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“Estimating Available Bandwidth on Different Timescales”

Sounds good – but what does it really mean?

Must distinguish between:

• Statistics i.e. distributions, which are not random
– could be constant over time: stationary , or
– could be varying over time: non-stationary
– try to measure them: statistical estimation

• Sample paths these are ‘random functions’
– a single sample path is deterministic
– variability across and within paths is natural, regardless of statistics
– one path not enough for good estimation

Note: Using conceptual random process model – unavoidable, and natural
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A Random Variable: Distribution, Samples and Estimation

Consider a continuous r.v. X, with

• Distribution function (CDF) F (x) = Pr(X ≤ x), probability density f(x) = F ′(x),
• Expectation: µX = IE[X] =

∫

xf(x) dx, Variance: σ2
X = IE[(X − µ)2],
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A Random Variable: Distribution, Samples and Estimation

Consider a continuous r.v. X, with

• Distribution function (CDF) F (x) = Pr(X ≤ x), probability density f(x) = F ′(x),
• Expectation: µX = IE[X] =

∫

xf(x) dx, Variance: σ2
X = IE[(X − µ)2],

Now consider a sample value x of X. How to estimate µX?

Could set µ̂ = x. Really this is a sample value of an Estimator

• Estimator: µ̂X = X is a r.v.
• With one sample x of X, sample of µ̂ is also x.
• Not a great solution since although IE[µ̂] = µ, have Var [µ̂] = σ2.
• Can’t even estimate σ2

X with this, or much else!
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A Random Variable: Distribution, Samples and Estimation

Consider a continuous r.v. X, with

• Distribution function (CDF) F (x) = Pr(X ≤ x), probability density f(x) = F ′(x),
• Expectation: µX = IE[X] =

∫

xf(x) dx, Variance: σ2
X = IE[(X − µ)2],

Now consider a sample value x of X. How to estimate µX?

Could set µ̂ = x. Really this is a sample value of an Estimator

• Estimator: µ̂X = X is a r.v.
• With one sample x of X, sample of µ̂ is also x.
• Not a great solution since although IE[µ̂] = µ, have Var [µ̂] = σ2.
• Can’t even estimate σ2

X with this, or much else!

Would like to have more (independent) samples available:

Could set µ̂n = X̄ ≡ (
∑n

i Xi)/n, with sample values xi, i = 1, 2 · · ·.

• IE[µ̂] = µ, Var [µ̂] = σ2/n.
• Gets rapidly better with increasing n!
• Now could estimate σ2, e.g. using S2 =

∑n
i (Xi − X̄)2/(n − 1), the ‘sample variance’

(another r.v.).
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A Random Time Series: Distributions, Samples and Estimation

Consider a time series X(t), say t ∈ Z.

• Distribution functions FX(t)(x) for all t, and 2-D joint FX(t),X(t′)(x, x
′), all 3-D ....

• Expectations µX(t), variance, 3rd order moments, etc for each t.
• All statistics formed from joint distributions from any combination of the X(t)’s.
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A Random Time Series: Distributions, Samples and Estimation

Consider a time series X(t), say t ∈ Z.

• Distribution functions FX(t)(x) for all t, and 2-D joint FX(t),X(t′)(x, x
′), all 3-D ....

• Expectations µX(t), variance, 3rd order moments, etc for each t.
• All statistics formed from joint distributions from any combination of the X(t)’s.

Now consider a sample path x(t). How to estimate µ5 = E[X(5)]?

As X(5) is just one r.v., as before could set µ̂5 = X(5).

• IE[µ̂5] = µ5, Var [µ̂5] = σ2.
• As before, bad
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A Random Time Series: Distributions, Samples and Estimation

Consider a time series X(t), say t ∈ Z.

• Distribution functions FX(t)(x) for all t, and 2-D joint FX(t),X(t′)(x, x
′), all 3-D ....

• Expectations µX(t), variance, 3rd order moments, etc for each t.
• All statistics formed from joint distributions from any combination of the X(t)’s.

Now consider a sample path x(t). How to estimate µ5 = E[X(5)]?

As X(5) is just one r.v., as before could set µ̂5 = X(5).

• IE[µ̂5] = µ5, Var [µ̂5] = σ2.
• As before, bad

Would like to have more (independent) samples available:

But there aren’t any! unless:

• We assume stationarity (and ergodicity), or
• We use simulation, or
• We assume real data can ‘repeat itself’, and can affort to wait.
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Estimating With Non-Stationarity - how hard it can be

Gaussian Random Walk sample paths
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Estimates on ‘different time-scales’

• Not only time-scale, but time instant matters.
• Time varying statistics and sample variability mixed together.
• Only get ‘one sample’ of everything. 11



The Stationary Case

Consider a stationary time series X(t).

• Stationary means that all statistics are time-origin invariant:
• eg.1: Marginal distributions all the same: FX(t) = FX(t′) (so IE[X(t)] = IE[X(t′)] etc.).
• eg.2: Covariance Function: γ(t− t′) = IE[(X(t)−µ)(X(t′)−µ)] depends only on t− t′

• eg.3: Any statistic formed from any combination of the X(t)’s.

Now consider a sample path x(t). How to estimate µ = µX(t)?

Set µ̂ = X̄ as before:

• IE[µ̂] = µ, Var [µ̂] = σ2/n (in white noise case)
• Now gets better with n.

More samples are available, and statistics are constant
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Estimating With Stationarity - how hard can it be?

Gaussian White Noise sample paths
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Estimates on ‘different time-scales’

• Nothing varies with time! – only have to worry about sample variability.
• Effectively get many samples of everything.
• Different time scales relates to estimation variance.
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Time Scale Dependence of Estimates

Gaussian White Noise aggregated over different time intervals
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Estimating Available Bandwidth on Different Timescales

AB will change with time – we want to track it.

However, can’t estimate an arbitrary non-stationarity, so:

• Must assume stationarity over some time interval T

• With T bounded, so is estimation quality

Measurement over Different timescales refers to the tradeoff :

• Small T makes stationarity assumption better

• But estimation variance (assuming stationarity) worse
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