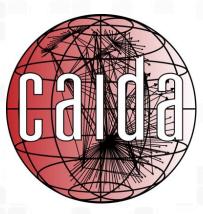


IODA NP: Internet Outage Detection and Analysis


Alberto Dainotti | CAIDA, UC San Diego Nov 13, 2019

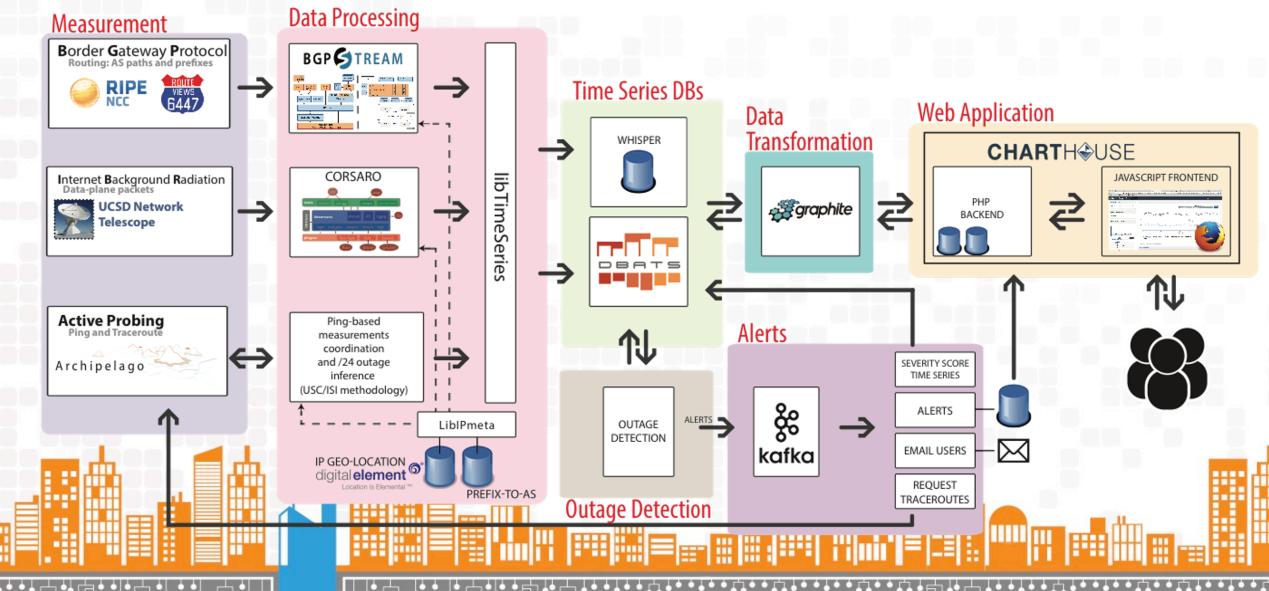
Team Profile

- PI: Dr. Alberto Dainotti Research Scientist
- Team: Alistair King, Rama Padmanabhan, Dan Andersen, Paul Hick, Alex Ma, Marina Fomenkov
- CAIDA Center for Applied Internet Data Analysis University of California, San Diego

Customer Need

- Goal: Timely Detection and Analysis of Internet Connectivity Outages
 - Focus on macroscopic events, affecting the network edge
 - E.g., a connectivity black-out significantly affecting customers of a large network operator or a large geographic area
- Context: Cyber attacks, physical attacks, natural disasters, bugs and misconfiguration, government orders, ...
- Application: Public Safety, Situational Awareness, Disaster
 Recovery, Insurance, Internet Reliability & Performance

Approach Overview


- IODA: Internet Outage Detection & Analysis
 - Combine active and passive measurements both at the data plane and control plane
 - Data aggregation and event detection per Autonomous System (AS) and Geographic Area

BGP


IBR

- Interactive Visualization
- IODA-NP: Next Phase
 - Methodological improvements and evaluation based on ground-truth and cross-validation
 - Reporting events
 - API framework and documentation

Approach - Visualization

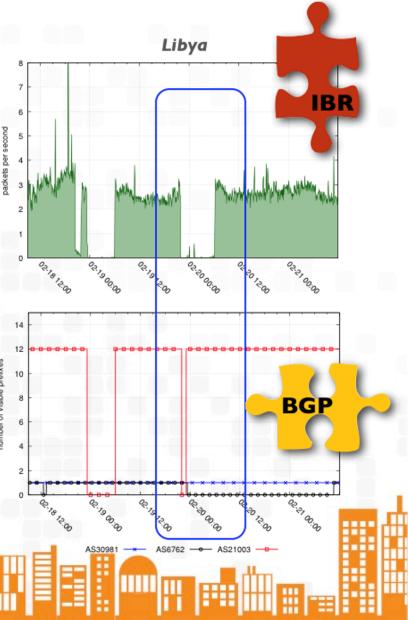
Sł	howi	ng 1 to 15 of 30 entries			Previous Next
	~	Oct 5th 2016 6:20am	Active Probing	791	950
	×	Oct 6th 2016 2:50am	Active Probing	603	949
	×	Oct 6th 2016 2:55am	BGP	70,255	71,563
	×	Oct 6th 2016 3:00am	Active Probing	208	949
	×	Oct 6th 2016 3:03am	Darknet	22	94
	-	Oct 6th 2016 3:28am	Darknet	28	94
	~	Oct 6th 2016 5:50am	BGP	71,527	71,563
	·	7:20pm	Probing		

