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Motivation

Is there a causal connection between large-scale
worm Infestations and BGP update message

surges?

sObserved correlation
[Cowie et al., '02]

=Globally visible
BGP update bursts

=Correlated with
Code Red v2 &
Nimda
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Motivation
« Use simulation to help answer...
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Part 1; From Worm to Scans
« Relying on related work on worm studies

= Moore, “Code-Red: a case study on the
spread and victims of an Internet worm?”,
IMW’02

m Staniford et al., “How to Own the Internet In
Your Spare Time”, USENIX Security '02

= And numerous security advisories, code
analysis reports, etc.



Part 1: From Worm to Scans

Work on Modeling/Simulation:

m “A Mixed Abstraction Level Simulation Model of
Large-Scale Worm Infestations”,
to be presented at MASCOTS’'02 Symposium

Key Issues addressed:

= How to efficiently simulate a model with both
m Worm
m Infrastructure detall

= develop/investigate:
m Epidemic models
s Memory constraints and model scalability



Current Work
Part 2: Effects of BGP — Back to data
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Questions

m Is it possible to detect traces of (remote)
sources of instabllity, including session resets,
from the BGP update data?

m If so, Is there a significant increase In resets
during the worm events that could indicate
causal effects from worm?

m If so, where were these occuring? In large

transit ASes, or small edge ASes?

m This could give us clues for causal link conjectures to
model...



Sneak Preview of Coming
Attractions

m Early attempts at detecting BGP session resets
m Using the “BGP RTG” tool, [Maennel and Feldman]

m Filtering collection point Peer OPENS
= Eliminating measurement artifacts

m Current efforts
m Using “per AS update bursts”
m Look for AS pair drop-outs

m Summary / Conclusions



The “BGP RTG” Tool

m BGP update message analysis tool developed
at Saarland University

m Includes heuristic for detecting (remote) BGP
session resets

m Described In
“Realistic BGP Traffic for Test Labs”,
SIGCOMM’02

m Could we use it to detect and locate
hypothesized session resets (and router
crashes) in the data?



BGP RTG: Reset Heuristic

Session reset heuristic

Look at each individual prefix update
Move a 6 minute sliding window over the updates

If a “large” fraction of the prefixes originating or
transiting by an AS have been updated within the
window this indicates a session reset, and these
updates/ASes are marked as part of a reset.

Definition of “large” fraction:
m Origin AS: 80%
m Transit AS: 20%
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Using BGP RTG

m EXx Output: long ASCII records...

995487192|A|134.222.87.12|286| 12.32.72.0/23|286 209 17142

IGP  |134.222.87.12||||NAG| |32409.3303 |2 |:]4. |27 |AA-DIFF|ASPath-way-shorter |209 |13904-
>17142|17142only origin | 286_ 89% 209  86% 13904  79% 17142  75%

|2 |111 [0.]2. [#3 [flapping |100% | (17142) *100%*both 13904 **28%*0ldAS 286 0% both_ 209 0% both_
|2|13904 17142 | | 05| instable ||  141] 4. 1/ 56(]0%)|(5x 1x )

m Marks ASes “involved in suspected session resets”
m Meaning “ASes having router(s) with session reset(s)”
m Appears to implicate too many ASes...

m if transit AS, also appears to implicate originating ASes further
down the path

m Multiple markings of the same AS over different prefix update

= We count the implicated ASes and check to avoid
counting the same AS multiple times
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Observations

m One or two Peers appear to show an increase
In “suspected resets” during the worm events
compared to baselines

m However, the majority of data show no
significant difference

m If the “globally observable™ hypothesis is true,
then we would expect a larger impact than we
saw.
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Conclusions

Some possible explanations:
m Inappropriate use of tool.

m Post-processing (counting) too restrictive.

m Bugs in the analysis code
= Who, us, write buggy code?

m “Unusual level of resets” hypothesis is wrong.
(Possible, but not conclusively shown.)

= Reliably detecting “remote” session resets
seems difficult...
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Some Comments on Heuristic

m “Small” ASes advertising only one or two
prefixes will tend to be indicated whenever
there’s a change

m Updates could be due to internal route
changes, not only resets
= Not exactly clear how the BGP RTG tool deals with
this
= Could be under-counting due to update
suppression from high transit connectivity
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BGP-worm correlation:
Just an artifact?

m Critique (Wang et al.): BGP-worm correlation
was largely due to the table dumps induced by
collection point session resets.

m Response: Such resets will certainly inflate the
update counts. Let's filter them out and find out
If there's still a correlation.

m Wang et al. use a 25 minute filter
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Filtering Table Dumps

m Hypothesis 1: Prefixes in a table dump are sent
In monotonically increasing order.

m If true, after an OPEN Is seen, simply filter
out all prefixes until a decrease Is seen In
consecutive prefixes.

m It Is false. For the RIPE peers, the prefixes
are roughly in increasing order, but many are
not.
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Filtering Table Dumps

m Hypothesis 2. There are no repeated prefixes
In updates until the full table dump Is complete.

m If true, after an OPEN Is seen, simply filter
out all prefixes until a repeated prefix is seen.

m |t Is false. For the RIPE peers, some repeats
are clearly seen during the middle of what is
obviously a table dump.

e It is not known if this is a bug or a new update
mixed into the middle of the dump.
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Filtering Table Dumps

m Hypothesis 3: A table dump should not invoke
the rate limiting (MRAI) timer, therefore there
should not be any significant gaps in time
between advertisements in a table dump.

m If true, after an OPEN is seen, simply filter out all
prefixes until a gap on the order of the timer delay is
seen.

m [t appears to be true. The number of prefixes
counted between an open and a gap in time closely
matches the previous table size heard from each
peer.
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‘No-Gap” Filtering

m removed 2.4 million advertisements on Sept 18 (35.9%)
m Wang et al. heuristic removed 2.7M (40.2%)

— No OPENs on July 19 (Code Red)!

