Measuring and Characterizing IPv6 Router Availability

Robert Beverly*, Matthew Luckie[†], Lorenza Mosley*, kc claffy[†]

*Naval Postgraduate School †UCSD/CAIDA

March 20, 2015

PAM 2015 - 16th Passive and Active Measurement Conference

Outline

Infrastructure Uptime

- 2 Methodology
- 3 Experiments

4 Conclusion

Infrastructure "Uptime:"

- More formally: uninterrupted system availability
- Duration between device restarts
- Restarts due e.g. to planned device reboots, crashes, power failures

Our Work:

- Development of an active network measurement technique to infer <u>infrastructure</u> uptime
- 2 Uptime measurement survey of \sim 21,000 IPv6 router interfaces over 5-month period
- Validation of our uptime inferences by five autonomous systems

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Infrastructure "Uptime:"

- More formally: uninterrupted system availability
- Duration between device restarts
- Restarts due e.g. to planned device reboots, crashes, power failures

Our Work:

- Development of an active network measurement technique to infer <u>infrastructure</u> uptime
- 2 Uptime measurement survey of \sim 21,000 IPv6 router interfaces over 5-month period
- Validation of our uptime inferences by five autonomous systems

Why

Who wants uptime data?

- Researchers
- Operators
- Policy makers
- Regulators:
 - For instance, FCC mandates reporting voice network outages (but not broadband network services)

• Despite importance of Internet as critical infrastructure, little quantitative data on Internet device availability exists!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Motivation

Whv

Who wants uptime data?

- Researchers
- Operators
- Policy makers
- Regulators:
 - For instance, FCC mandates reporting voice network outages (but not broadband network services)
- Despite importance of Internet as critical infrastructure, little quantitative data on Internet device availability exists!

Uptime and Security

Security Implications

- Understand whether a reboot-based security update/patch could possibly have been applied to a device (or whether device likely still vulnerable)
- Determine if an attack designed to reboot a device is successful
- Gain knowledge of a network's operational practices and maintenance windows

Obtaining Remote Uptime

How to remotely obtain uptime?

- Just login?
- Management protocols (e.g. SNMP)?
 - ...requires access privilege

Prior Network Availability Work:

- nmap, netcraft: use TCP timestamp rate to estimate uptime
 - ...only for old operating systems w/ low-frequency clocks
 - ...restricted to infrastructure w/ listening TCP
- Prevalence and persistence of BGP routes [P97, RWXZ02]
- Operational mailing lists [FB05]
 - ...indirect measures unreliable, miss events
- Edge probing [QHP13]
 - ...not infrastructure, not uptime

Obtaining Remote Uptime

How to remotely obtain uptime?

- Just login?
- Management protocols (e.g. SNMP)?
 - ...requires access privilege

Prior Network Availability Work:

- nmap, netcraft: use TCP timestamp rate to estimate uptime
 - ...only for old operating systems w/ low-frequency clocks
 - ...restricted to infrastructure w/ listening TCP
- Prevalence and persistence of BGP routes [P97, RWXZ02]
- Operational mailing lists [FB05]
 - ...indirect measures unreliable, miss events
- Edge probing [QHP13]
 - ...not infrastructure, not uptime

Objective

Instead, our objective:

- Find uptime of remote routers...
- which don't accept TCP connections from untrusted sources...
- without privileged access...
- using <u>active measurement</u>

4 A N

Outline

- 2 Methodology
 - 3 Experiments

R. Beverly et al. (NPS/CAIDA)

イロト イヨト イヨト イヨト

- Fundamentally, our work is active fingerprinting
- Uses an identifier from the router's IPv6 control plane stack

Obtaining an Identifier for IPv6 Routers

- We leverage our prior work on IPv6 alias resolution: too-big-trick (PAM 2013), speedtrap (IMC 2013)
- To remotely obtain an identifier without privileged access

- Fundamentally, our work is active fingerprinting
- Uses an identifier from the router's IPv6 control plane stack

Obtaining an Identifier for IPv6 Routers

- We leverage our prior work on IPv6 alias resolution: too-big-trick (PAM 2013), speedtrap (IMC 2013)
- To remotely obtain an identifier without privileged access

IPv6 Fragmentation Background

- No in-network fragmentation in IPv6
- If next hop interface MTU is smaller than packet, routers:
 - drop packet
 - send ICMP6 "packet too big" (PTB) to source
- IPv6 stack receiving PTB:
 - Caches per-destination maximum MTU
 - Sends packets with length > PMTU using IPv6 fragment header extension
- IPv6 fragment header contains ID