✤ Regional Outages for Iraq

e: 0.00 - 1744 C Outage Severity L	entries Overall	Search:	BGP	acked Horizon Graphs 💠 Stacked
	Overall			
		Active	ct Mon 3	
	Score 1	Active BGP Darknet	ct Mon 3	Wed 5 Fri 7
50.0k 100k 150k Baghdad	130M	97.8k 1.33k	[Babil] [Salaad-Din]	516 577
Tehran Al-Basrah	51.7M	1.60k 32.3k	At-Ta'mim Al-Basrah	433 552
An-Najaf	91.3k	91.3k	Arbil Baghdad	484 70.28
Babil	70.3k	70.3k	ct Mon 3	Wed 5 Fri 7
Isfahan Iran Karbala'	68.9k	68.9k	# Series: 8 # Points: 15544 Data resolution:	5 minutes
Sala ad-Din	62.7k	62.7k	Active Probing	20 C
****			ct Mon 3	Wed 5 Fri 7
	The second	1.000		
	1111 I III C			· · · · · · · · · · · · · · · · · · ·
	Tehran Istahan Iran Al-Basrah An-Najaf Babil Karbala' Sala ad-Din	Al-Basrah 51.7M An-Najaf 91.3k Babil 70.3k Karbala' 68.9k Sala ad-Din 62.7k	TehranAl-Basrah51.7M1.60k32.3kAn-Najaf91.3k91.3k91.3kBabil70.3k70.3kIsfahanIranKarbala'68.9k68.9kSala ad-Din62.7k62.7k	Tehran Al-Basrah 51.7M 1.60k 32.3k An-Najaf 91.3k 91.3k 70.3k Babil 70.3k 70.3k # Series: 8 # Points: 15544 Data resolution: Isfahan Iran 68.9k 68.9k Sala ad-Din 62.7k 62.7k Active Probing

Benefits

- Near-realtime alerts
- Multi-source
- Visualization
- API
- Risks / Challenges
 - Complex infrastructure
 - Improve resolution
 - Validation


Contrasting telescope traffic with BGP measurements **revealed a mix of blocking techniques** that was not publicized by others

The second Libyan outage involved overlapping of **BGP** withdrawals and packet filtering

LyStateAS

SatAS1

IntAS2 ---

Competition/Alternatives

- Oracle's Internet Intelligence Map
 - Focus on country-level
 - Limited interaction/viz functionalities
- ISI / John Heidemann's work
 - IODA uses ISI Trinocular for one data source
 - IODA focuses on per-AS / geographic aggregations
- Akamai
 - State of the Internet reports and tweets
- Bgpmon.com

BGP only

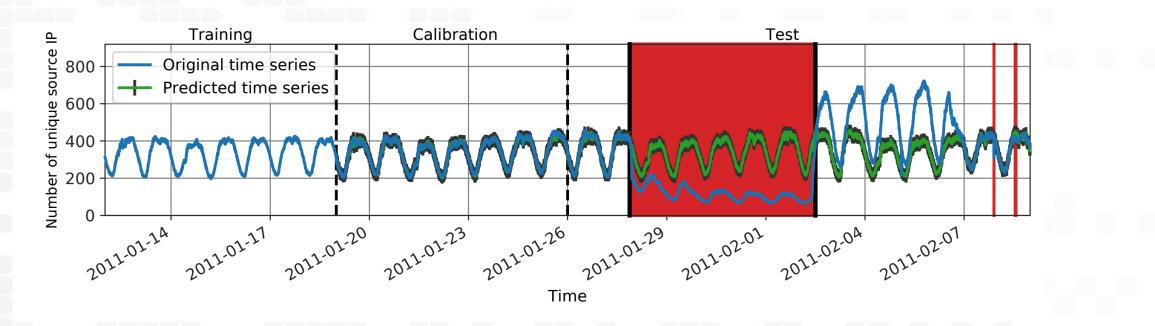
Accomplishments (1/2)

- Methodological improvements for existing inference methods
 - BGP: Improved our approach for prefix geolocation (TMA '19)
 - IBR: Developed a new approach for outage (change point) detection (TMA'19)
- New methodologies and investigations
 - Detecting outages at finer granularity
 - Quantifying the effect of weather upon residential Internet (SIGCOMM '19)
 - Investigation of cross/partial /24 outages (PAM '19)
 - Active Probing: development of a complementary technique (WIP: Zeusping)

Accomplishments (2/2)

- Architecture/DevOps improvements
 - Purchase and deployment of new hardware to support IODA
 - Streamlined active probing management
 - Inferring outages from the IBR data source in near-realtime
 - Automated deployment & configuration management
 - InfluxDB as a potential replacement for DBATS
 - Redesigned approach to handle level-shifts in time series
 - New API for IODA's Alerts
- Towards evaluation against ground truth

Methodological improvements: BGP [TMA'19]


