#### Towards Tunable Measurement Techniques for Available Bandwidth

# Ningning Hu, Peter Steenkiste Carnegie Mellon University

BEst 03 12 / 09 / 2003

**Ningning Hu** 

**Carnegie Mellon University** 

# **Outline**

Our experience

 IGI & PTR
 PaSt

#### A taxonomy of current techniques

Challenge – tunability

# IGI & PTR

- Uniform packet train probing techniques
  - Measure either packet gap (IGI) or probing rate



#### Paced Start (PaSt)

- Application of PTR
  - Use PTR to improve TCP startup performance
  - Similar in flavor to TCP NewReno
- PaSt uses multiple windows of data packet train to search for the turning point (available bandwidth)
- Performance [ICNP 03]
  - Less packet loss
  - Smaller startup time

# What We Learned from PaSt

- Application's considerations are very important for the measurement technique design
- Accuracy
  - IGI/PTR sometimes have 30% error, good enough?
  - TCP startup: 50% error can be easily accommodated

#### **Think MORE about applications!**

- TOT Startup. Overnead is critical
- IGI/PTR took all effort to reduce the overhead
- Two-end control
  - Hard to deploy
  - TCP: an two end protocol

## **Outline**

Our experience
- IGI & PTR
- PaSt

#### A taxonomy of current techniques

Challenge – tunability

# **Taxonomy of Current Techniques**

#### Manish Jain, Constantios Dovrolis

- Pathload
- IGI/PTR-
- TOPP —
- pathChirp
- Spruce

Ningning Hu, Peter Steenkiste

Bob Melander Mats Bjorkman, Per Gunningberg

Vinay J. Ribeiro, Rudolf H. Riedi, Richard G. Baraniuk, Jiri Navratil, Les Cottrell

Jacob Strauss, Dina Katabi, Frans Kaashoek

**Carnegie Mellon University** 

#### **Taxonomy of Current Techniques**

|                 |                | How to measure         |                        |            |                                     |
|-----------------|----------------|------------------------|------------------------|------------|-------------------------------------|
|                 |                | Uniform<br>probing     | Non-uniform<br>probing | Diff.      | common                              |
| What to measure | A_bw<br>(rate) | Pathload,<br>PTR, TOPP | pathChirp              | Not need B | Timer problem<br>Two-end<br>control |
|                 | C_bw<br>(gap)  | IGI                    | Spruce                 | Need B     |                                     |
|                 | Diff.          | Small<br>interval      | Long<br>interval       |            |                                     |

The list of techniques here is not a complete list.

# **Outline**

- Our experience

   IGI & PTR
   PaSt
- A taxonomy of current techniques
- Challenge tunability

#### The Challenges

- Two-end control
- Accuracy vs. overhead
- Extreme environment

**Deployment and Application – Tunability** 

#### **Two-End Control**

- Single-end control needs echo packets
- Accurate timestamp for the echo packet is hard to get

#### Tunability #1: Single-end probing

 K.G. Anagnostakis, et.al. cing: Measuring networkinternal delays using only existing infrastruture. Infocom 03.

#### 2. Return path queueing

1.

#### Accuracy vs. Overhead

 Accuracy is often a tradeoff with probing overhead

Tunability #2: Enable application to configure the tradeoff between accuracy and probing overhead

### **Extreme Environment**

- The environment where the bandwidth measurement assumptions don't hold
  - Time measurement assumption
  - Available bandwidth determining factors

#### **Tunability #3:**

**Deal with the environment of the future** 

- Wireless network
  - Available bandwidth determining factor could be different

# **Conclusion**

- Our experience from IGI/PTR & PaSt
  - Active probing design must consider both accuracy and overhead
  - The tradeoff is closely related with the application requirement
- Tunability is the key challenge for the deployment of current techniques for available bandwidth measurement
  - Achieve single-end control
  - Understand the tradeoff between accuracy and overhead
  - Solve real system issues