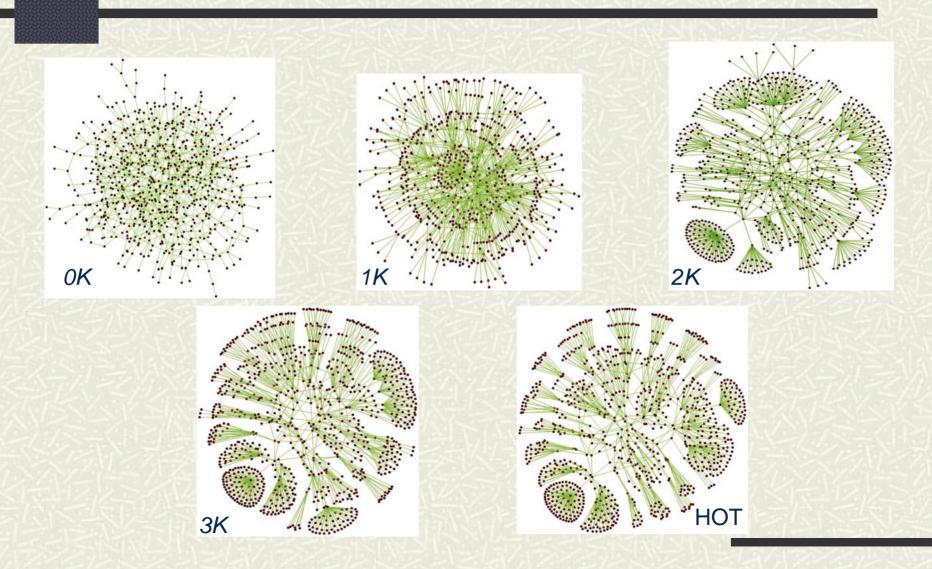
Internet AS-level (skitter): average neighbor degree



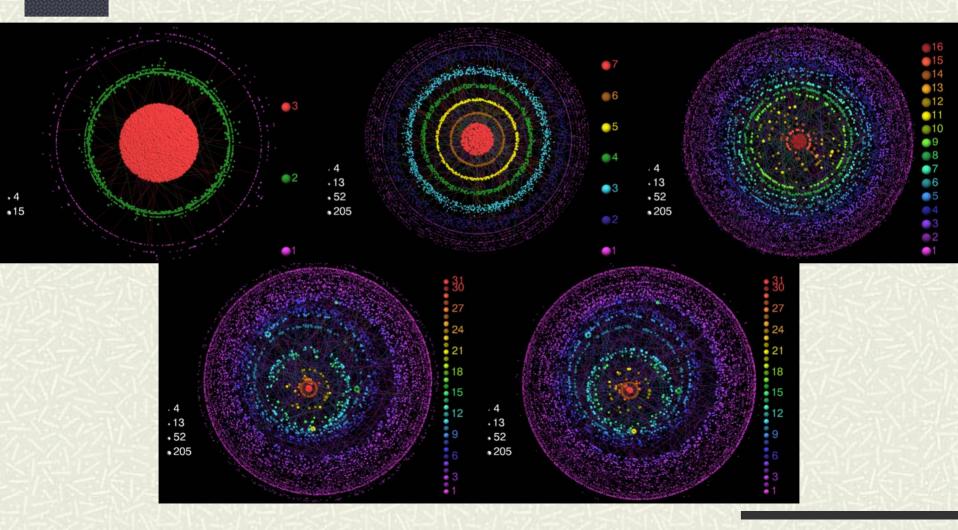
Internet "router"-level (HOT): degree-dependent betweenness