- We improved our approach for geolocating BGP prefixes
 - Some BGP prefixes geolocate to multiple locations: 2% of prefixes map to multiple countries and 27% to multiple cities
 - Our prior approach overestimated outages when such prefixes were withdrawn
 - We improved our approach to better quantify the extent of the outage in different locations when such a prefix was withdrawn
- We identified a new problem: prefix geolocation ambiguity
 - BGP prefixes that contain other prefixes can have ambiguous geolocation
 - When such prefixes are withdrawn, it is challenging to identify which locations were affected
 - We studied and quantified the extent of ambiguity in the global routing table
 - We identified preliminary features that could help resolve the ambiguity (e.g.: different origin ASes)
- Outcome: Increased the accuracy of outages detected using BGP
- TMA '19 paper: <u>https://www.caida.org/publications/papers/2019/geo-locating_bgp_prefixes/geo-locating_bgp_prefixes.pdf</u>

Methodological improvements: IBR [TMA'19]

- IODA currently detects outages for the IBR data source using conservative thresholds
 - The IBR signal exhibits large fluctuations
 - We missed detecting many outages
- We developed a novel technique for outage detection (collab. IIJ & Univ. Strasbourg)
 - Using historical data from the network telescope, the technique employs Seasonal ARIMA (S-ARIMA) to model IBR traffic
 - This model is then used to predict future IBR traffic: when the observed traffic is lower than the predicted traffic, an outage is detected

S-ARIMA-based outage detection

Methodological improvements: IBR

- Prototype:
 - Developed a prototype and evaluated the S-ARIMA-based approach against our current approach
 - The new approach outperforms the current one, detecting two orders of magnitude more outages
 - We published this approach and initial results in TMA '19
 - TMA '19 paper: <u>https://www.caida.org/publications/papers/2019/chocolatine/chocolatine.pdf</u>
- Full development, integration, deployment:
 - Completed the development and initial deployment of the S-ARIMA-based approach for outage detection with IBR
- Testing:
 - We are currently monitoring its performance in terms of stability and data validity
 - Once the testing phase is completed, we plan to switch IODA's production alerting system to this new algorithm

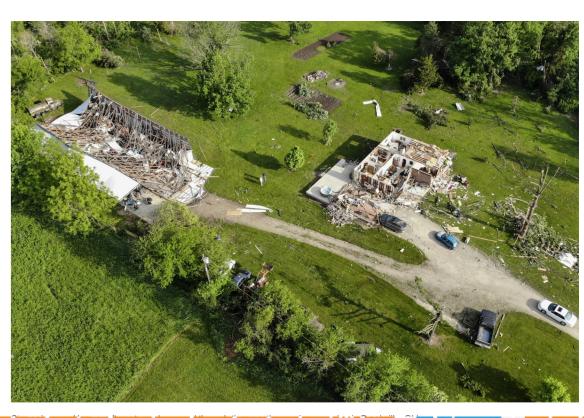
Detecting outages at finer geographic granularity

- IODA currently detects outages at the country-level, region-level, and AS-level
- But some outages may only be visible at finer geographic granularity
 - E.g.: Outages due to localized weather events such as tornados
- We performed initial investigations into detecting outages at fine geographic granularities in the U.S.
 - Specifically, we investigated whether tornado-related outages are visible in IODA's county-level time series signals

