

Spatio-Temporal Available Bandwidth Estimation

Vinay Ribeiro Rolf Riedi, Richard Baraniuk

Rice University

Network Path Model

- End-to-end paths
 - Multi-hop
 - No packet reordering
- Router queues
 - FIFO
 - Constant service rate

Packet delay = *constant term* (propagation, service time) + *variable term* (queuing delay)

Key Definitions

Tight link: link with least available bandwidth

• Goal: use end-to-end probing to locate tight link in space and over time

Applications

 Science: where do Internet tight links occur and why?

- Network aware applications
 - server selection
- Network monitoring
 - locating hot spots

Methodology

- Estimate A[1,m]
- For *m*>tight link, *A*[1,*m*] remains constant

Principle of Self-Induced Congestion

• Probing rate = R, path available bandwidth = A

 $R < A \rightarrow$ no delay increase $R > A \rightarrow$ delay increases

- Advantages
 - No topology information required
 - Robust to multiple bottlenecks

Packet Tailgating

- Large packets of size P (TTL=m) small packets of size p
- Large packets exit at hop m
- Small packets reach receiver with timing information
- Previously employed in capacity estimation

Estimating A[1,m]

- Key: Probing rate decreases by p/(p+P) at link m
- Assumption: *r*<*A*[*m*+1,*N*], no delay change after link

m

 $R < A[1,m] \rightarrow$ no delay increase

 $R > A[1,m] \rightarrow$ delay increases

Tight Link Localization

- *Tight link*: link after which *A[1,m]* remains constant
- Applicable to any self-induced congestion tool: pathload, pathChirp, IGI, netest etc.

- Chirps: exponentially spaced packets
- Wide range of probing rates
- Efficient: few packets

 $\gamma = 1.4 \Rightarrow 13$ packets, 1-100Mbps

ns-2 Simulation

- Heterogeneous sources
- Tight link location changes over time
- pathChirp tracks tight link location change accurately

Internet Experiment

- Two paths:
 UIUC → Rice and SLAC→ Rice
- Paths share 4 common links
- Same tight link estimate for both paths

Comparison with MRTG Data

SLAC→Rice

UIUC→Rice

- *A*[1,*m*] decreases as expected
- Tight link location differs from MRTG data by 1 hop

High Speed Probing

- System I/O limits probing rate
- On high speed networks:

 $A > \min(B_s, B_d)$ \rightarrow cannot estimate A using self-induced congestion

Receiver System I/O Limitation

- Treat receiver I/O bus as an extra link
- Use packet tailgating
- If $r < B_d$ then we can estimate A[1, N-1]

Sender System I/O Limitations

- Combine sources to increase net probing rate
- Issue: machine synchronization

Conclusions

- Towards spatio-temporal available bandwidth estimation
- Combine self-induced congestion and packet tailgating
- Tight link localization in space and over time
- ns-2 and Internet experiments encouraging
- Solutions to system I/O bandwidth limitations

spin.rice.edu