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Motivation:
topology analysis and generation

# New routing and other protocol design, development, testing, etc.

m Analysis: performance of a routing algorithm strongly depends on topology,
the recent progress in routing theory has become topology analysis

m Generation: empirical estimation of scalability: new routing might offer X-
time smaller routing tables for today but scale Y-time worse, with Y >> X

Network robustness, resilience under attack, worm spreading, etc.
Traffic engineering, capacity planning, network management, etc.
Motifs: are they really functional building blocks?

In general: local vs. global network properties, network structure
vs. function, and “what If” scenarios, better predictive power




Network topology research
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Important topology metrics

B’ Spectrum

® Distance distribution

® Betweenness distribution
# Community structure

® Motif distribution

®m Degree distribution

=’ Assortativity

® Clustering



Problems

# No way to reproduce most of the important
metrics simultaneously

# No guarantee there will not be any
other/new metric found important



Our approach

# Look at inter-dependencies among topology
characteristics

# See If by reproducing most basic, simple,
but not necessarily practically relevant
characteristics, we can also reproduce
(capture) all other characteristics, including
practically important

# Try to find the one(s) defining all others
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The main observation ©

Graphs are structures of connections
between nodes



dK-distributions as a series of
graphs’ connectivity characteristics
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Average degree <k>
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Degree distribution P(k)
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Joint degree distribution P(k,,k,)
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“Joint edge degree” distribution P(k,,k,,k5)
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3K, more exactly
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Definition of dK-distributions

dK-distributions are degree correlations
within simple connected graphs of size d



dK-decomposition example
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Definition of dK-series P

Given some graph G, graph G' is said to
have property P, If G"’s dK-distribution Is
the same as G’s



Definition of dK-graphs

dK-graphs are graphs having property P,



Nice properties of properties P,

® Inclusiveness: if a graph has property P,
then it also has all properties P;, with1 <d
(dK-graphs are also IK-graphs)

# Convergence: the set of graphs having

property P, consists of only one element, G
Itself (dK-graphs converge to G)

# Constructability: we can construct graphs
having properties P, (dK-graphs)



Convergence...

...guarantees that all (even not yet defined!)
graph metrics can be captured by
sufficiently high d



Inclusiveness and convergence




dK-random graphs vs. dK-graphs

® dK-graph Is a graph that has the same ¢
distribution as a given graph G (strict d

K-
efinition)

® dK-random graph is a “maximally rand

om” dK-

graph (non-strict definition, but very useful in

practice)

m dK-random graph is a graph that has the same dK-
distribution as G but that is random in other respects

m constructing dK-graphs, we usually construct dK-

random graphs

m to construct dK-non-random graphs, we have to
Inventively modify the construction procedures...



dK-randomization: random rewiring
preserving the dK-distribution
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dK-generator (Orbis)

® Establish how dK-random a given network G is, I.e.,
find the minimum d s.t. G is dK-random

® Given a dK-distribution (G no longer needed!),
construct dK-random graphs:
extract the 1K-distribution from the dK-distribution
construct a 1K-random graph (many methods exist)
done if d=1, or set iI=2 otherwise
extract the IK-distribution from the dK-distribution

perform (i-1)K-preserving IK-targeting rewiring,
accepting each rewiring step if it moves the graph’s IK-
distribution closer to the target extracted iK-distribution

6. done If i=d, or set iI=I+1 otherwise and go to step 4

N R R N o



Problem

# Complexity of dK-series grows hyper-
exponentially with d — the dominating
contribution is from the number of non-
Isomorphic graphs of size d

# S0, how dK-random are real networks???
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Networks considered

Communication: the Internet
m AS-level (skitter)
m “Router’-level (HOT)

Social:

m Web of trust (PGP)

m Paper co-authorship network (arXiv)

Biological:

m Protein interactions (yeast Saccharomyces cerevisiae)
Transportation:

m US airport network

Technological:
m Western US power grid

Few others
m including a dolphin acquaintance network!



Malin finding

# All networks are 3K-random at most
m AS-level Internet is 1K-random
m Airport network is 2K-random

# Except the power grid
m Not 3K-random at all




Methodology

® To show that a network Is dK-random, it is sufficient
to show that the difference between the (d+1)K-
distribution in the network and in its dK-
randomizations is statistically nonsignificant

m \We compute the statistical significance of motifs of size 4
® Just for fun, we also compute many other metrics

and compare them between the network and its dK-
randomizations

= microscopic (degree distribution, correlations, clustering;
motifs belong here, to0)

® Mesoscopic (community structure)
m macroscopic (distance and betweenness distributions)




Internet AS-level (skitter):
average neighbor degree
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Internet “router”-level (HOT):
degree-dependent betweenness
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HOT dK-porn
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Web of trust (PGP):
motifs of size 4

1- M PGP Web of Trust 1 3K - randomization
1 3K - randomization 1.E406+ 2K - randomization
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K-randomness of real networks

Idden hyperbolic metric spaces as an explanation

m Hidden metric spaces and clustering
m Hidden hyperbolic spaces and degree distribution
m Degree distribution U clustering c 3K-distribution

# Conclusion



Observable network topology







Plausible explanation
of ubiquitous 3K-randomness

® The two main geometric properties of hidden spaces,
m Mmetric structure, and
m negative curvature,

explain the two main topological properties of
complex networks,

m strong clustering, and
m power-law degree distributions

= Both are captured by the 3K-distribution
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Take-home message

# A majority of complex networks are
3K-random at most



Implications

® Orbis Is practically applicable not only to the
Internet, but to many other networks as well

® Network evolution models and laws need not try
to reproduce and explain the emergence of an
endless list of metrics, but just the 3K-distribution

m Perhaps just the degree distribution and clustering
# Connection between network structure and
function does not go via motifs

m As soon as randomization basis Is 3K, all motifs are
statistically non-significant



Speculations

# Many networks are 3K-random, but not all,
e.g., not the power grid. Why?

m Unlikely because it is planar and spatially embedded

m The airport network and the Internet are also spatially embedded, and
the latter is even 1K-random

m More likely because it is a designed, engineered network, fully
controlled by humans

m As such it has lots of constraints, imposed by humans, that dK-
series with low d cannot capture

m It is good that we found a non-3K-random network, since it shows
that “d=3 is just too constraining” is not a satisfactory explanation
of ubiquitous 3K-randomness

# All self-evolving networks appear not to have any
constraints other than hidden hyperbolic metric spaces
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