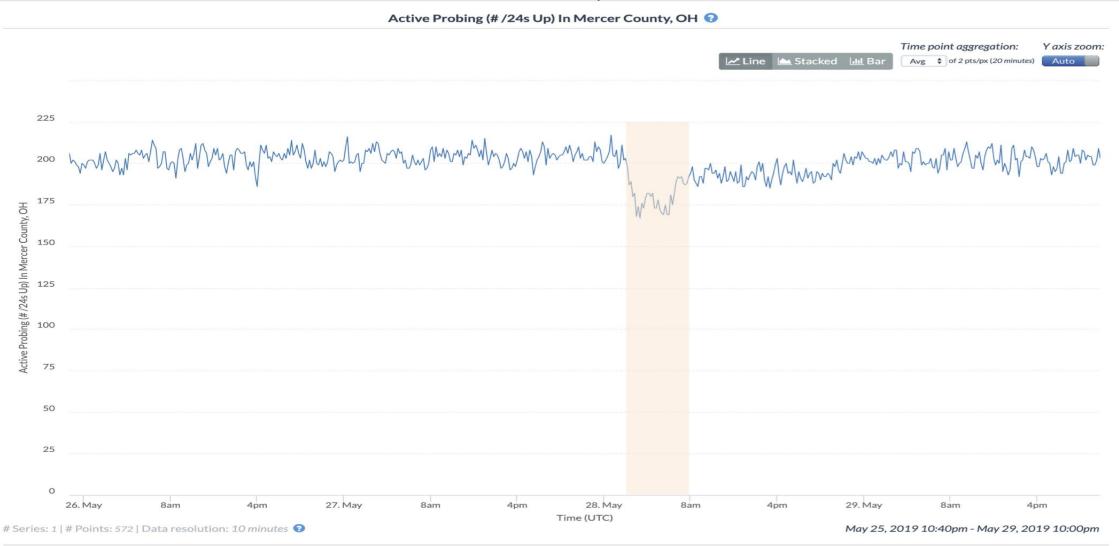
NATIONAL

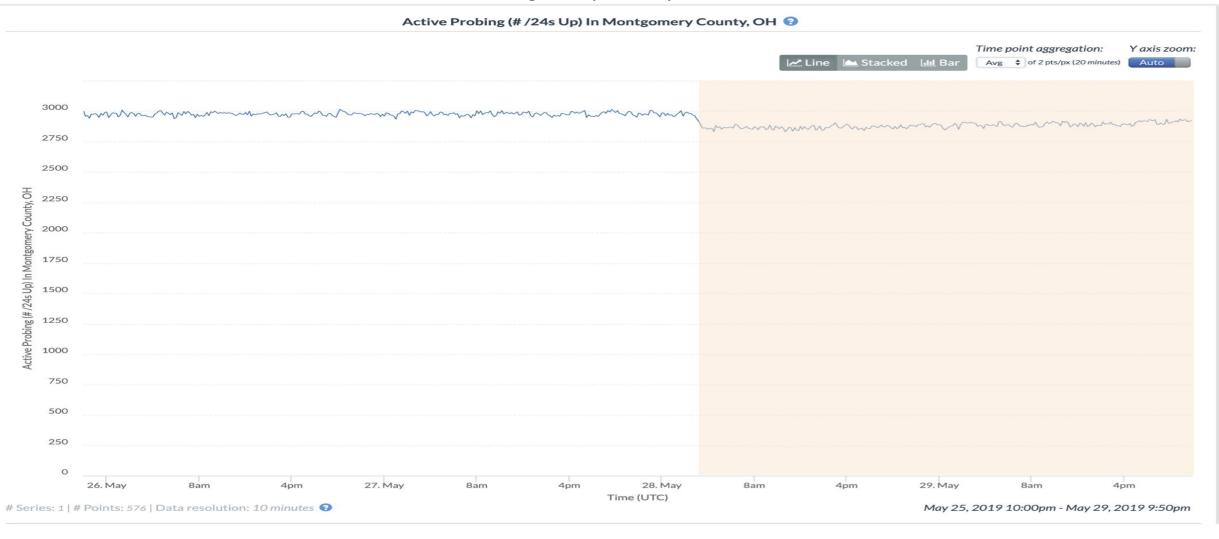
f

Y


 \sim

'Tornado Outbreak' Devastates Ohio Communities With Winds Up To 140 MPH


March 28 2019



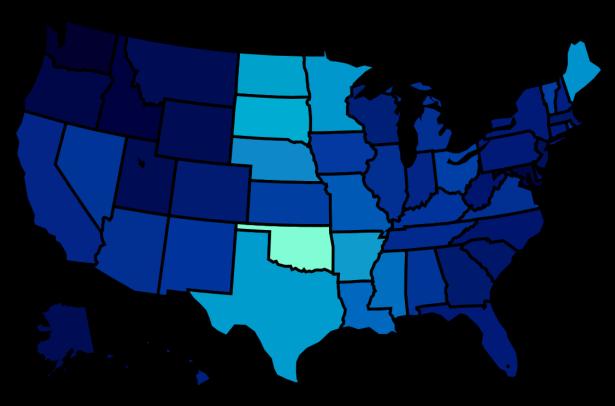
Mercer County, OH

┧╺╺┟╸╺┟╶┷┑┟┲╸┟┲╸╸┟╗╸╺┟╕╸╸┟┇╸╸┎╕╸╺┟┑╺╺┟┑╺┟╻╺┟╴╺┟╶┷╕┟┲╺╽┝╼┧╺╽╺╺╢╶╼╢

Montgomery County, OH

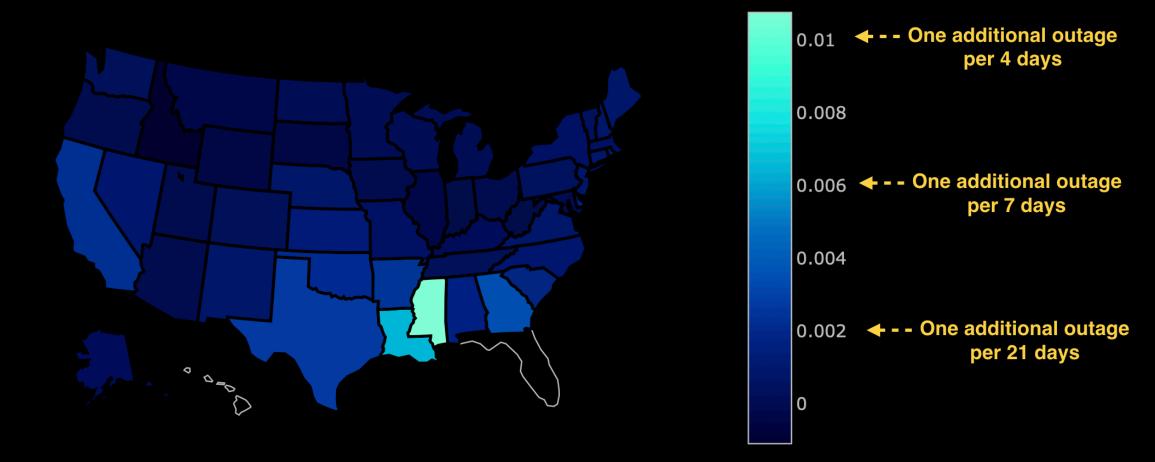
₩

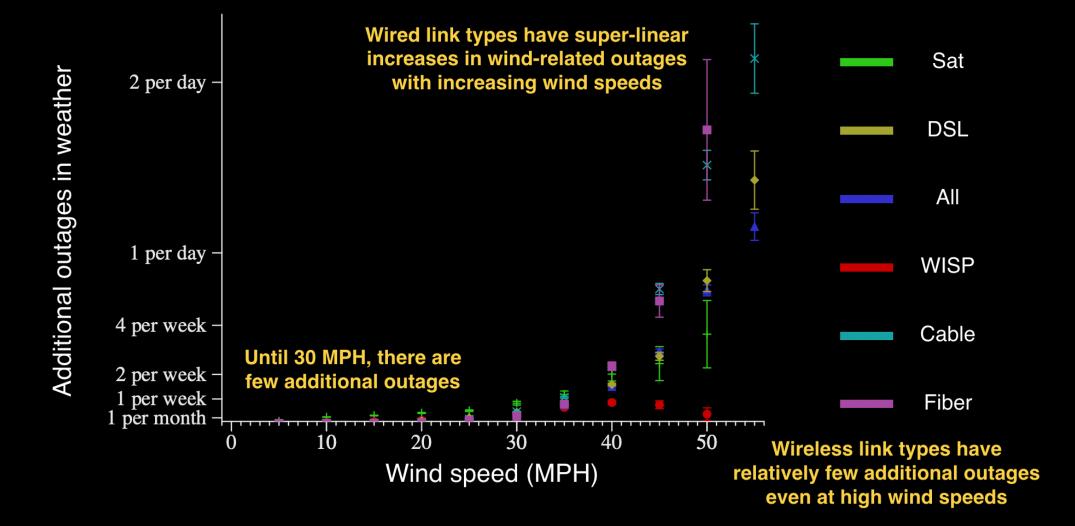
- We were able to correlate a few reports of tornadoes with drops in IODA's time series signals
 - Typically, these drops occurred for the active probing inference method
- However, most tornado reports did not correlate with significant drops in IODA's time series signals



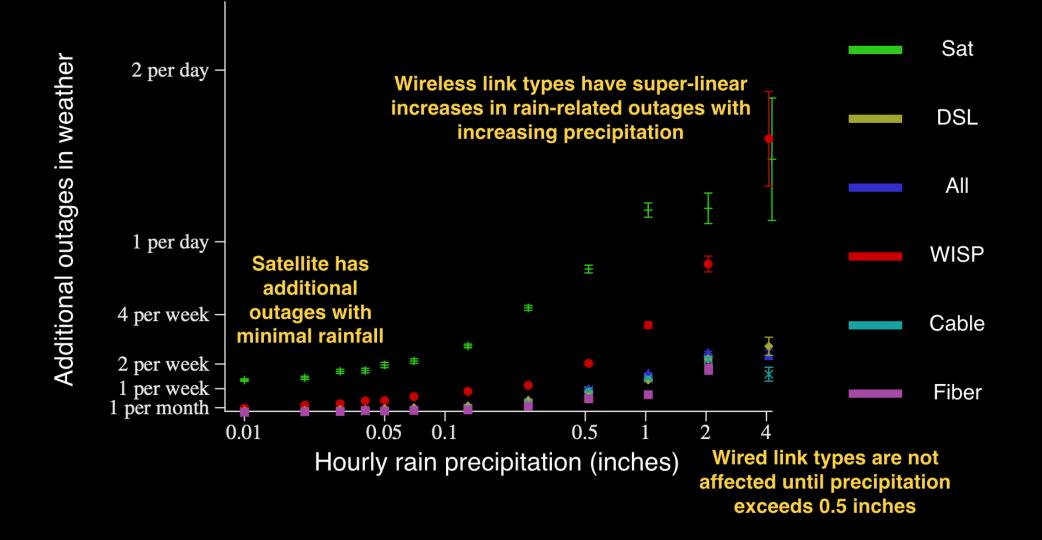
Quantifying the effect of weather using a complementary dataset [SIGCOMM'19]

- We used 8 years of data collected by UMD's Thunderping project to analyze how weather affected residential Internet in the U.S.
 - Thunderping uses forecasted weather alerts from the NWS to identify counties that could experience severe weather
 - Samples individual addresses from multiple providers in these counties
 - Pings them from multiple Planetlab vantage points
- Diverse weather conditions are correlated with increased outage probability
- The effects of weather conditions vary depending upon media-type, geography, and intensity
 - SIGCOMM '19 paper: https://www.caida.org/publications/papers/2019/residential_links_under_weather/residential_ inks_under_weather.pdf


Midwestern states are more vulnerable to rain


Midwestern states have more wireless links

0.005 One additional outage per 8 days
0.004
0.003 One additional outage per 14 days
0.002
0.001 One additional outage per 42 days
0


Southern states are more vulnerable to snow

Wind affects wired links more than wireless links

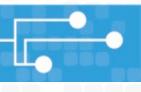
Rain affects wireless links more than wired links

Why was the visibility of weather-related failures lower in IODA?

