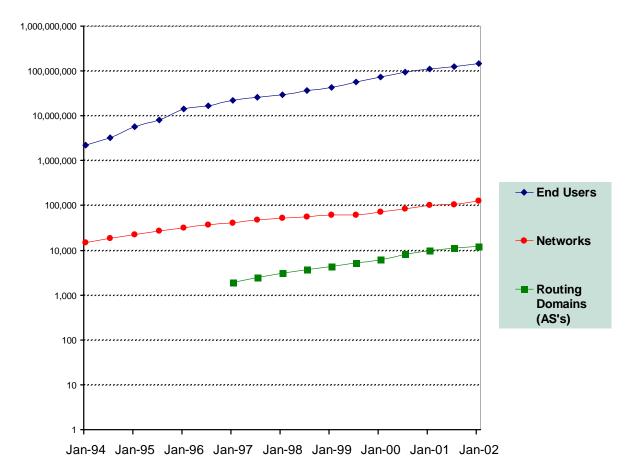


Ping Pan and *Henning Schulzrinne* Columbia University ISMA Workshop – Leiden, Oct. 2002

Reservation scaling

- CW: "per-flow reservations don't scale"
- \rightarrow true only if every flow were to reserve
- may be true for sub-optimal implementations...
- Based on traffic measurements with BGP-based prefix and AS mapping
- looked at all protocols, since too little UDP to be representative



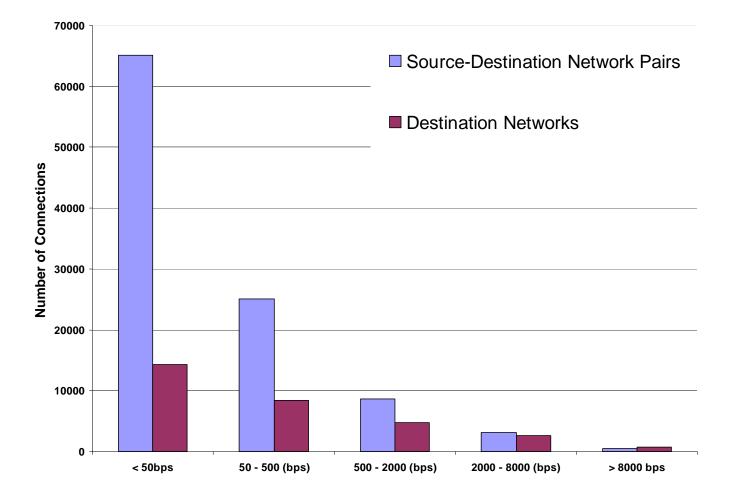
- Reserve for sink tree, not source-destination pairs
 - all traffic towards a certain network destination
 - provider-level reservations
 - within backbone
 - high-bandwidth and static trunks (but not necessarily MPLS...)
 - application-level reservations
 - managed among end hosts
 - small bandwidth and very dynamic flows
- Separate intra- and inter-domain reservations
- Example protocol design: BGRP

Estimating the max. number of reservations

- Collected 90-second traffic traces
 - June 1, 1999
- MAE West NAP
- 3 million IP packet headers
- AS count is low due to short window:
 - were about 5,000 AS, 60 network prefixes then
 - May 1999:
 - 4,908 unique source AS's
 - 5,001 unique destination AS's and
 - 7,900,362 pairs (out of 25 million)

