

3 June 2004 ISMA Data Catalog Workshop

Metropolis

Experiences from the French measurement infrastructure

Timur Friedman P&M Curie Univ., Paris LiP6 lab

The Metropolis Project

- who we are
- what measurements we conduct

ISMA data catalog

response based upon our experience

Metropolis project

Funded by the French government
 The RNRT funding agency

- 36 month project
 - 2 M€
 - 400 man months
 - ending 2004
 - follow-on: MetroSec (3 additional years)

Aims

- To develop a common framework for the metrology of IP networks
 - QoS measurements and SLAs
 - Development of realistic models
 - Protocol analysis and the *in vivo* study of network behaviour
 - Network dimensioning

Metropolis partners

The LiP6 lab at Pierre & Marie Curie Univ.

- Project leader: Kavé Salamatian
- France Telecom R&D
- The GET consortium of engineering schools
 Telecom Paris, ENST Bretagne, Telecom INT
- The INRIA French national research institute
- The Institut Eurecom engineering school
- The LAAS CNRS lab, Toulouse
- Renater
 - The French national high speed research network

External partners

Sprint ATL lab

- Exchange of traces, analysis scripts
- ATT Labs-Research
 - Collaboration with MINC (multicast measurements)
- Boston University
- GEANT European research network
 - definition of measurement instrumentation

Ongoing collaborations

eNext European network of excellence

- ~50 institutions
- LiP6: leader of the measurement taskforce
- NGI European network of excellence
 - ~60 institutions
- NIMI
 - Source code access and development
- CAIDA
 - Use of skitter data
- ▶ RIPE TTM
 - Use of testbox data

Renater network

Measurement platforms

Active measurements

- RIPE TTM boxes
- SATURNE boxes (ENST)
- generic BSD and Linux boxes
- Passive measurements
 - DAG cards (Waikito)
 - QoSMOS boxes
 - Ipanema boxes

Active measurement platforms

- Installed at each of the French partners
 - Extending to eNext European partners
- Hybrid architecture
 - RIPE/Saturne/generic boxes as platforms
 - NIMI for measurement consolidation
- Pandora: A new measurement platform
 - Based on specific µ-kernel for measurement and components architecture
 - Highly scalable, robust, and flexible

Passive measurement platforms

Microscopic Passive Measurements

- DAG cards
- 3 GigaEthernet measurement points
 - Generate around 80 Gbytes of data per day
- Macroscopic passive measurements
 - Ipanema, QosMosMicroscopic passive measurements
 - Flow level measurement
 - QosMos probe
 - Very precise flow classification and application analysis
 - Ipanema probe
 - One way delay measurement

Project publications

• 1 IETF RFC

- RTCP usage for measurement
- 5 journals
- 22 international conference papers
 - 2004 : 2 Sigmetrics, 3 PAM, 2 ICC, etc...
- 8 French papers
- 14 submissions under review
- 6 common papers between partners

Ongoing research

- Network monitoring
 - Anomaly detection
- Active measurement methodologies
 - Finding good estimator for network parameters
 - SLA validation
- Dimensioning
 - Traffic matrix estimation
 - Access provisioning in presence of P2P
 - Wireless measurement characterization
 - GPRS and WIFI

Ongoing research continued

- Traffic engineering
 - Weight assignment
 - Flow classification
- Sampling
 - Scaling the measurement toward OC192 and beyond
- Massively distributed measurement architecture
 - Distributed IDS
 - traceroute@home
 - How to get a realistic view of the network
 - How to fusion distributed topology information
- Localisation
 - How to map IPs to geographical location

• The Metropolis Project • who we are what measurements we make ISMA data catalog responses based upon our experience

Our meta-data environment

Sharing data between partners

- shared infrastructure, but
 - each user conducts its own measurements
 - each user stores its own measurements
- Making data available to other researchers
- Using data supplied by others

Anonymization

• Heterogeneous requirements

- site-dependent
 - each partner has its rules about what can be shared
- dependent upon type of trace
 - passive traces much more sensitive, in general, than active

What was not measured? ctd.

there is the planned experiment

- which tools?
- what arguments?
- on which machines?
- at what times?
- there is the data that actually comes in
 - command line arguments, return code
 - STDERR as well as STDOUT
 - NIMI good at this
 - build meta-data generation into distributed measurement systems

Identifying data

support a data publication requirement
support idea of a collection identifier
a citable URI for the data

isma://data- owner/id, or
isma://data- owner/external/data cataloger/id

for citing, not for clicking and downloading

XML

- We find it useful to convert data to XML
 - existing parsing, data manipulation tools
 - XML schema to verify proper format
 - using XML for traceroute@home system
- Most tools do not output XML
- Data compression for large datasets?
- Encourage translation native-to-XML
 - front end, publish XML schema
 - problem: how to encourage people to do this?

Fine-grained measurements

- Want to encourage publication of finegrained measurements
- Example: basic unit in traceroutes
 - a traceroute?
 - each individual probe packet
- Support standardizing the data collected for basic measurement such as these