- IBR does not (yet) seem capable of catching such small events
- BGP does not either: the control-plane is most of the time unaffected
- Active probing detected only a few.
 - IODA's active probing data source uses the Trinocular methodology to detect outages affecting /24 blocks
 - The intuition is that neighboring addresses in /24 blocks would share fate
 - We investigated how often outages affect entire /24 blocks using data from the complementary Thunderping methodology

Identify correlated outages in Thunderping dataset [PAM'19]

- Thunderping pings (sampled) individual addresses in small geographic areas like a county
- Dropout event: when an address that was responding to pings in the previous round stops responding to pings from all vantage points
- Individual vs Simultaneous dropouts:
 - If an individual address has a dropout, it could be due to several causes
 - E.g., users turning off their home router
 - Simultaneous dropouts of multiple related addresses could be due to a common underlying cause
 - E.g., power or network failures
- We developed a statistical technique using the Binomial test to identify correlated dropouts that are highly unlikely to have occurred independently
 - Correlated dropouts are likely due to outage events



Investigate cross/partial /24 outages [PAM'19]

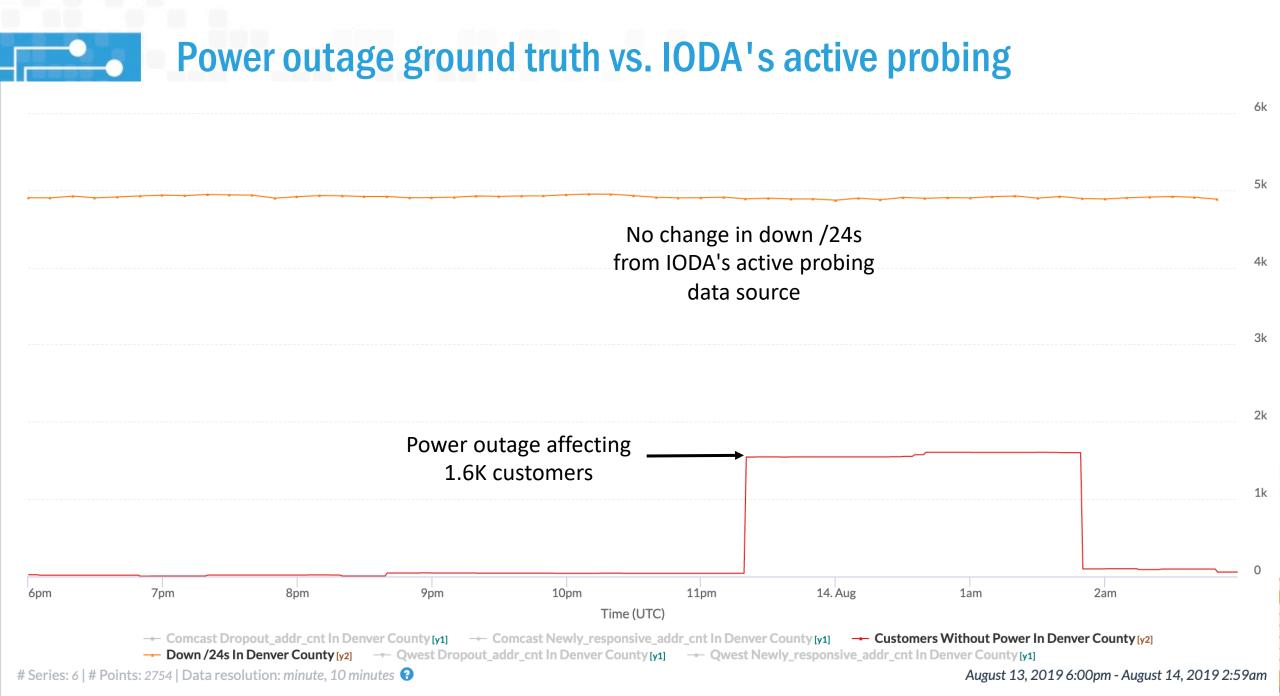
- For correlated outages in Thunderping, we checked how often all addresses in the /24 were affected
- 69% of /24s that had at least one address affected by an outage event had at least one other address that was not affected
- E.g.: in 1 event, 811 addresses from 42 /24 blocks had a correlated failure but 40 of the /24 blocks had at least one address that continued to respond to pings
- Outcome: Even large outage events may affect (multiple) /24 blocks partially
- PAM '19 paper:

