ISMA Oct '02 October 7-11, 2002 Lorentz Center, Leiden, The Netherlands

Traffic Characteristics and Network Planning

Thomas Telkamp

Director Network Architecture Global Crossing Telecommunications, Inc. telkamp@gblx.net

What to expect?

- A methodology to analyze your traffic, and apply the results to the planning process
- Practical approach
- An example from Global Crossing's network
- <u>BUT</u>, your network might be different in:
 - Scale
 - SLA's
 - Applications
 - Etc...

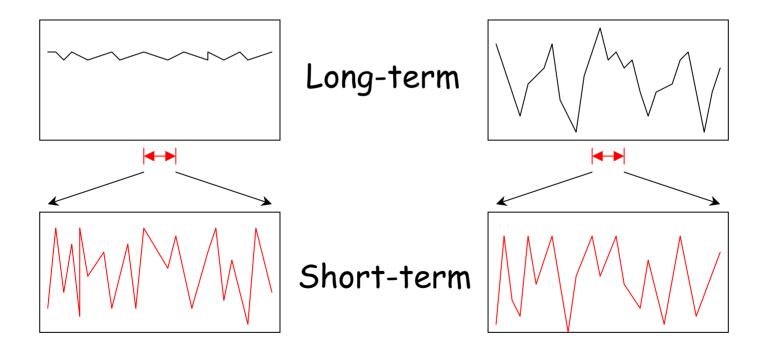
QoS in Backbone Networks

- Requirements are:
 - low delay
 - low jitter
 - low packet loss
- Common practice in backbone networks is overprovisioning:
 - Enough capacity in the network to meet demands
 - In peak times, and under failure conditions
- Prevent significant queue buildup

QoS in Backbone Networks

- The overprovisioning approach is effective
 - See Packet Design presentation at NANOG 22 [1]
- But capital is limited today...
- Can we do better than the rules-of-thumb:
 - "upgrade at 40% or 50% utilization"
 - "maximum 75% utilization under failure"
- Is aggregated traffic well-behaved enough to do "tight" capacity planning?

Related work: Opposite views (!)


- M/M/1 queuing formula
- <u>Self-Similarity</u>

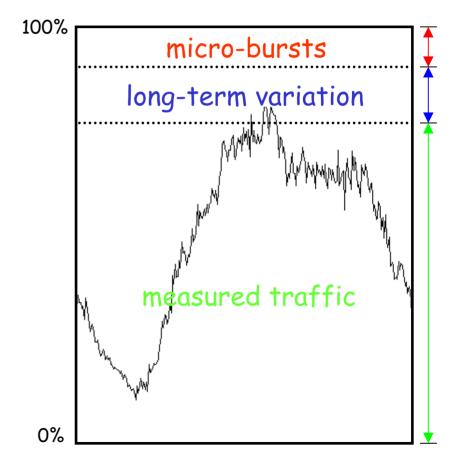
- Markovian
 - Poisson-process
 - Infinite number of sources
- "Circuits can be operated at over 99% utilization, with delay and jitter well below 1ms" [2] [3]

- Traffic is bursty at many or all timescales
- "Scale-invariant burstiness (i.e. self-similarity) introduces new complexities into optimization of network performance and makes the task of providing QoS together with achieving high utilization difficult" [4]

Opposite views

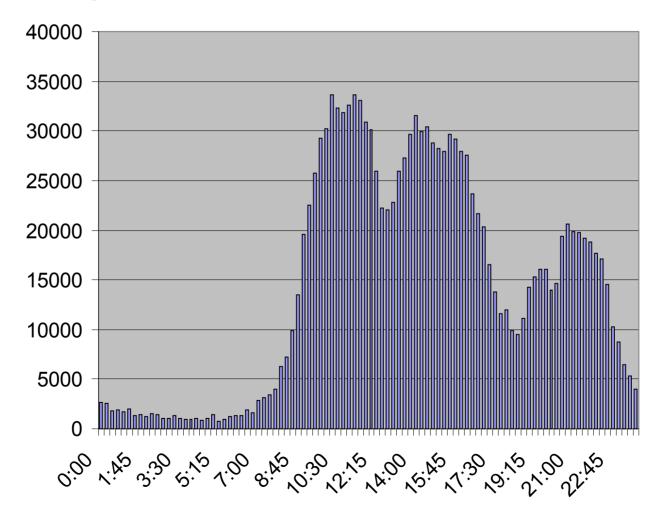
<u>M/M/1 queuing formula</u>
 <u>Self-Similarity</u>

