Stationarity vs Time Scale Dependence

or

Statistics vs Sample Path Variability or Tracking vs Estimation

MICRO-TUTORIAL ISMA 2003 Bandwidth Estimation Workshop (BEst)

Darryl Veitch

Sounds good -

Sounds good – but what does it really mean?

Sounds good – but what does it really mean?

Must distinguish between:

- Statistics i.e. distributions, which are not random
 - could be constant over time: stationary, or
 - could be varying over time: non-stationary
 - try to measure them: statistical estimation
- Sample paths these are 'random functions'
 - a single sample path is deterministic
 - variability across and within paths is natural, regardless of statistics
 - one path not enough for good estimation

Note: Using conceptual random process model – unavoidable, and natural

A Random Variable: Distribution, Samples and Estimation

Consider a continuous r.v. X, with

- Distribution function (CDF) $F(x) = \Pr(X \le x)$, probability density f(x) = F'(x),
- Expectation: $\mu_X = \mathbf{E}[X] = \int x f(x) dx$, Variance: $\sigma_X^2 = \mathbf{E}[(X \mu)^2]$,

A Random Variable: Distribution, Samples and Estimation

Consider a continuous r.v. X, with

- Distribution function (CDF) $F(x) = \Pr(X \le x)$, probability density f(x) = F'(x),
- Expectation: $\mu_X = \mathbf{E}[X] = \int x f(x) dx$, Variance: $\sigma_X^2 = \mathbf{E}[(X \mu)^2]$,

Now consider a sample value x of X. How to estimate μ_X ?

Could set $\hat{\mu} = x$. Really this is a sample value of an *Estimator*

- *Estimator*. $\hat{\mu}_X = X$ is a r.v.
- With one sample x of X, sample of $\widehat{\mu}$ is also x.
- Not a great solution since although $E[\hat{\mu}] = \mu$, have $Var[\hat{\mu}] = \sigma^2$.
- Can't even estimate σ_X^2 with this, or much else!

A Random Variable: Distribution, Samples and Estimation

Consider a continuous r.v. X, with

- Distribution function (CDF) $F(x) = \Pr(X \le x)$, probability density f(x) = F'(x),
- Expectation: $\mu_X = \mathbf{E}[X] = \int x f(x) dx$, Variance: $\sigma_X^2 = \mathbf{E}[(X \mu)^2]$,

Now consider a sample value x of X. How to estimate μ_X ?

Could set $\hat{\mu} = x$. Really this is a sample value of an *Estimator*

- *Estimator*. $\hat{\mu}_X = X$ is a r.v.
- With one sample x of X, sample of $\widehat{\mu}$ is also x.
- Not a great solution since although $E[\hat{\mu}] = \mu$, have $Var[\hat{\mu}] = \sigma^2$.
- Can't even estimate σ_X^2 with this, or much else!

Would like to have more (independent) samples available:

Could set $\hat{\mu}_n = \bar{X} \equiv (\sum_{i=1}^n X_i)/n$, with sample values x_i , $i = 1, 2 \cdots$.

- $\mathbf{E}[\hat{\mu}] = \mu$, $\operatorname{Var}[\hat{\mu}] = \sigma^2/n$.
- Gets rapidly better with increasing n!
- Now could estimate σ^2 , e.g. using $S^2 = \sum_i^n (X_i \bar{X})^2/(n-1)$, the 'sample variance' (another r.v.).

A Random Time Series: Distributions, Samples and Estimation

Consider a time series X(t), say $t \in \mathcal{Z}$.

- Distribution functions $F_{X(t)}(x)$ for all t, and 2-D joint $F_{X(t),X(t')}(x,x')$, all 3-D
- ullet Expectations $\mu_{X(t)}$, variance, 3rd order moments, etc for each t.
- All statistics formed from joint distributions from any combination of the X(t)'s.

A Random Time Series: Distributions, Samples and Estimation

Consider a time series X(t), say $t \in \mathcal{Z}$.

- Distribution functions $F_{X(t)}(x)$ for all t, and 2-D joint $F_{X(t),X(t')}(x,x')$, all 3-D
- Expectations $\mu_{X(t)}$, variance, 3rd order moments, etc for each t.
- All statistics formed from joint distributions from any combination of the X(t)'s.

Now consider a sample path x(t). How to estimate $\mu_5 = E[X(5)]$? As X(5) is just one r.v., as before could set $\hat{\mu}_5 = X(5)$.

- $\mathbf{E}[\hat{\mu}_5] = \mu_5$, $\text{Var}[\hat{\mu}_5] = \sigma^2$.
- As before, bad

A Random Time Series: Distributions, Samples and Estimation

Consider a time series X(t), say $t \in \mathcal{Z}$.

- Distribution functions $F_{X(t)}(x)$ for all t, and 2-D joint $F_{X(t),X(t')}(x,x')$, all 3-D
- Expectations $\mu_{X(t)}$, variance, 3rd order moments, etc for each t.
- All statistics formed from joint distributions from any combination of the X(t)'s.

Now consider a sample path x(t). How to estimate $\mu_5 = E[X(5)]$?

As X(5) is just one r.v., as before could set $\hat{\mu}_5 = X(5)$.

