Timing and Bandwidth Issues in Active Measurement

or
Physical Constraints on Active Probing

MICRO-TUTORIAL
ISMA 2003 Bandwidth Estimation Workshop (BEst)

Darryl Veitch

Essentials of Active Measurement

Tap Tap
>_- Network - -<

v Vv
Sender % % Receiver

Sender Monitor Receiver Monitor

e Probe packets are sent from sender to receiver.
e Arrival and Departure times, and losses, are monitored.
e Measurements used to infer network characteristics and conditions.

As loss is rare, Timestamps are central.

Physical layer constraints and software limitations both affect precision.

Factors Affecting Raw Timestamps

The Probing Software [sender, sender monitor, receiver monitor]:

The software clock and its synchronisation
Location of software timestamping
Interfaces to operating system

Degree of kernel integration

System scheduling behaviour

System and event definitions

The Probing Hardware [PC, clock reference, hardware monitor |:

PC clock stability

Reference clock reliability and availability
Interrupt latencies

Location of monitor tap (if in hardware)
Kernel - NIC communication

The Network [links, NIC, hubs, routers, switches]:

e Architecture of switching elements (FIFO, store & forward, slow/fast path)
e Hardware clock rate in switching elements
e Link layer multiple paths

A Hierarchy of Probing Accuracy

Lowend: $ Ethernet card, PC.
Unix, Software clock, NTP, tcpdump , User sender/receiver.

‘Common’ GPS solution: $$$ Ethernet card, PC, GPS.
Unix, GPS synchronised clock, tcpdump , User sender/receiver.

Linux—TSC solution: $ Ethernet card, PC.
Unix, TSC clock, driver timestamper, User sender/receiver.

RT-Linux—TSC solution: $ Ethernet card, PC.
Unix, TSC clock, driver timestamper, RT sender/receiver.

A Reference solution: $$$$ DAG3.2e cards, GPS, Ethernet card, PC.
GPS sync’d DAG monitors, Unix, TSC clock, driver timestamper, RT sender.

Highend: $$$%$$ All hardware solution.

Obstacles to Inexpensive Accuracy

‘Features’ of the Low End: the SW-NTP—-tcpdump solution

e The Standard Software Clock (SW):

e Based on two underlying oscillators with large skews.
e getimeofday() has 1us resolution and takes 1us to call.

e SW Synchronisation under NTP:

e Offset: only bounded to ~1ms under optimal conditions.
e Rate: altered to control offset! up to 500PPM!!

e System Noise under Unix (Linux, BSD):

e Uncontrolled scheduling delays in setting, synchronising, reading, sending..
e Hardware interrupt latencies.

e Timestamping and Sending

e tcpdump timestamps with getimeofday() after driver.
e User sender tries to schedule using getimeofday/() and hopes for the best.

Accuracy Comparison

TSC: CPU cycle register.

Infrastructure Timing Accuracy Metric
Offset Skew System Noise
Low End lms —.... | 5—-500PPM | 10us —10ms

Common GPS 10us 5—-50PPM | 10us —10ms

Linux-TSC 0.1 —2ms 0.1 PPM 1us —1ms

RT-Linux-TSC | 0.1—2ms | 0.1 PPM 1us — 10uS

Reference 100ns 0.01 PPM < 100ns

All Hardware <100ns <0.01 PPM < 100ns

System Noise: use TSC timestamper (in driver), and RT-Linux.
Skew: use TSC with accurate remote calibration.

Offset: use TSC and nearby NTP primary server timestamps.

Limitations at High Bandwidths

e Timestamps too demanding:
p/p: [40,1500] bytes over 1Bbps = [0.32, 12]us

e Interrupt latencies too high, clock synchronisation insufficient

e Hardware time grid: coarse in low speed switches — wipes fine details