Network Planning Framework


- <u>Demand Characterization</u>
 - Long-term: days/weeks timeframe
 - Short-term: dynamics at sub-5-min timescale
- Failure Analysis
 - Determine failure scenarios and SRLG's
- Simulation and Optimization
 - Determine minimum capacity deployment to meet objectives under normal and failure conditions

Demand Characterization

- Long-term
 - Robust estimation of 5-minute peak values
 - E.g. 95-percentile over day or week
 - Estimate "unforeseen" events
 - Calculate growth rate
- <u>Short-term</u>
 - Critical scale for queuing (1ms)
 - Determine overprovisioning factor that will prevent queue buildup against micro-bursts


Demand Characterization

- Measured Traffic
 - P95 (day/week)
- Long-term variation
 - P95 to peak ratio
 - "unforeseen" events
- Micro-bursts
 - Short timescale traffic dynamics
- But let's first take a look at the telephony world...

Telephony Traffic (inter-city on 6/3/2002)

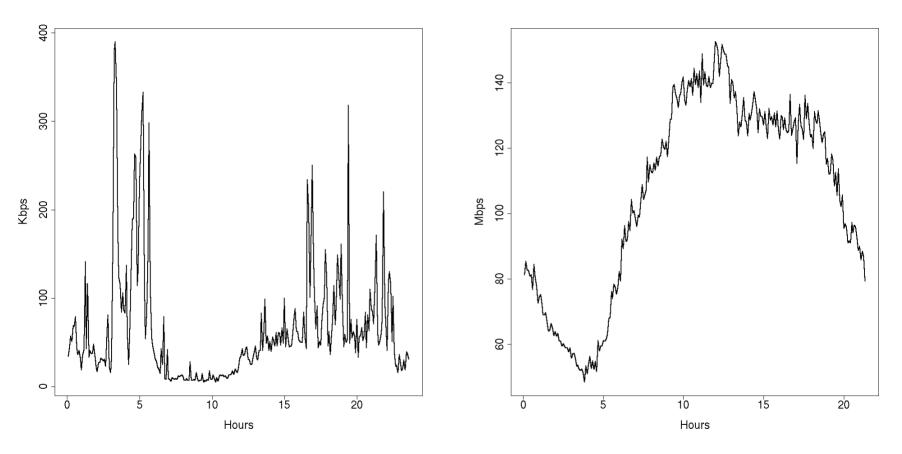
Centi-Erlang

Voice Capacity Planning (Some) Assumptions

- Erlang B:
 - Call arrivals are random (Poisson)
 - Blocked calls are cleared
- Extended Erlang B:
 - Includes a retry percentage
- Erlang C
 - Blocked calls are queued ("your call is very important to us, blah, blah...")

Voice Capacity Planning Example

- 1 Erlang = 1 hour of calls
 - Average numbers of calls in an hour
- Busy Hour Traffic: about 330 Erlang
- Erlang B formula (for 330 Erlang):
 - Blocking 1% -> 354 lines required
 - Blocking 0.1% -> 376 lines required
- "Overprovisioning" for 1% blocking: 7.3%
- "Overprovisioning" for 0.1% blocking: 13.9%

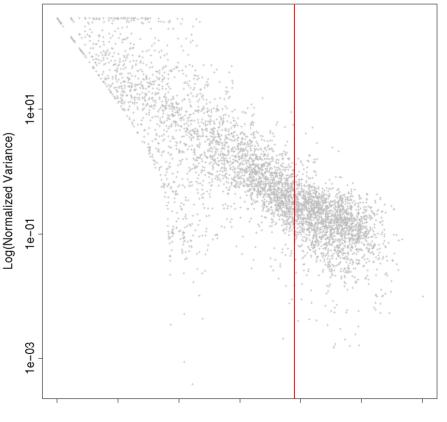

IP Capacity Planning

- Measurement data
 - E.g. 5-min average utilization
- Performance objectives
 - E.g. packet loss < 0.1%, jitter < 20ms
 - End-to-end: convert to per-hop objective
- But we don't have an "Erlang formula"...
- Two paths towards a solution:
 - 1) Model the traffic, and fit parameters
 - 2) <u>Experimentally derive guidelines</u>