- $\mathbf{E}[\hat{\mu}_5] = \mu_5$, $\text{Var}[\hat{\mu}_5] = \sigma^2$.
- As before, bad

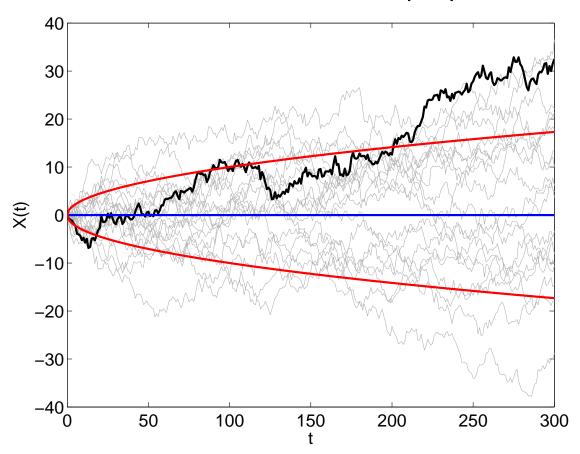
Would like to have more (independent) samples available:

But there aren't any! unless:

- We assume stationarity (and ergodicity), or
- We use simulation, or
- We assume real data can 'repeat itself', and can affort to wait.

Estimating With Non-Stationarity - how hard it can be

Gaussian Random Walk sample paths



Estimates on 'different time-scales'

- Not only time-scale, but time instant matters.
- Time varying statistics and sample variability mixed together.
- Only get 'one sample' of everything.

The Stationary Case

Consider a stationary time series X(t).

- Stationary means that all statistics are time-origin invariant:
- eg.1: Marginal distributions all the same: $F_{X(t)} = F_{X(t')}$ (so $\mathbf{E}[X(t)] = \mathbf{E}[X(t')]$ etc.).
- eg.2: Covariance Function: $\gamma(t-t') = \mathbb{E}[(X(t)-\mu)(X(t')-\mu)]$ depends only on t-t'
- eg.3: Any statistic formed from any combination of the X(t)'s.

Now consider a sample path x(t). How to estimate $\mu = \mu_X(t)$?

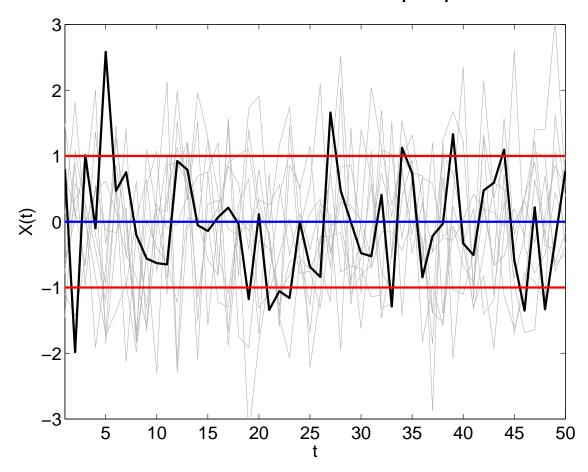
Set $\hat{\mu} = \bar{X}$ as before:

- $\mathbf{E}[\hat{\mu}] = \mu$, $\text{Var}[\hat{\mu}] = \sigma^2/n$ (in white noise case)
- Now gets better with *n*.

More samples are available, and statistics are constant

Estimating With Stationarity - how hard can it be?

Gaussian White Noise sample paths

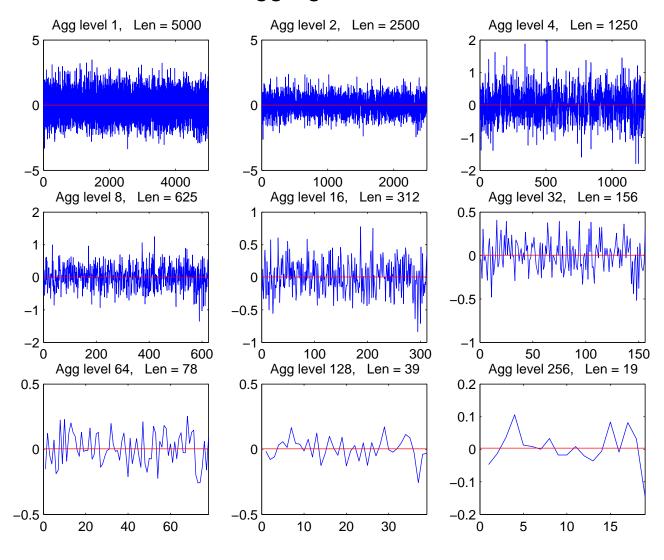


Estimates on 'different time-scales'

- Nothing varies with time! only have to worry about sample variability.
- Effectively get many samples of everything.
- Different time scales relates to estimation variance.

Time Scale Dependence of Estimates

Gaussian White Noise aggregated over different time intervals



AB will change with time – we want to track it.

However, can't estimate an arbitrary non-stationarity, so:

- Must assume stationarity over some time interval T
- With T bounded, so is estimation quality

Measurement over Different timescales refers to the tradeoff:

- Small T makes stationarity assumption better
- But estimation variance (assuming stationarity) worse