related internet.pdf

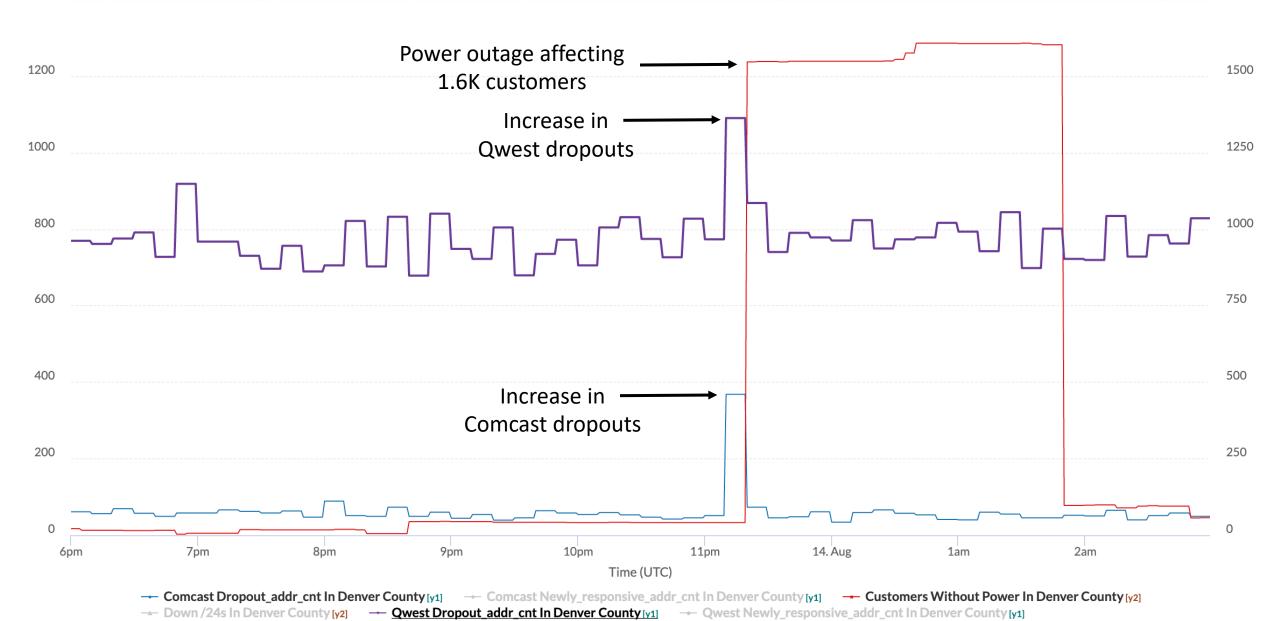
https://www.caida.org/publications/papers/2019/how_find_correlated_internet/how_find_cor

A new (complementary) active probing technique: Zeusping

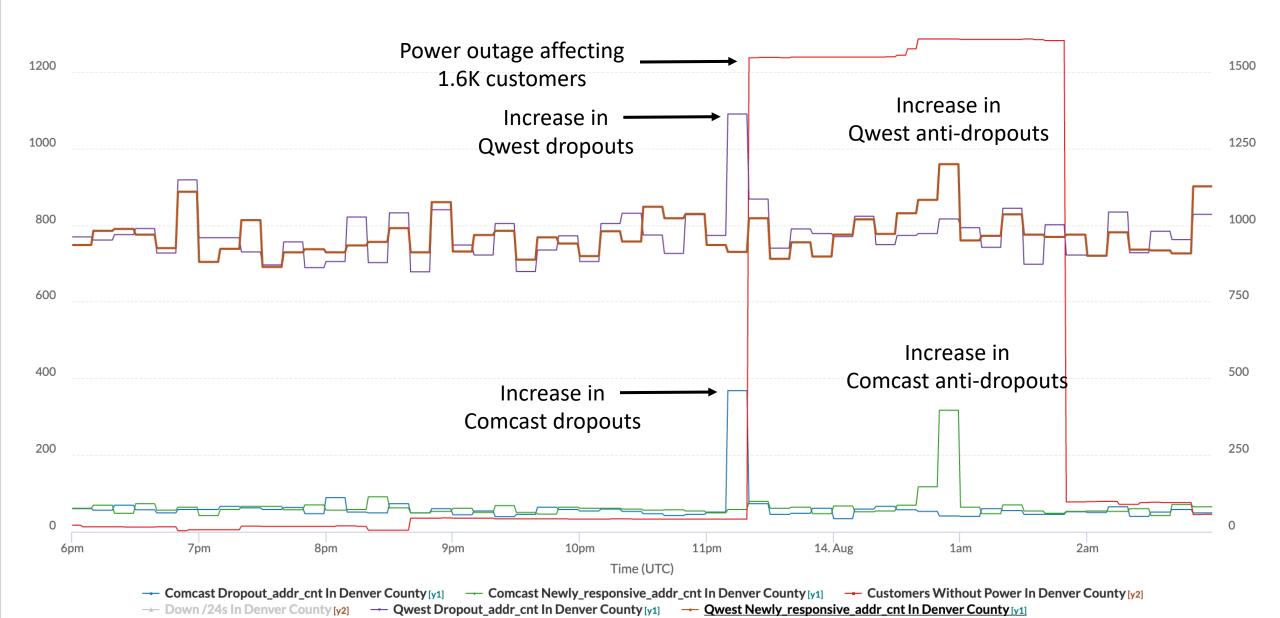
- The Thunderping dataset allowed us to perform preliminary investigations of cross/partial /24 outages but has a fundamental limitation
 - It only measures sampled addresses and only during forecasted weather events
- Our goal with this technique is to characterize outages
 - IP address dimension: How are addresses affected by an outage event related in the IP address space?
 - Geographic dimension: How are the addresses affected by an outage event related by geography?
 - Time dimension: How long do outages last?

