On BGP Convergence and Scalability

Olaf Maennel, Anja Feldmann Technical University Munich, Germany

Outline

- Motivation
- Convergence
 - properties of updates bursts
- Scalability
 - a workload model for a BGP test-bed
- Summary

AS 2 issues an update

AS 6 may reach AS 2 via AS 3

AS 6 may reach AS 2 via AS 3

AS 6 may reach AS 2 via AS 1

AS 6 may prefer to reach AS 2 via AS 1

Example data sets

September 18-25, 2002:

RIPE RIS project

- 95 peers (all RRC*)
- updates for 124,977 different prefixes

Routeviews

- 19 peers + 2 SaarGate
- updates for 124,662 different prefixes

"Updates bursts" consists of several updates:

- same prefix / peer
- short time window

Prefixes are stable for at least "timeout" seconds.

It's only a heuristic!

- timeout too small: can't capture all effects (e.g., damping)
- timeout too large: combine several instabilities in one burst

It's only a heuristic!

- timeout too small: can't capture all effects (e.g., damping)
- timeout too large: combine several instabilities in one burst

Burst duration

Updates in burst

Last / stable updates are important (= result of "best path" selection process)
Question: compare what has changed!

Updates in burst

Datasets: all RRC peers; Time: 09/18-09/25/2002

Last / stable updates are important (= result of "best path" selection process)

Question: when does the next burst starts?

Interarrival time of burst

Datasets: Routeviews, SaarGate; Time: 09/18-09/25/2002

Interarrival properties of updates for the same prefix on different peers.

- pick one peer
- analyze interarrival process based on the selected peer.

Interarrival time on peers

Interarrival time on peers

Updates on different peers

Testing scalability of BGP

Internet evolution today > future

How to judge:

- Router or BGP performance?
 - Evaluate BGP's scalability?

In test lab or real network?

NEED INTERNET VARIABILITY
IN A TEST LAB

Internet in a lab

- Topology
 - Tool: "Dummynet" (Pisa)
- User behavior
 - Tool: "Surge" (BU) / "Surge++" (work-in-progress)
- Routing
 - Tool: "RTG" (this talk)

BGP workload ingredients

- Cause of routing instability
 - Instability creator
- Effect of routing instability
 - Instability bursts
- Baseline for prefix structure/hierarchy
 - Prefix forest
- AS topology and peering policies
 - AS path properties
- Correlations within instability
 - Attribute changes

Cause of routing instability

- Instability creators:
 - BGP session establishment/teardown/reset
 - Session parameter change
 - Link failure/repair
 - Addition/deletion of prefixes
 - Prefix policy changes
- Instability creator
 - Two peering ASes
 - Session AS
 - Prefix

Effect of routing instability

- Instability events:
 - Generated by the instability creator
 - Propagates through the network
 - Hard to capture
 - Generates related updates: update sequence observed in data
- Update bursts
 - Resulting set of updates
 - Observable in data
- Instability creator
 - Prefix: responsible for single update burst
 - AS: set of update bursts

Baseline: prefix structure/hierarchy

Prefix forest

- Node == address space
- Link == subset relationship

AS topology/peering policies

- Correlation between instabilities: AS-path
- Peer view:
 - Directed acyclic graph (DAG)
 - Distance: BGP hops to remote AS
 - Connectivity: # of ASes at distance x
- Per AS information:
 - # of routes: originating/transiting
- Per AS path information:
 - Location of replication

Correlations within instability

- Attribute change
 - New prefix?
 - Old prefix
 - Same attribute set
 - vs. previous update
 - vs. n's previous update
- Attributes
 - Fixed: Originator
 - Policy dependent: communities, MEDs
 - Convergence process: AS path, community

RTG: workload realization

Idea

- Generate updates off-line (stored in file): RTG
- Feed them to system under test: e.g., MRTd

RTG

- Build routing table
- Generate BGP attributes
- Create BGP updates

Parameters

Configuration files (automatic, semi-manual, manual)

BGP test bed setup

Benefits of BGP in a test-lab

- Test settings of BGP parameters
- Test interactions IGP vs. BGP
- Test BGP's scalability
- Test BGP protocol extensions
- Experiment with possible future workloads

<u>Summary</u>

- BGP workload model
 - identify structure in BGP traffic
 - characterize the structure using actual measurements
 - exploit the structure for a workload model
 - propose a tool, RTG, to realize the workload model
- One more component for an Internet Lab
- Towards a better testing methodology

Conclusion

If you are interested, please visit our website:

http://www.olafm.de/

Questions? Comments?!

Thanks!