Applying Stable distribution on congestion latency signatures

AIMS 2018: Workshop on Active Internet Measurements March 13th, 2018 San Diego Supercomputer Center University of California San Diego

Esteban Carisimo, J Ignacio Alvarez-Hamelin and Amogh Dhamdhere

JBA

Universidad de Buenos Aires

Modeling latency distribution

Previous models

- Weibull [Papagiannaki,Hernández]
- Lognormal [Fontugne]
- Problems
 - Different acquisition method
 - Did not capture well our data
 - Couldn't reproduce extreme values
- Proposal
 - Stable distribution
 - Fairly popular in Econophysics

Papagiannaki, Konstantina, et al. "Measurement and analysis of single-hop delay on an IP backbone network." *IEEE Journal on Selected Areas in Communications* 21.6 (2003): 908-921.

Hernández, José-Alberto, and Íain W. Phillips. "Weibull mixture model to characterise end-to-end Internet delay at coarse time-scales." *IEE* Fontugne, Romain, Johan Mazel, and Kensuke Fukuda. "An empirical mixture model for large-scale RTT measurements." *Computer Communications (INFOCOM), 2015 IEEE Conference on*. IEEE, 2015. *Proceedings-Communications* 153.2 (2006): 295-304.

The Stable distribution

$$g(k) = \exp\{\delta[ik\gamma - |k|^{\alpha}w(k;\alpha,\beta)]\}$$

$$w(k;\alpha,\beta) = \begin{cases} exp[-i\beta\Phi(\alpha)\mathrm{sign}(k)], \ \alpha \neq 1\\ \pi/2 + i\beta\log|k|\mathrm{sign}(k), \ \alpha = 1 \end{cases}$$

$$\Phi(\alpha) = \begin{cases} \alpha\pi/2 \ \alpha < 1\\ (\alpha - 2)\pi/2 \ \alpha > 1 \end{cases}$$

- g(k) is the characteristic function
- It is defined by four parameters
- a.k.a "paretian stable", "levy stable", "alpha-stable"

Formula as in page xvi. Uchaikin, Vladimir V., and Vladimir M. Zolotarev. Chance and stability: stable distributions and their applications. Walter de Gruyter, 1999.

The Stable distribution

$$g(k) = \exp\{\delta[ik\gamma - |k|^{\alpha}w(k;\alpha,\beta)]\}$$

$$w(k;\alpha,\beta) = \begin{cases} exp[-i\beta\Phi(\alpha)\mathrm{sign}(k)], \ \alpha \neq 1\\ \pi/2 + i\beta\log|k|\mathrm{sign}(k), \ \alpha = 1 \end{cases}$$

$$\Phi(\alpha) = \begin{cases} \alpha\pi/2 \ \alpha < 1\\ (\alpha - 2)\pi/2 \ \alpha > 1 \end{cases}$$

Drawbacks

- Fairly complex expression
- It cannot be expressed in terms of elementary functions.
- Extremely hard to fit Stable to data [McCulloch1986]

Formula as in page xvi. Uchaikin, Vladimir V., and Vladimir M. Zolotarev. Chance and stability: stable distributions and their applications. Walter de Gruyter, 1999.

[McCulloch1986] McCulloch, J. Huston. "Simple consistent estimators of stable distribution parameters." *Communications in Statistics-Simulation and Computation* 15.4 (1986): 1109-1136.

3 important things about the Stable

- 1. It is four-parameter distribution
- 2. Some parametrization can yield a heavy tail distribution
- 3. Normal distribution belongs to the Stable distribution family

- $\alpha \in (0, 2]$: Characteristic parameter. Defines the decrease of the tail
- $\bullet\,\beta\in(-1,1){\rm :}\,{\rm Skew}\,\,{\rm parameter}$
- $\gamma \in \mathbb{R}$: Scale or stretching parameter
- • $\delta \in \mathbb{R}$: Location parameter

Uchaikin, Vladimir V., and Vladimir M. Zolotarev. Chance and stability: stable distributions and their applications. Walter de Gruyter, 1999.

Esteban Carisimo

9

Esteban Carisimo

Dataset & procedure

- Data acquisition
 - pings from Ark to neighbor ASes
 - RTT samples from interdomain links
 - High-frequency Probing
- Fitting Stable distribution to RTTs
 - Libstable (GPU) [Julian-Moreno16]
 - Time window: 10 minutes
 - Latency model: $\log(RTT) \sim S(\alpha, \beta, \gamma, \delta)$

[Julian-Moreno16] Julián-Moreno, Guillermo, et al. "Fast parallel \$ \$\alpha \$ \$ a-stable distribution function evaluation and parameter estimation using OpenCL in GPGPUs." *Statistics and Computing* 27.5 (2017): 1365-1382.

Summary in numbers

- 416M RTT samples
- 5 Ark monitors in 3 major ISPs
- 16 neighbor ASes
- 125 far IPs
- 1667 unique tuples (monitor,farIP,day)

First look at DELTA throughout some days

First look at GAMMA throughout some days

Scatter plot: DELTA and GAMMA altogether COMCAST (atl2-us)—> Google

Esteban Carisimo

Scatter plot: DELTA and GAMMA altogether COMCAST (atl2-us)—> Facebook

Scatter plot: DELTA and GAMMA altogether COMCAST (atl2-us)—> Netflix

Scatter plot frame by frame

Scatter plot frame by frame

Scatter plot frame by frame

Data reduction and congestion signature

System architecture

Conclusions

We introduce the Stable to model latency

We found delta-gamma patterns as an innovative way to detect congestion

 We applied Stable+ML to built an automatic system to detect congestion

