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(1) High Bipartite Clustering
as a Consequence of the Triangle Inequality.

(2) Class of Bipartite Networks in Metric Spaces 

(3) Scaling of Bipartite Clustering



What is a bipartite network?

Examples:

• Collaboration networks: 
Authors are associated with papers they publish

• Actor networks:
Actors are connected to films.

• Metabolic Networks
Metabolites are related to chemical reactions

• Peer to peer networks (P2P): 
Participants that make a portion of their resources directly available 

to other network participants.

What is a bipartite network? Definition and Examples

Nodes of a bipartite network can be divided 
into two disjoint sets (authors, papers) so that no 
links connect 2 nodes in the same set.



What is a bipartite network?How many papers two authors have in common?

1) P(m) is distributed as a power-law. 
2) M is significantly higher in real bipartite networks 

than in randomized.

(m): # of shared neighbors 
(M): maximum # of shared 
neighbors
Physics: M=190(6)
Imdb: M=216 (7) 
Metabolic: M=13 (2)
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What is a bipartite network?

11
3

344
201





C

Bipartite Clustering Coefficient

1) Bipartite Networks: Neighbors of a given node are NEVER
connected. C=0. No 3-loops in bipartite networks. 
2) Bipartite Clustering is defined based on 4-loops!

1 node in common, 4 nodes altogether

Consider all pairs of  neighbors!

0 nodes in common, 4 nodes altogether.
2 Nodes in common, 3 nodes altogether.

P. Zhang et al, Physica A, 387 27 6869 (2008).

Bipartite clustering is significantly higher in real bipartite 
networks than in random networks (Next Slide).
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What is a bipartite network?Real bipartite networks are highly clustered
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 Randomized Imdb



Properties of Bipartite Networks

1) Top (Bottom) nodes tend to share a lot of (Bottom) 
(Top) nodes.
2) Bipartite networks are highly clustered.

Bipartite networks
have metric structure.

WHY?



Actor network has metric structure?

..another teenager comedy
20 female actresses

20 male actors 

Name: Mary
Age: 21

Comedies: 5
Santa Barbara, CA

Name: Jessica
Age: 22

Comedies: 8
Oceanside, CA



Actor network has metric structure?

A. smaller distances imply
higher connection probability!
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B. small d1 and d2 imply
small d3?

C. Triangle Inequality
d3≤ d1+ d2?

Underlying Space is Metric!
1) d(x,y)≥0
2) d(x,y)=0 ↔ x=y
3) d(x,y)=d(y,x)
4) d(x,z) ≤ d(x,y)+d(z,y)



Name: Bruce Willis
Age: 55

Movies: 82
Genres: Comedy, Drama, 
Action, Thriller, Romance, 

Sci-Fi…
Los Angeles, CA

Higher Degree 
nodes are

likely to connect at
large distances!



The Underlying Metric Space Hypothesis

A. Top and Bottom nodes of bipartite networks exist in 
underlying metric spaces. (d3≤ d1+ d2)

B. The probability of a link connecting a pair of nodes is 
determined by the geometric distance between the nodes in 
the underlying space.

C. The probability of a link is specified by a connection 
probability function r(d/dc). r(x) can be any decreasing 
function of x.

E. In a Euclidean D-dimensional space the characteristic 
scale is dc~[κλ]1/D

.

D. Every node is assigned an intrinsic fitness parameter:
κ (top nodes) λ (bottom nodes).



)()(;~)(
~)(

0
2

1












PP
P

Modeling Bipartite Networks in Metric Spaces: S1S1 model

2) For every top (bottom) node calculate its 
fitness κ (λ) drawn from a pdf P(κ) (P(λ)).

3) Connect authors and papers according 
to the connection probability function:
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1) Uniformly distribute N top and M bottom 
nodes on a 1-D Euclidean ring of radius R. 
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Connectivity of S1S1 model.
1) Resulting degrees are proportional 

to node magnitudes:

2) Degree in the unipartite projection is proportional
to degree in the bipartite network!
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S1S1 model,
N=5*105, M=5*105

P()~-2.5, P(=(-3.0)
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S1S1 model,
N=105,
P()~-2.1,  P(=(-0)

 M=105, 0=11

 M=2*104, 0=55

 M=2*105, 0=5.5

 

Connectivity of S1S1 is fully controlled by fitness values.



Connectivity of Bipartite Networks (Revisited)
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Connectivity of Bipartite Networks (Revisited)

Average projection degree is proportional to author degree
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Connectivity of Bipartite Networks (Revisited)
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Scale-free degree distribution of top (bottom) nodes 
leads to asymptotically scale-free distribution of the 

corresponding unipartite projection.

P(k) of the projection is similar to P(k) of authors for large k values.



What is a bipartite network?

How many papers two authors have in common? (Revisited)
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The fat tail of shared neighbor distribution
is the direct consequence of metric property of the space

β tunes the power-law exponent!
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What is a bipartite network?

Bipartite Clustering (Revisited)
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β tunes the bipartite clustering!

Power-law? No!
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High bipartite clustering
is the direct consequence of the metric property of the space
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 Original Imdb
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What is a bipartite network?
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 T=4, T=2
 T=8, T=4
 T=16, T=8

Degree Thresholding “Symmetry”

Remove top and bottom nodes: k<κT; s<λT. Do not Iterate! 
k=4 k=3 k=2

s=3s=2 s=1 s=3

κT=3, λT=2
k=3 k=3 k=0

s=2s=2 s=0 s=2

κT=4, λT=1
k=1 k=0 k=0

s=2s=0 s=0 s=0

Degree Distribution and Clustering are Self-Similar in S1S1 
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Embedding Bipartite Networks in Metric Spaces
Maximum Likelihood Approach

1) Determine parameters of the S1S1 model (β,μ,R…)

2) Scatter the nodes of the network uniformly over the circle 
of R. Assign fitness values (κi, λj) to nodes according to 
degree distributions.

3) Calculate the likelihood of given network layout to be 
generated by the S1S1 model:

4) Start moving nodes on the circle. 
Accept the move only if the likelihood increases.
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Summary

1) High bipartite clustering and power-law distribution of 
the number of shared neighbors in bipartite networks 
naturally explained by existence of underlying metric spaces.

2) S1S1 models can reproduce most properties of real 
bipartite networks.

3) S1S1 models and real bipartite networks are self-similar 
upon the degree-thresholding renormalization.

4) Challenge: efficient embedding algorithms.

5) Possible Applications: recommendation systems, 
signalling pathways, content search.
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What is a bipartite network?

Degree Thresholding

Remove top and bottom nodes: k<κT; s<λT. Do not Iterate! 
k=4 k=3 k=2

s=3s=2 s=1 s=3

κT=3, λT=2
k=0k=3k=3

s=2 s=2 s=0 s=2

κT=4, λT=1

k=1 k=0 k=0

s=0 s=1 s=0 s=0