Long-term Traffic Characterization

- Investigate burstiness in 5-min measurements over days/weeks
- Bursty traffic: peaks are very large compared to average
 - I.e. the distribution is Heavy-Tailed
 - Mean and 95-percentile do not represent the traffic very well
 - Planning becomes very difficult
- Collect (SNMP) and analyze network data
 - Traffic Matrix via NetFlow or MPLS mesh

High-vs Low-Bandwidth Demands

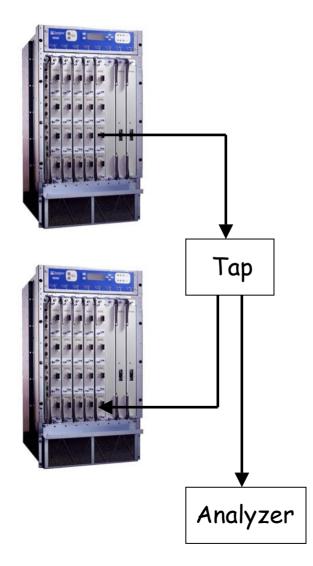


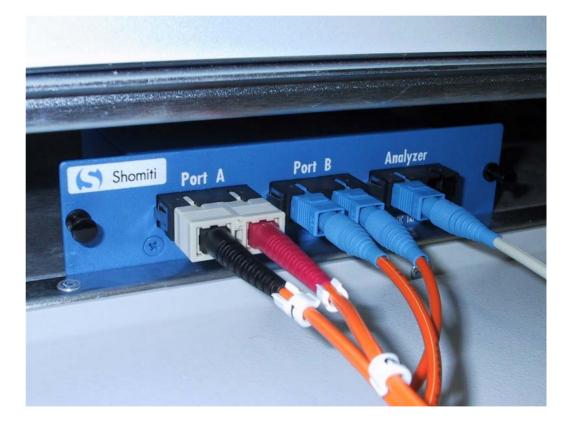
Cleveland -> Denver Mean=64Kbps, Max=380Kbps P95=201Kbps, alpha=1.8 (tail index)

Washington D.C. -> Copenhagen Mean=106Mbps, Max=152Mbps P95=144Mbps, alpha=21 (tail index)

Variance vs Bandwidth

- Around 8200 demands between core routers
- Relative variance decreases with increasing bandwidth [5]
- Vertical red line is
 0.5 Mbps
- High-bandwidth demands seem wellbehaved
- 98% of traffic is carried by the demands larger than 0.5 Mbps



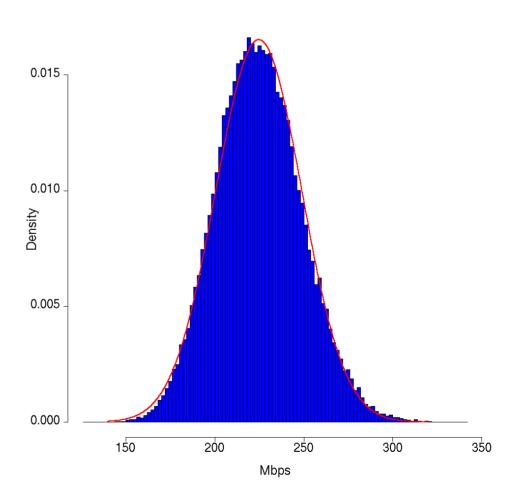

Log(Mean Bandwidth)

Short-term Traffic Characterization

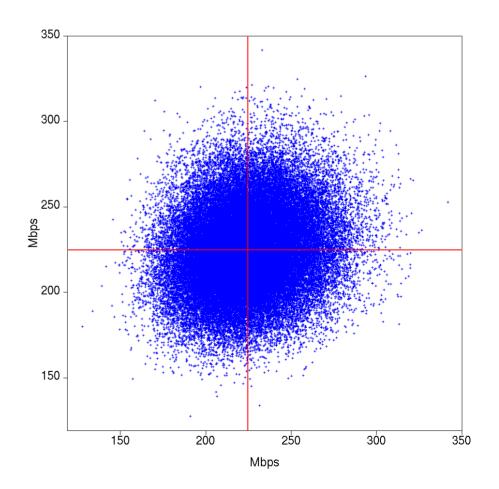
- Investigate burstiness within 5-min intervals
- Measurements at critical timescale for queuing, like 1ms or 10ms
- Only at specific locations
 - Complex setup
 - A lot of data
- Analyze statistical properties

