Internet Visualization with

Walrus Graph Visualization Tool

Young Hyun CAIDA

2009 Spring Simulation Interoperability Workshop (SIW)

Outline

Internet Measurement
Hyperbolic Geometry
Walrus Demo
Future Work

- * CAIDA conducts large-scale, ongoing topology measurements
 - * monitors distributed around the world perform traceroutes continuously

* CAIDA conducts large-scale, ongoing topology measurements

* monitors distributed around the world perform traceroutes continuously

* CAIDA conducts large-scale, ongoing topology measurements

* *monitors* distributed around the world perform traceroutes continuously monitor₂

(monitor₁)

 $(monitor_3)$

* CAIDA conducts large-scale, ongoing topology measurements

* *monitors* distributed around the world perform traceroutes continuously monitor₂

(monitor₁

* CAIDA conducts large-scale, ongoing topology measurements

* *monitors* distributed around the world perform traceroutes continuously monitor₂

(monitor₁

* CAIDA conducts large-scale, ongoing topology measurements

* *monitors* distributed around the world perform traceroutes continuously monitor₂

(monitor₁

* CAIDA conducts large-scale, ongoing topology measurements

* *monitors* distributed around the world perform traceroutes continuously monitor₂

(monitor₁

* CAIDA conducts large-scale, ongoing topology measurements

* *monitors* distributed around the world perform traceroutes continuously monitor₂

* CAIDA conducts large-scale, ongoing topology measurements

* *monitors* distributed around the world perform traceroutes continuously monitor₂

* CAIDA conducts large-scale, ongoing topology measurements

* *monitors* distributed around the world perform traceroutes continuously monitor₂

(monitor₁

- * skitter infrastructure
 - * Jan 1998 to Feb 2008 (decommissioned)
 - * 29.5 billion traceroutes; 4.0TB of data

- * skitter infrastructure
 - * Jan 1998 to Feb 2008 (decommissioned)
 - * 29.5 billion traceroutes; 4.0TB of data
- * Archipelago (Ark) next-generation infrastructure

11

- * in production since Sep 12, 2007
- * 2.90 billion traceroutes; 1.1TB of data

Ark Monitor Deployment

* 33 monitors in 22 countries

Continent

- 12 North America
- 2 South America
- 11 Europe
- 1 Africa
- 5 Asia
- 2 Oceania

Organization

- 19 academic
 - 9 research network
 - 2 network infrastructure
 - 1 commercial network
 - I community network
 - 1 military research

Ark Datasets

- IPv4 Routed /24 Topology
 - * traceroutes to every routed /24 prefix (~7.4 million)
- IPv4 Routed /24 AS Links
 - * autonomous system (AS) is approximately an ISP
- * IPv6 Topology
 - * traceroutes to every routed IPv6 prefix
- * DNS Names
 - * names of routers and hosts seen in traceroutes
- * DNS Query/Response Traffic

Walrus

 interactive tool for visualizing large hierarchical graphs in 3D

* goal: handle 1 million nodes

* employs fisheye-like spatial distortion techniques

- * permits simultaneous viewing of local detail and global context (that is, Focus+Context)
- * uses 3D hyperbolic geometry to achieve distortion

Walrus

* interactive tool for visualizing large hierarchical graphs in 3D

* goal: handle 1 million nodes

* employs fisheye-like spatial distortion techniques

- * permits simultaneous viewing of local detail and global context (that is, Focus+Context)
- * uses 3D hyperbolic geometry to achieve distortion
- * based on Ph.D research by Tamara Munzner
- * written entirely in Java using Java3D
- * source code available under GPLv2+

Why Hyperbolic Geometry?

- * Euclidean space is *infinite* but **too small**
 - * a complete binary tree of height h has 2^h leaf nodes
 - * but the circumference of a circle only grows linearly on the radius:

$$C = 2\pi r$$

Why Hyperbolic Geometry?

* Euclidean space is *infinite* but **too small**

- * a complete binary tree of height h has 2^h leaf nodes
- * but the circumference of a circle only grows linearly on the radius:

$$C=2\pi r$$

- * hyperbolic space is bigger
 - * the circumference of a circle grows exponentially on the radius:

$$C = 2\pi \sinh r = 2\pi \left(\frac{e^r - e^{-r}}{2}\right) \sim e^r$$

Hyperbolic Visualization

- * lay out graph in 3D hyperbolic space
- * project 3D hyperbolic space into 3D Euclidean space for visualization
 - * Klein model: hyperbolic lines remain straight lines

Hyperbolic Visualization

Walrus Gallery

Walrus Demo

Walrus Graph Visualization

Copyright (c) 2000,2001,2002 CAIDA/UCSD

Future Work

get adaptive rendering working again with Java3D
port Walrus to OpenGL

Thanks!

www.caida.org/tools/visualization/walrus

www.caida.org/projects/ark