— September 18 (Nimda):
4 hr sliding window median of prefix counts, before and after

filtering is only slightly reduced

— after filtering, there is still a strong correlation between
the worm and total prefix advertisement counts

(September plot on next slide)
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Before and After Filtering
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Filtered Prefix Advertisements
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Reset Detection

m We know that a reset results in updates, but
how can we associate a subset of updates with
a particular reset?

m Observe: A reset iIs composed of two distinct
events:

m session loss

« typically results in a (possibly long) burst of advertisements;
may end in either withdrawals or advertisements

m session reestablishment

« typically results in a burst of advertisements, possibly with
some intermingled withdrawals, but always ends in
advertisements
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Hypotheses

m session reestablishment will result in a burst of
advertisements with common AS path prefixes

= the final AS number in the prefix is the AS in which
the reset occurred
m Identifying resets Is easier the closer the reset is
to the collection point

m less time for session to reestablish before new
updates are propagated

® more chance that the session was on the path used
by the collection point
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Ongoing Work

Using per-AS update bursts

= Motivation
m  Determining the root cause of single updates (from a single
vantage point) is very difficult
[T. Griffin, “What is the sound of one route flapping?”]
m  We try to circumvent these problems by
o Coarser view: study update bursts rather than individual updates

 Plan to correlate data from multiple viewpoints
(Bursts, being coarser, seem more amenable to
identification/correlation between viewpoints)

m  Also, resets/router crashes imply

« Want to know when a whole AS is affected
(unreachable/"detour” route) as opposed to single prefixes
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Definition

burst

ASn — t

| P
W —~

quiet period of at least T minutes

v

updates for
prefixes originated
by AS n

m Burst of updates (advertisements or withdrawals) of prefixes
originated by AS n
m Burst type:
m advertise — if last seen prefix updates are all advertisements
m withdraw — if last seen prefix updates are all withdrawals
m undefined — otherwise (some prefixes advertised, some withdrawn)
Meant to reflect “stable state” of AS after burst
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\ViIsualization

Driving questions
m Is there a qualitative difference in updates during worm events?
m |s it attributable to edge or core ASes?

Why visualize?
m Try to provide a fathomable view as close to “raw data” as possible

m Applying aggregate measures or statistics too early can be
misleading...
(discouraged by failed attempts to come up with statistics...)

— Look at the collected bursts over single/multiple peers and for as
many affected ASes as possible.

Data shown here is after peer OPEN filtering.
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Peer 193.148.15.85
X-axis: time [days]
Y-axis: one line / AS

m Sorted by outdegree,
and ordered:

« core ASes towards top

e edge ASes towards
bottom

T =20 mins
Color key:
= White — quiet

m Blue — advertisement
burst

m Red — withdrawal burst

m Gray — undefined burst
type




Some Observations

Differs from other graphs/studies in that it
m breaks data down per originating AS — attempting to show “state”
m attempts to show differences between “core” ASes and “edge” ASes

After peer OPEN filtering: (actually no OPENSs on the 19t)
m Unusual event at this peer on evening of 19th, correlated with the
CRv2 worm.
m Very dense updates affecting many (most?) ASes

m More extended in time than most other similar events — which appear
likely to be session resets in ASes that are not immediate collection
point peers

m  Other peers show similar indications, although less distinctive.
m Thus, visible over all peers — “global”
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Sept 2001 - Nimda

m Same peer:

193.148.15.85

m Appears different from
updates during
Code Red v2 event:

m No similar distinct
withdrawals

m Prolonged “wave”

(several days) of
advertisements —
similar timescale
difference as the worm
events




Next Steps:Hiccup Detection

How to pinpoint instability creators? Look
for AS pairs in flux

B For each AS look for high variance In
number of paths containing it

B Example : 4637 during nimda attack
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All paths containing 4637
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Individual paths containing 4637
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Microscope
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Electron Microscope
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Routing under attack

The worm surges were accidents. What could
happen If someone attacked routers?

m Wang et al. suggest that most of the surge Is
explainable by instabllity in a few edge ISPs

m What if someone went after BGP with malice
In their heart?

 All it takes is high utilization at high priority
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Summary

www.cs.dartmouth.edu/~nicol/papers/mascots2002.ps.qz )

m Collection point peer OPEN filtering

m Validated heuristic — (results similar to [Wang et al.])

m Does not change conclusions of an advertisement surge during worms

m Locating distant BGP instability creators (including session resets) is not
easy...

m Explicitly trying to avoid some of the problems indicated by [Griffin]
through:

* Looking at coarser structure: bursts rather than single updates
« Correlating multiple vantage points (planned)
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