Fiber Tap (Gigabit Ethernet)

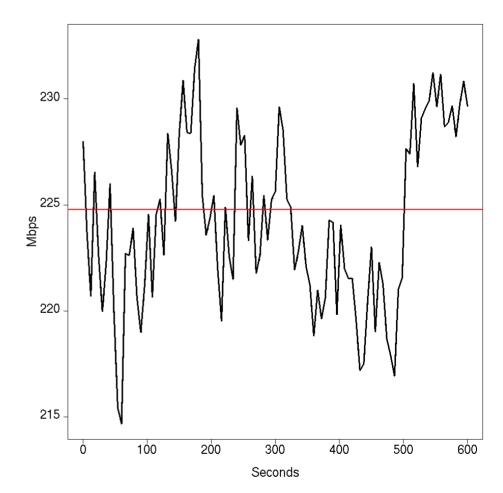
Raw Results 10 min. of data, 10ms scale


- Mean = 225 Mbps
- Max. = 342 Mbps
- Min. = 128 Mbps

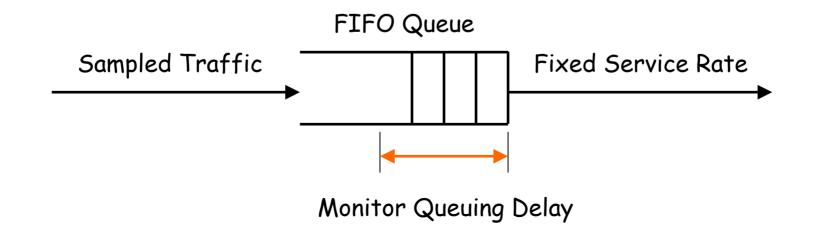
- 95-percentile: 266 Mbps
- 5-percentile: 187 Mbps


Traffic Distribution Histogram (10ms scale)

- Fits normal probability distribution very well (Std. dev. = 24 Mbps)
- No Heavy-Tails
- Suggests small overprovisioning factor

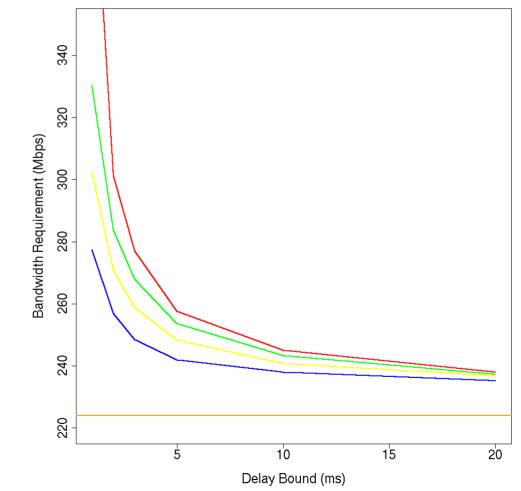

Autocorrelation Lag Plot (10ms scale)

- Scatterplot for consecutive samples
- Are periods of high usage followed by other periods of high usage?
- Autocorrelation at 10ms is 0.16 (=uncorrelated)


Utilization 10 min. of data, 10 sec. scale

- Mean = 225 Mbps
- Max. = 233 Mbps
- Min. = 214 Mbps
- Clearly longer derivations from the mean
- High autocorrelation at 10 sec. (0.65)

Queuing Simulation


- Feed sampled traffic data into FIFO queue (1ms)
- Fix <u>Service Rate</u> and max. <u>Queuing Delay</u>
- Measure amount of traffic that violates the delay bound
- Repeat for different Service Rates and Queuing Delays

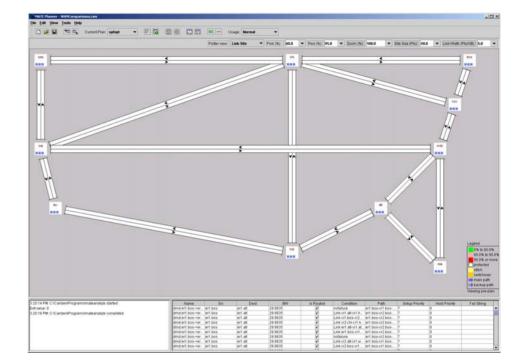
Bandwidth Requirement vs Delay Bound

 How much Bandwidth is needed to meet the Delay Bound for a certain percentage of the traffic?

