Detecting and Characterizing Internet Traffic Interception based on BGP Hijacking

> Alberto Dainotti, Phillipa Gill, Chiara Orsini, Alistair King, Vasco Asturiano, Matthew Luckie alberto@caida.org

Center for Applied Internet Data Analysis

BGP MITM BGP-based traffic interception

normal path
hijacked path
normal path
used to complete
the attack

Center for Applied Internet Data Analysis University of California San Diego

S source (poisoned) **D** dest (hijacked prefix) **A** attacker

http://research.dyn.com/2013/11/mitm-internet-hijacking/

"HIJACKS" PROJECT identify BGP-based MiTM

- •NSF SaTC, TTP option, started Aug 2014, 3 years
- Collaborative project with Phillipa Gill at Stony Brook University

• Goals:

- develop methodologies to detect interception
- live monitoring
- test/evaluate the system with real hijacks (thanks to the PEERING testbed *http://peering.usc.edu*)
- understand/quantify impact of events
- log events, share data (e.g., through DHS PREDICT)
- Happy to identify BGP hijacks in general

HIJACKS main components

Center for Applied Internet Data Analysis University of California San Diego

TWO MONITORING PHASES

BGP events are further analyzed through traceroutes

- Detect suspicious events using criteria based on **BGP data**
 - MOAS
 - valley free violations
 - new edges
 - inconsistent prepending

- ...

• We analyze these cases with on-demand **traceroutes** from **Archipelago** probes

ARK

two probing schemes

 Ark's Topo on Demand to do traceroutes from all Ark probes towards prefixes associated with suspicious events

• Daily continuous traceroutes towards all prefixes -target prefix list: updated every day. I week sliding window -Purpose:

- comparison against ad hoc traceroutes
- infer additional AS relationships
- historical data analysis

ARK researchy topics

- Exploit co-location with BGP monitors from RouteViews and RIPE RIS
 - Out of 200 ASes providing a full IPv4 routing table, 20 host an ARK vantage point
 - we plan to increase this fraction
 - how would you use it?
- Automatically and accurately translate traceroutes to inferred AS paths
 - collaboration with Matthew Luckie

ATYPICAL SCENARIO

AS-A announces prefix-d, normally announced by AS-D

normal path
hijacked path
normal path
used to complete
the attack

Center for Applied Internet Data Analysis University of California San Diego

sis **S** source (poisoned) **D** dest (hijacked prefix) **A** attacker

ATYPICAL SCENARIO

AS-A announces prefix-d, normally announced by AS-D

• BGP will observe a MOAS

• Traceroutes (translated in AS paths.. let's call them "IP AS-paths") will show:

I. all VPs: IP AS-path will end at AS-D

2. VPs co-located with BGP monitor + following hijacked path: **BGP**

AS-path != IP AS-path. The first portion of the IP-AS path will match the BGP AS-path

3. VPs following hijacked path: AS-A is in the middle of the IP AS-path
4. VPs following hijacked path: IP AS-path typically is longer than the historical ones

IPTO AS PATHS Infer AS paths from traceroutes

In the scope of this project, there are some interesting variations to the classic problem:

• constraint: we can't use BGP's AS Paths as ground truth

• pro: we can tolerate uncertainty on some hops: looking for large mismatches [cases 2 and 4]

• pro: we may not care too much about consistent errors [case 4]