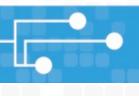

Complementary active probing technique: Zeusping

- Approach
 - Probe all addresses in a geographic region
 - Each address receives a ping every 10 minutes from three AWS vantage points
 - Identify a dropout when an address that is responding to pings in the previous round stops responding to pings from all vantage points in the next round
 - Use simultaneous dropouts to identify a correlated outage event

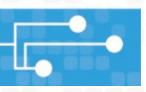

Zeusping: Preliminary results

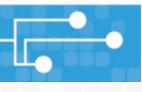
- We chose Colorado as the starting point for Zeusping, since we have a source of ground truth power outages in the state
 - Xcel Energy, the largest power provider (estimated to be ~80%) in Colorado, displays live power outages on their website
 - https://www.outagemap-xcelenergy.com/outagemap/?state=CO
 - We have been scraping this data since March 2019, loading it into IODA
- Probed 4M addresses in Colorado since mid-August
 - 1.7M Charter addresses
 - 1.2M Comcast addresses
 - 1.1M Centurylink addresses




▋▖▁▌▖▖ŢĬ▖▖᠙▖▖♀ŢĬ。▖ŢĬ。。᠙▖ᡫ▌᠅᠙ヾ゜゜

Power outage ground truth vs. Zeusping


Power outage ground truth vs. Zeusping

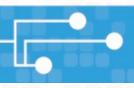

Purchase and deployment of new hardware to support IODA

- Purchased and deployed an SSD cluster node
 - Part of time series collection and storage cluster
 - Configured to store and serve IODA time series data
- Purchased and deployed an object storage server
 - Added to CAIDA's OpenStack Swift object storage cluster
 - This cluster is used for storing raw IODA measurement data
 - Total capacity of Swift cluster is now 1.65 PB

Streamlined active probing management

- Configured two machines dedicated to active probing measurements
- Streamlined the process of generating and deploying new probelists
 - Probe-lists contain the addresses that will be probed
 - Automated the generation and distribution of new probe-lists to probers
- Outcome: Increased the reliability of our infrastructure for active probing

Inferring outages from the IBR data source in near-realtime (1/2)


- Previously, IODA's outage detection with IBR had a theoretical minimum detection latency of 1 hour
 - Data was processed in 1-hour batches, resulting in this theoretical minimum
 - In practice the latency was usually ~2hrs, sometimes days (in the aftermath of system failures)

Inferring outages from the IBR data source in near-realtime (2/2)

- Developed state-of-the-art realtime data-collection, distribution, and analysis systems
 - Deployed new 10Gbps-capable packet capture and distribution software
 - Rearchitected Corsaro and time series plugin to be highly parallel and efficient
 - Tested and deployed this system into our production environment
- Outcome: Reduction of outage detection latency from multiple hours to <2 minutes

Automated deployment & configuration management

- Goal: Automatically deploy appropriate configuration files to different Virtual Machines (VMs) running IODA's front-end web application
 - E.g.: when a Github change is pushed, the VMs automatically deploy the latest code
- Implemented a new (Puppet-based) configuration management environment
 - Completed a prototype environment for the IODA HTTP API service
 - Ported all components of the IODA web application infrastructure
- Outcome: Improves the reliability (e.g., reduced downtime) and maintainability of IODA

Redesigned our approach to handle level-shifts in time series

- Previously, level-shifts in the time series signals of IODA's data sources resulted in numerous incorrect outage alerts
- We performed a fundamental redesign of the architecture of IODA's outage detection module: Watchtower
 - Investigated tradeoffs in how IODA deals with alerts
 - Rewrote the Watchtower component to make it more flexible and modular
- Outcomes:
 - Reduced outage detection latency to within the next data interval
 - Reduced "structural" false positives
 - Released as open source (<u>https://github.com/caida/watchtower-sentry</u>)

New API for IODA's alerts

The Common Outage Data Format

- We collaborated with PARIDINE performers (John Heidemann, Matthew Luckie, ...) to produce a data format for exchanging information about Internet outages
- https://www.isi.edu/publications/trpublic/pdfs/isi-tr-729.pdf
- We redesigned IODA's Alerts API
 - We examined various use-cases for IODA's alerts and considered different fields we should expose to users
 - We implemented the new API and ensured it emits alerts in the Common Outage Data Format
 - https://ioda.caida.org/ioda/api

•

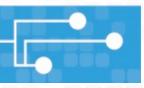
Towards evaluation against ground truth

- We manually investigate known outage events in IODA's time series
 - Some known outage events are reported in the news media (E.g., recent censorship event in Iraq)
 - We also investigate reports about potential outage events from the Internet Freedom community
 - We have actively engaged with #KeepItOn and other Internet Freedom groups (Tibcert, internetshutdowns.in, Venezuela Inteligente)
 - We have also been scraping power outage data from U.S. power companies
 - We have been scraping 9 of the top 10 power companies' power outage datasets since June 2018
 - We have since added 21 more power companies

Current Status

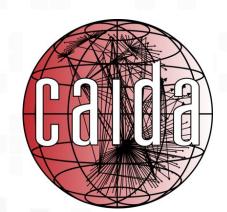
- Prototype running
 - Web dashboard <u>https://ioda.caida.org/ioda/dashboard</u>
 - Twitter <u>https://twitter.com/caida_ioda</u>
 - Blogposts
 - Collaborations (more later)

•


Lessons Learned: what went well

- Outage detection with all data sources now occurs in near real-time
- Performed important methodological and development improvements
- Increased uptake of IODA, several collaborations

Lessons learned: Remaining challenges


- IODA currently lacks visibility into networks that use Carrier-Grade NATs
 - Cellular providers often use this technology
- Outage detection at the /24 granularity has limitations
- Systematic evaluation remains challenging due to incomplete ground truth

Alberto Dainotti

CAIDA, UC San Diego alberto@caida.org 858-534-9249 @AlbertoDainotti