Bandwidth Requirements Numeric Results

- Example 1
 - 5ms delay bound
 - 99.9999% of the traffic (10⁻⁶)
 - BW required: 257 Mbps
 - "Overprovisioning": 14%
- Example 2
 - 10ms delay bound
 - 99.9% of the traffic (10-3)
 - BW required: 241 Mbps
 - "Overprovisioning": 7%

Bandwidth Requirements Numeric Results (draft)


- Synthesized data: 704Mbps
 - 5ms delay bound
 - 99.9999% of the traffic (10⁻⁶)
 - BW required: 755 Mbps
 - "Overprovisioning": 7.2%
- Synthesized data: 1228Mbps
 - 5ms delay bound
 - 99.9999% of the traffic (10⁻⁶)
 - BW required: 1271 Mbps
 - "Overprovisioning": 3.5%

Back to the Framework

- Demand Characterization
 - Long-term well-behaved traffic
 - Overprovisioning for short-term bursts can be experimentally derived
- How to use this for planning purposes?
- Failure Analysis
 - Determine failure scenarios
 - E.g. single link failures, routers, SRLG, etc...
- Input for simulation

Simulation

- Feed demands and overprovisioning factors into simulation tool
- Run simulation for normal and failure scenarios
- Optimize Capacity Deployment and Routing (IGP or MPLS based) to meet requirements

 Tools like MATE (Cariden) and NPAT (WANDL)

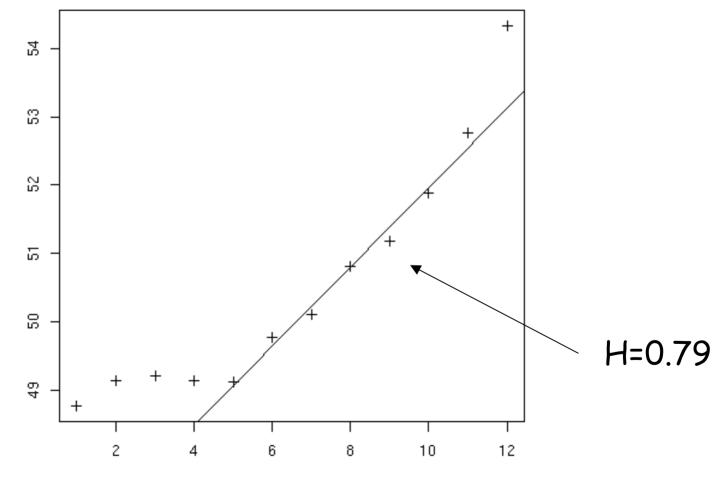
How does Diff-Serv fit in this picture?

- All traffic in one class (no Diff-Serv) might require large overprovisioning factor for tight objectives (e.g. low delay/jitter for VoIP)
- Prioritizing that traffic (using a SPQ) would make the overprovisioning factor only applicable to that class
- The rest of the available bandwidth can be filled with less sensitive traffic
- But don't deploy too many classes...

Conclusions

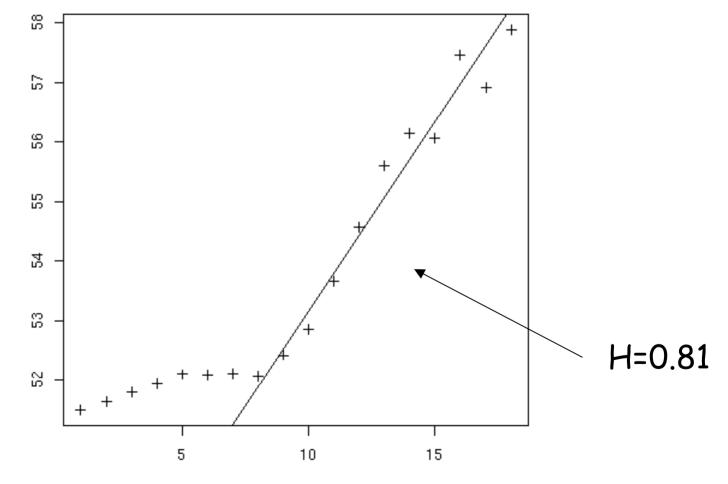
- Not "Theory of Everything", but empirical approach
- Backbone traffic is well-behaved enough to do meaningful network planning, but is not completely "smooth"
- Need several small timescale measurements to cover various types and rates of traffic

What did we learn from this example?


