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Q1: How to model epidemics?

Q2: How to immunize a social network?

Q3: Who are the most influential spreaders?’
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Pieter Bruegel’s “The Triumph of Death,” depicting plague in the 16th century




Plague of Athens
25% population

~75-200 million died

Cholera (7 outbreaks)
~38 million died

Spanish Flu
20-100 million died

S.A.R.S.
775 deaths

HAIN1 (Swine) Flu
18000 deaths

Pieter Bruegel’s “The Triumph of Death,” depicting plague in the 16th century
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Other examples of epidemics

Email Virus MMS Virus




How can we model epidemics? Compartmental models!
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Assumption: Random Homogeneous Mixing!




How can we model epidemics? Compartmental models!

Everyone Infected

Endemic (equilibrium)
Recovery rate = infectious rate

Everyone Recovers

Critical threshold: B_=p/<k>
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Disease extinct B Disease prevails ﬁ
C

Compartmental models surprisingly well
reproduce highly contagious diseases.




Human sexual contacts

10°

A Males

Liljeros et al. Nature 2001

59% response rate.

Nodes: people (Females; Males)
4781 Swedes; 18-74;

Links: sexual relationships
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Worldwide Airport Network

3100 airports
17182 flights
99% worldwide traffic
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Colizza et al. PNAS 2005



Mobile Phone Contact Network

A Bluetooth (BT) contagion Multimedia messages (MMS) contagion

= MMS messages

Bluetooth range (~ 10 m)

....................................

Bluetooth messages

A MMS susceptible phone

6.8 million users
1 month observation

. k—4.6

Frequency
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Wang et al. Science 2009



Random vs. scale-free networks

(a) Erdos Rényi

(b) Scale-Free
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Poisson distribution
(Exponential tail)

P(k): e_k< K >k K

Power-law distribution

P(k) ~ k™
1e(23)

Social networks are scale-free! Need stochastic epidemic models.




Stochastic sIR model

o pdinygeame

usceptible Infected Recovered

S

N

Transmission rate: £=0.5

Recoveryrate: ;4 =0.5

Quantities of interest:
Total Recovered:

M=14
Survivors:

Total time:

3
5




Epidemics in scale-free networks
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No epidemic threshold in Scale-free networks!







Network Immunization Strategies

Goal of efficient immunization strategy:

Immunize at least critical fraction f, of nodes

so that only isolated clusters of susceptible individuals remain .
If possible, without detailed knowledge of the network.

Large global cluster of
susceptible individuals

Small (local) clusters of
susceptible individuals

“f=1

f=0
Susceptible
/ individuals




Network Immunization Strategies
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R. Cohen et al, Phys. Rev. Lett. (2003)



Graph Partitioning Immunization Strategy

Partition network into arbitrary number of same size clusters

Based on the Nested Dissection Algorithm
R.J. Lipton, SIAM J. Numer. Anal.(1979)
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5% to 50% fewer immunization doses required
Y. Chen et al, Phys. Rev. Lett. (2008)




Who are the most influential spreaders?

SIR:

Who infects/influences the largest fraction of population?

SIS:

Who is the most persistent spreader? Who stays the most
in the Infected state?

Not necessarily the most connected people!
Not the most central people!

M. Kitsak et al. Nature Physics 2010



Spreading efficiency determined by node placement!

Hospital Network: Inpatients in the same quarters connected with links

Probability to be infected

! 100%

5%

node A

Probability

'c:a:;a.."".

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28

Fraction of Infected Inpatients



k-cores and k-shells determine node placement

K-core: sub-graph with nodes of degree at least k inside the sub-graph.

Pruning Rule:
1) Remove all nodes with k=1.
Some remaining nodes may now have k = 1.
2) Repeat until there is no nodes with k = 1.
3) The remaining network forms the 2-core.
4) Repeat the process for higher k to extract other

cores

S. B. Seidman, Social Networks, 5, 269 (1983).
K-shell is a set of nodes that belongs to the K-core

but NOT to the K+1-core



Identifying efficient spreaders in the hospital network (SIR)

(1) For every individual i measure the average fraction of individuals M,
he or she would infect (spreading efficiency).
(2) Group individuals based on the number of connections and the k-shell value.

A. Most efficient spreaders
occupy high k-shells.

h/l 32%

L 25%
B. For fixed k-shell <M> 19%
is independent of k.

13%

C. A lot of hubs are
inefficient spreaders.

I6%

0%

1
1 10 20 30 40 50 60

k-shell

Three candidates:

Degree, k-shell, betweenness centrality




Imprecision functions test the merits of degree, k-shell and centrality

For given percentage p

Find Np the most efficient spreaders (as measured by M)
Calculate the average infected mass Mg,,.

Find Np the nodes with highest k-shell indices.

Calculate the average infected mass M,

Imprecision function: 282;2_.
40%%
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Measure the imprecision for 0%
K-shell, degree and centrality.

2% 4% 6% 8% 10%
Percentage

k-shell is the most robust spreading efficiency indicatior.

(followed by degree and betweenness centrality)




Multiple Source Spreading

What happens if virus starts from several origins simultaneously?
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Multiple source spreading is enhanced when one “repels” sources.



Identifying efficient spreaders in the hospital network (SIS)

SIS: Number of infected nodes reaches endemic state (equilibrium)

Persistence p,(t) (probability node i is infected at time t)
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High k-shells form a reservoir where virus can exist locally.

Consistent with core groups (H. Hethcote et al 1984)



Take home messages

1) (AlImost) No epidemic threshold in Scale-free networks!

2) Efficient immunization strategy:
Immunize at least critical fraction f,_ of nodes so that only isolated
clusters of susceptible individuals remain

3) Immunization strategy is not reciprocal to
spreading strategy!

4) Influential spreaders (not necessarily hubs) occupy the innermost
k-cores.



Collaborators

Lazaros K. Gallos
CCNY, New York, NY

Shlomo Havlin
Bar-llan University
Israel

H. Eugene Stanley
Boston University,
Boston, MA

Lev Muchnik
NYU, New York, NY

Fredrik Liljeros
Stockholm University
Sweden

Herndn A. Makse
CCNY,
New York, NY