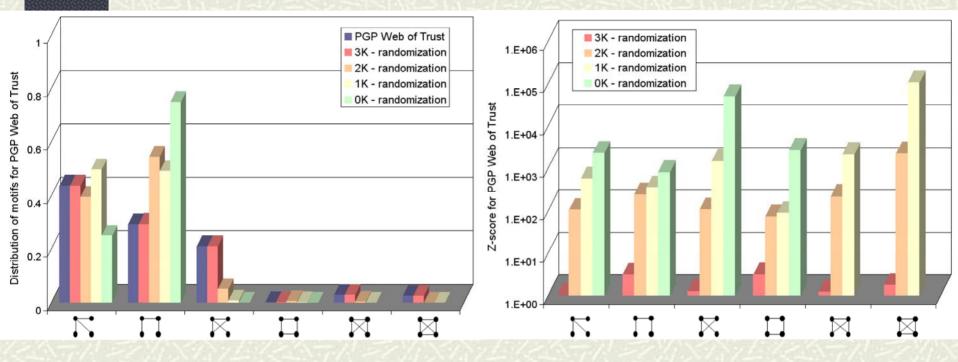
HOT *dK*-porn



PGP dK-porn

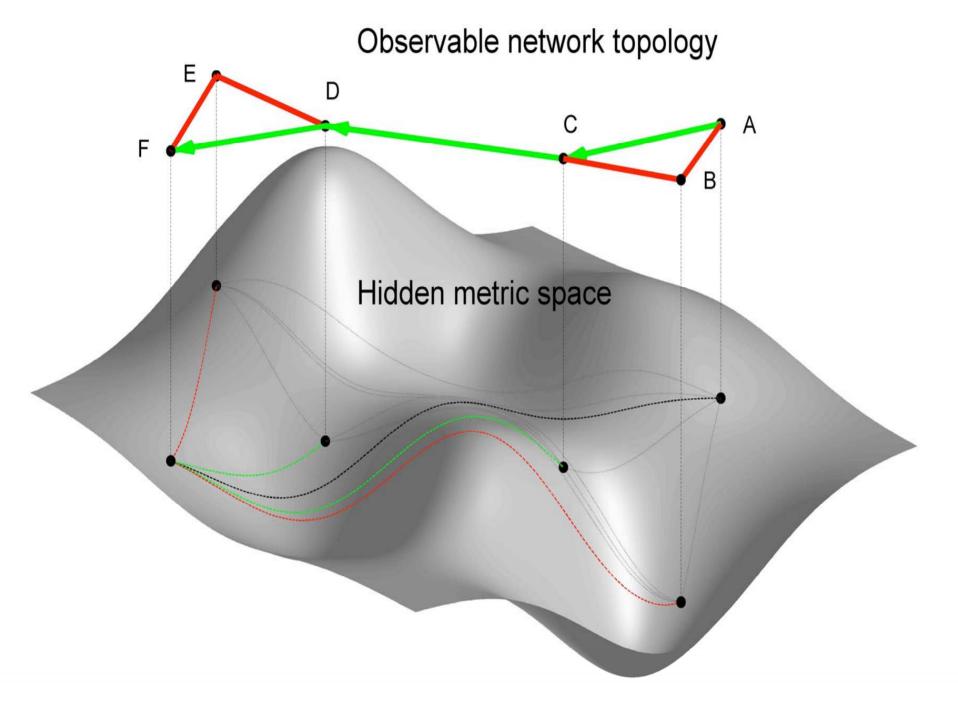


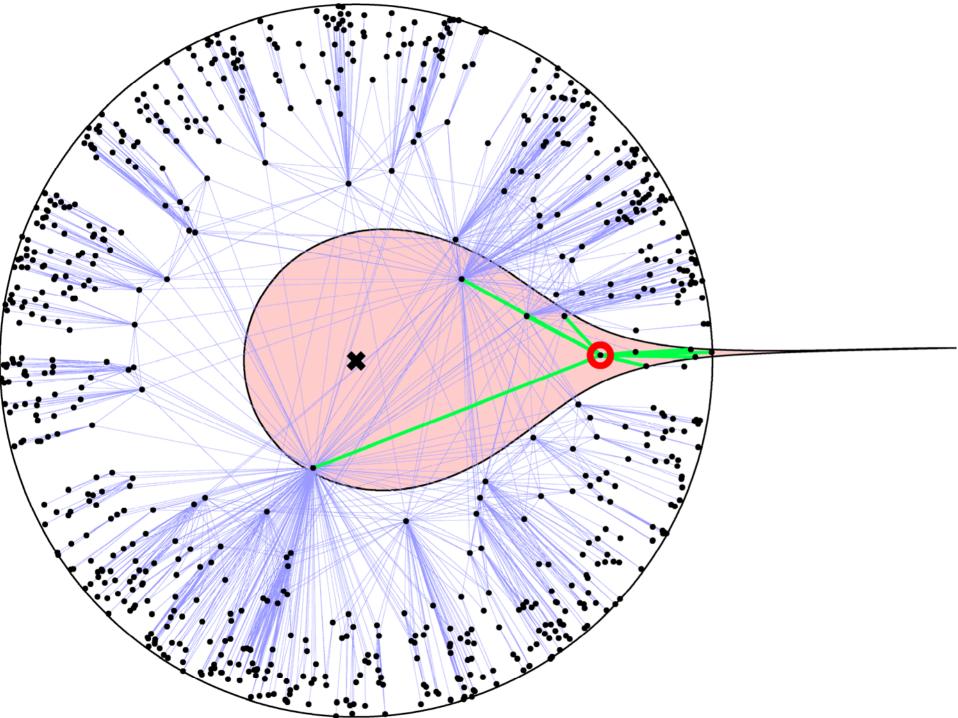
Web of trust (PGP): motifs of size 4



Outline

- **#** Introduction
- **#** *dK*-*
- **♯** *dK*-randomness of real networks
- Hidden hyperbolic metric spaces as an explanation
 - Hidden metric spaces and clustering
 - Hidden hyperbolic spaces and degree distribution
 - Degree distribution \cup clustering \subset *3K*-distribution
- **#** Conclusion





Plausible explanation of ubiquitous *3K*-randomness

The two main geometric properties of hidden spaces,

- metric structure, and
- negative curvature,

explain the two main topological properties of complex networks,

- strong clustering, and
- power-law degree distributions

\blacksquare Both are captured by the *3K*-distribution

Outline

- **#** Introduction
- **#** *dK*-*
- **♯** *dK*-randomness of real networks
- **Hidden** Hidden hyperbolic metric spaces as an explanation
- **Conclusion**
 - Take-home message
 - Implications
 - Speculations

Take-home message

A majority of complex networks are *3K*-random at most

Implications

- Orbis is practically applicable not only to the Internet, but to many other networks as well
- Network evolution models and laws need not try to reproduce and explain the emergence of an endless list of metrics, but just the *3K*-distribution
 - Perhaps just the degree distribution and clustering
- Connection between network structure and function does not go via motifs
 - As soon as randomization basis is 3K, all motifs are statistically non-significant

Speculations

- Many networks are 3K-random, but not all, e.g., not the power grid. Why?
 - Unlikely because it is planar and spatially embedded
 - The airport network and the Internet are also spatially embedded, and the latter is even *1K*-random
 - More likely because it is a designed, engineered network, fully controlled by humans
 - As such it has lots of constraints, imposed by humans, that *dK*-series with low *d* cannot capture
 - It is good that we found a non-3K-random network, since it shows that "<u>d=3 is just too constraining</u>" is not a satisfactory explanation of ubiquitous 3K-randomness
- All self-evolving networks appear not to have any constraints other than hidden hyperbolic metric spaces