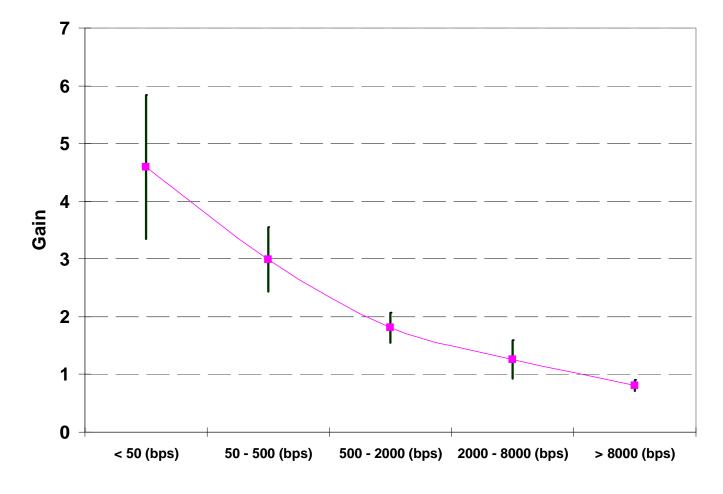
A traffic snap shot on a backbone link

Granularity	flow discriminators	potential flows
application	source address, port	143,243
	dest. address, port, proto	208,559
	5-tuple	339,245
IP host	source address	56,935
	destination address	40,538
	source/destination pairs	131,009
network	source network	13,917
	destination network	20,887
	source-destination pairs	79,786
AS	source AS	2,244
	destination AS	2,891
	source-destination pair	20,857


Columbia Computer Science

How many flows need reservation?

- Thin flows are unlikely to need resource reservations
- Try to compute upper bound on likely reservation candidates in one backbone router
- Eight packet header traces at MAE-West
 - three hours apart on June 1, 1999
 - 90 seconds each, 33 million packets
 - bytes for each
 - pair of source/destination route prefix
 - destination route prefix



Distribution of connection by bandwidth

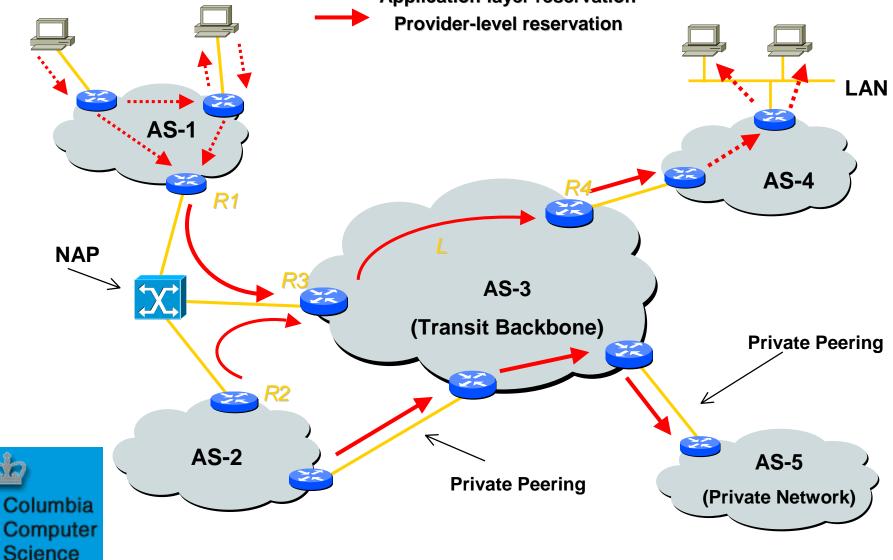
Most packets belong to small flows:

- 63.5% for source-destination pairs
- 46.2% for destination-only
- only 3.5% (3,261) of the source-destination pairs and 10.9% (1,296) of destinations have average bit rate over 2000 b/s

thus, easily handled by per-flow reservation

 more above-8000 b/s destination-only flows than source-destination flows

Iarge web servers?


Aside: Estimating the number of flows

In 2000,

- 4,998 bio. minutes ~ 500 bio calls/year
 - Iocal (80%), intrastate/interstate toll
- 15,848 calls/second
 - not correct \rightarrow assumes equal distribution
- AT&T 1999: 328 mio calls/day
 - 3,800/second

The Hierarchical Reservation Model

- Communications relationships
 - granularity and "completeness"
 - flow distribution
- Questions:
 - traffic seems to have changed qualitatively
 - more consumer broadband, P2P
 - see "Understanding Internet Traffic Streams"
 - protocol behavior
 - funnel-behavior may differ for QoS candidates
 - e.g., large PSTN gateways
 - but no funnel for (e.g.) media servers