- On a Gigabit Ethernet (backbone) link a 'considerable' overprovisioning percentage is required to bould delay/jitter to a few milliseconds (in the order of 5-10%), on top of your overprovisioning for failures
- There is a good reason to deploy DiffServ to take care of really sensitive/critical traffic

Extra Slides

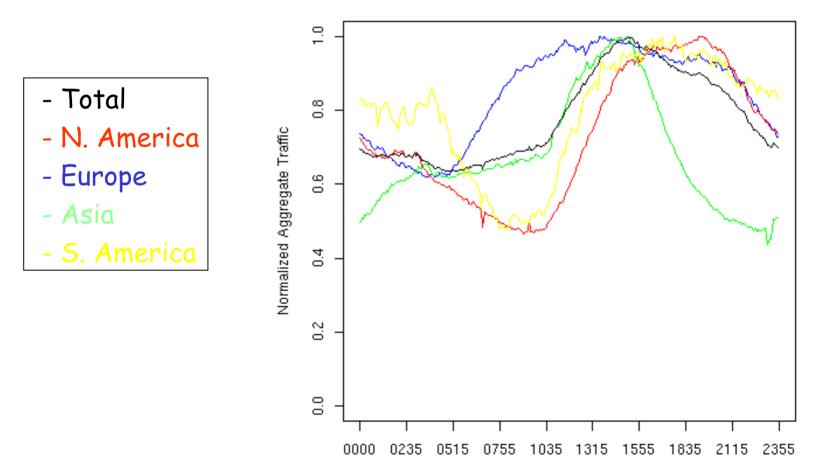
Abry-Veitch Estimator


- Wavelet decomposition
 - Discrete wavelet transform
 - Time-scale wavelet domain
- Detail variance estimation
 - Coefficients squared and averaged over time (u[j])
- Analysis using Logscale Diagram
 - Plot log(u[j]) vs octave j
- LRD parameter estimation
 - Hurst paramater H from slope of plot

Logscale Diagram 10 min. of data, 10ms samples

Octave

Logscale Diagram 60 min. of data, 1ms samples


Octave

Geographical Traffic Profiles

- Does a world-wide network create utilization efficiencies because customers are distributed over several time zones?
- I.e. do Asian and European customer use the US network during non-peak hours?
- Yes... and No...
- Regional peaks overlap, around 3pm GMT
- Depends also on traffic ratios

Geographical Traffic Profiles

Customer Traffic

Acknowledgements

- Arman Maghbouleh (Cariden)
- Haobo Yu (Packet Design)
- Clarence Filsfils (Cisco)
- Fergal Toomey (Corvil)
- Richard Rensman (KPN)
- Upcoming Paper: *Realizing QoS with Efficient Network Design,* Steven Gordon, Arman Maghbouleh, Vishal Sharma, Thomas Telkamp

telkamp@gblx.net

References

- [1] Steve Casner, Cengiz Alaettinoglu and Chia-Chee Kuan, A Fine-Grained View of High-Performance Networking, NANOG 22 http://www.nanog.org/mtg-0105/casner.html
- [2] Chris Liljenstolpe, *Design Issues in Next Generation Carrier Networks*, MPLS 2001 Conference
- [3] Peter Lothberg, *A View of the Future: The IP-Only Internet*, NANOG 22, http://www.nanog.org/mtg-0105/lothberg.html
- [4] Zafer Sahinoglu and Sirin Tekinay, On Multimedia Networks: Self-Similar Traffic and Network Performance, IEEE Communications Magazine, January 1999
- [5] Robert Morris and Dong Lin, *Variance of Aggregated WebTraffic*, IEEE INFOCOM 2000, Tel Aviv, March 2000, pages 360-366