Bandwidth Estimation Workshop

CAIDA/SDSC

Jin Guojun

Lawrence Berkeley National Lab.

Dec. 9, 2003

Overview

- Difficulty on Ultra high-speed network measurement
- Use cases
- Available Bandwidth (A_{bw}) is time sensitive
- A_{bw} Sampling
- Summary

Measure Ultra High-speed Network

- Link speed over 1000 Mbit/s (and exceed the system I/O bus)
 - * I/O interrupt coalescing
 - * Technical difficulty to send packet
 - Avoid method based on major kernel modification.
 - I/O bandwidth is not enough to saturate available network bandwidth
 - Ensure the packets sent with less gaps
 - Hop-by-hop
 - routers reply multiple ICMP to a large UDP packet is good for synchronous train probe, bad for asynch probe.
 - routers reply one ICMP to a large UDP packet is good for asynchronous train probe, but less efficient for synch probe.

• Packet arrival time is short

- * Signal to noise ratio is low
 - Use on NIC timer
 - Availability which vendors make it
 - Use CPU clock counter (CCC) not very useful in user space
 - How to transfer this information from kernel to user space
 - Use long train large MTU may not be a solution
 - Experiment shows that longer train does not provide higher accuracy

Use Cases of Available Bandwidth

- Information system
 - * Network characterization service
 - * Tools
- Application
 - * Protocol Design
 - * Smart Data Forwarding and Scheduling
 - * Bulk Data Transfer (?)

Available Bandwidth

• Available bandwidth (A) is the capacity minus cross traffic (utilization ~ U) over a given time interval. This is applicable to paths, links, or routers and switches.

$$\begin{split} A(\mathbf{t}_{\mathbf{s}}, \mathbf{t}_{\mathbf{e}}) &= \text{Capacity - Traffic} \\ &= C \times (1 - \mathcal{U}) \\ &= C \times \left(1 - \frac{1}{t_s - t_e} \int_{t_s}^{t_e} U(\chi)\right) \\ &\neq A(\mathsf{T}_{\mathsf{window}}) = C \times \left(1 - \frac{1}{\tau} \int_{t}^{(t + \tau)} U(\chi)\right) \\ &\mathsf{T}_{\mathsf{window}} = \mathsf{t}_{\mathbf{s}} - \mathsf{t}_{\mathbf{e}} = \tau \\ &\mathsf{t}_{\mathbf{s}} \text{ is the time when the measurement started} \\ &\mathsf{t}_{\mathbf{e}} \text{ is the time when the measurement ended} \end{split}$$

Available Bandwidth is Time Sensitive

Bandwidth Estimation Workshop — Dec. 9-10 — CAIDA/SDSC

Sampling

Bandwidth Estimation Workshop — Dec. 9-10 — CAIDA/SDSC

Sampling

The average value of samples collected in a fixed internal during a period of time does not represent the average available bandwidth during that period:

• $\frac{1}{m} \left[A(t_0, t_0 + \tau) + A(t_0 + c\tau, t_0 + c\tau + \tau) + A(t_0 + 2c\tau, t_0 + 2c\tau + \tau) + ... + A(t_0 + mc\tau, t_0 + mc\tau + \tau) \right]$

$$= \frac{1}{m} \sum_{0}^{mc\tau} A(t_0 + x, t_0 + x + \tau)$$

$$\neq A(t_0, t_0+mc\tau+\tau)$$

Averaging in 500ms window

Bandwidth Estimation Workshop — Dec. 9-10 — CAIDA/SDSC

Sampling Usage

- Instantaneous sampling is suitable for network protocol design.
- Results from a shorter time frame can be use for information system.
- Long period measurement may not represent a meaningful value. Bulk data transfer needs to get historical information from network characterization service (information system) to determine its transfer strategy.

Summary

- Probe burst needs to have a certain length. Too long or too short of a probe burst will not give accurate A_{bw} information.
- Use application traffic to measure A_{bw}
 - * For building network protocols
- Use active probe traffic to measure network characteristics

* For building user level tools to diagnose / analyze network status and to provide network information to users and applications

- Use Internet Measurement Protocol to provide information
 - * This can be used in different applications
 - * This involves feasibility and security issues
 - * Can users specify sampling time frame?