Prior Insight:

Router's control plane also implements PTB cache and sends fragments if necessary – providing an ID

IPv6 Fragmentation Background

- No in-network fragmentation in IPv6
- If next hop interface MTU is smaller than packet, routers:
 - drop packet
 - send ICMP6 "packet too big" (PTB) to source
- IPv6 stack receiving PTB:
 - Caches per-destination maximum MTU
 - Sends packets with length > PMTU using IPv6 fragment header extension
- IPv6 fragment header contains ID

Prior Insight:


Router's control plane also implements PTB cache and sends fragments if necessary – providing an ID

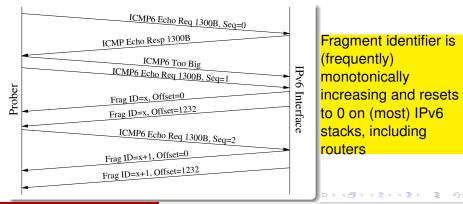
R. Beverly et al. (NPS/CAIDA)

Too-Big Trick

Too-Big Trick

- Our prober sends ICMP6 echos and fake PTBs
- Inducing remote IPv6 router to originate fragmented packets

R. Beverly et al. (NPS/CAIDA)


PAM 2015 11 / 28

Too-Big Trick

Too-Big Trick

Too-Big Trick

- Our prober sends ICMP6 echos and fake PTBs
- Inducing remote IPv6 router to originate fragmented packets

R. Beverly et al. (NPS/CAIDA)

PAM 2015 11 / 28

Methodology

High-Level:

. . .

- Periodically probe IPv6 routers with PTB and ICMP6 echo request (using scamper packet prober)
- For interface k, obtain a time series of fragment IDs and timestamps: F_k = (f₁, t₁), (f₂, t₂), ..., (f_n, t_n) where t_i < t_{i+1}
- If $f_{i+1} < f_i$, then k rebooted between t_{i+1} and t_i

Real example, 3 probes per cycle:

Mar 4 21:30:01: 0x0000001, 0x0000002, 0x0000003 Mar 5 04:25:05: 0x00000004, 0x00000005, 0x0000006

Apr 21 09:39:12: 0x00001b0, 0x00001b1, 0x000001b2 Apr 21 16:42:54: 0x0000001, 0x0000002, 0x0000003

< 日 > < 同 > < 回 > < 回 > < 回 > <

Too-Big Trick

Real-world heterogeneity

Not as easy in practice:

- Odd behaviors, corner cases require de-noising, e.g.,:
 - ..., 405, 406, 407, 850815256, 408, 409, ...
- Different router vendors == Different IPv6 stacks
- BSD-based devices (notably Juniper) return random fragment IDs
- Linux-based devices return cyclic fragment IDs

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cyclic Fragment IDs

Linux Kernel 3.1-3.9:

- Sets the fragment counter per-*inet peer* using keyed hash of destination IP
- The per-inet peer data structure times out or is garbage collected
- Hence, we get the same repeating sequence every probe cycle
- Can still detect reboots, because the random secret for the hash is recomputed at system start!

Real example, 3 probes per cycle:

Mar 27 16:42:31: 0x7943f889, 0x7943f890, 0x7943f891 Mar 27 22:01:41: 0x7943f889, 0x7943f890, 0x7943f891

- - -

Apr 26 17:45:02: 0x7943f889, 0x7943f890, 0x7943f891 Apr 26 22:52:12: 0xc2f9dcd7, 0xc2f9dcd8, 0xc2f9dcd9

Cyclic Fragment IDs

Linux Kernel 3.1-3.9:

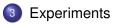
- Sets the fragment counter per-*inet peer* using keyed hash of destination IP
- The per-inet peer data structure times out or is garbage collected
- Hence, we get the same repeating sequence every probe cycle
- Can still detect reboots, because the random secret for the hash is recomputed at system start!

```
Real example, 3 probes per cycle:
```

Mar 27 16:42:31: 0x7943f889, 0x7943f890, 0x7943f891 Mar 27 22:01:41: 0x7943f889, 0x7943f890, 0x7943f891

```
• • •
```

Apr 26 17:45:02: 0x7943f889, 0x7943f890, 0x7943f891 Apr 26 22:52:12: 0xc2f9dcd7, 0xc2f9dcd8, 0xc2f9dcd9


R. Beverly et al. (NPS/CAIDA)

IPv6 Router Uptime

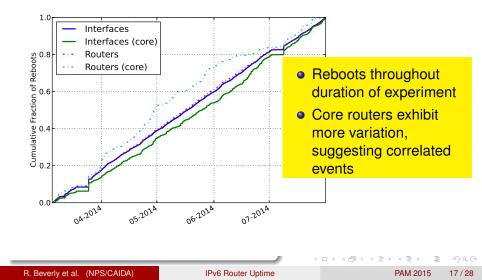
Outline

2 Methodology

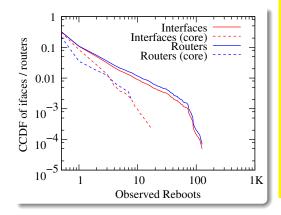
イロト イヨト イヨト イヨト

Data Collection

Data

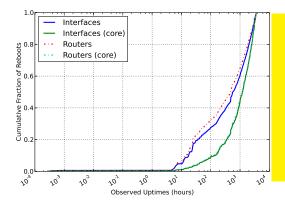

- Gathered 66,471 IPv6 interfaces from CAIDA's Ark traceroutes (31,170 unresponsive, 13,330 random)
- We probed 21,539 distinct IPv6 router interfaces that return monotonic or cyclic fragment IDs
- Probed each on average every 6 hours from March 5 July 31, 2014 from single native IPv6 vantage point

Interface Reboots \rightarrow Router Reboots (see paper for details)


- Use Speedtrap to resolve aliases
- Separate into "core" routers (intra-AS) versus border routers (inter-AS)

• • • • • • • • • • • • •

Results



Results

- Overall, 68% of interfaces had no reboots, while 22% had one
- Core routers and interfaces relatively more stable
- 78% of core routers had no reboots, 98% rebooted ≤ 2 times

Results

- Experiment duration: about 150 days
- 15% of uptimes were less than 1 day
- Median uptime of 23 days
- 10% had uptime ≥ 125 days

R. Beverly et al. (NPS/CAIDA)

PAM 2015 19 / 28

Validation

Solicited Validation from Operators of 12 ASes:

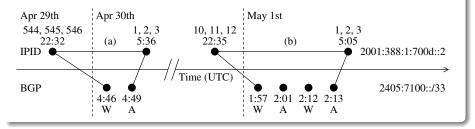
- 5 operators confirmed our inferences
- Total of 15 router restarts validated
- No false positives
- Reboots on May 18 and June 1, 2014:
 - Operators confirmed; due to TCAM exhaustion
 - Predates 512K FIB bug discussion in August, 2014!

When do Routers Reboot

- Geolocate routers to infer timezone using NetAcuity
- Weekend reboots much less likely (maintenance windows during week)

Reboots by day-of-week

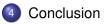
	Core		All	
Monday	110	9.7%	925	11.2%
Tuesday	226	20.0%	1684	20.4%
Wednesday	227	20.0%	1553	18.8%
Thursday	197	17.4%	1313	15.9%
Friday	157	13.9%	1120	13.5%
Saturday	115	10.2%	864	10.4%
Sunday	101	8.9%	813	9.8%
	1133		8272	


Control Plane Correlation

Correlation

- Finally, we sought to determine if the reboot events we infer are also observed in the control plane
- Manually searched routeviews BGP data for a prefix withdrawal corresponding to a reboot
- Focused on customer routers single-homed to provider (where a globally visible withdrawal is likely)

Example Reboot Correlation w/ BGP


- CPE router at AAD, customer of AARNet
- Upper dots represent our inferred reboot events for router with interface 2001:388:1:700d::2
- Lower dots represent global BGP events for the prefix (2405:7100::/33) announced by the router

R. Beverly et al. (NPS/CAIDA)

Outline

- Infrastructure Uptime
- 2 Methodology
- 3 Experiments

イロト イヨト イヨト イヨト

Summary

- Developed technique to infer the uptime of remote IPv6 devices without privileged access
- First quantitative wide-scale study of IPv6 router availability and reboot behavior

Thanks!

Questions?

http://www.cmand.org/ipv6/

Backup Slides

イロト イヨト イヨト イヨト

Limitations

Limitations of methodology:

- Only applicable to IPv6; IPv4 is subject of current research
- Does not work for random fragment IDs (Juniper)
- Inferred reboot granularity limited to polling rate
- Can't detect multiple reboots that occur between polls
- Can't attribute reboot to root cause (power failure, software fault, upgrade)

Future Directions

Future Directions

- Probe and characterize other IPv6 critical infrastructure, e.g. web and DNS servers
- Smarter/faster probing techniques to increase granularity of reboot time inferences
- Broader correlation with IPv4 and IPv6 BGP events
- Develop uptime inferences for IPv4