
Metadata Management of Terabyte Datasets from an IP
Backbone Network: Experience and Challenges

Sue B. Moon and Timothy Roscoe
Sprint Advanced Technology Laboratories

1 Adrian Court
Burlingame, CA 94010

{sbmoon,troscoe}@sprintlabs.com

INTRODUCTION
Network measurements provide insight about real network
traffic characteristics which cannot be obtained through mod-
elling or simulation. Frequently, however, subsequent anal-
ysis of network data reveals the need for information previ-
ously discarded through sampling techniques or insufficient
accuracy in measurement. The Sprint IP monitoring project
began with a goal of acquiring enough data to answer most
questions raised in the course of analysis. This is done by
collecting information on every packet without any prior fil-
tering or pre-processing of network traffic.

In this paper we describe the systems issues of analysing
data from the Sprint IP Monitoring Project, which collects
very large sets of detailed packet-level data from a tier-1
backbone network. We report our early experiences man-
aging these datasets and associated software within a small
but growing research group. Based on our experience, we
outline a comprehensive framework for efficiently managing
the metadata and ultimately the data itself within the project.

BACKGROUND: The IP Monitoring Project
Sprint operates a tier-1 Internet Backbone network using
(at time of writing) Packet-over-SONET (PoS) links of up
to OC-48 or OC-192 capacity (2.5 - 10 Gb/s), connect-
ing Points-of-Presence (PoPs) around the United States.
Each PoP consists of backbone routers which terminate the
backbone links, plus access routers which aggregate low-
bandwidth links (OC-3 and under) from customers. Back-
bone routers and access routers are usually tightly meshed.
In addition to backbone and customer links, PoPs generally
have links to public and private peering points for connection
to other carriers’ networks.

Our approach is to collect per-packet header informa-
tion from multiple links at multiple PoPs simultaneously,
and timestamp each packet record using GPS-synchronized
clocks[3]. Packet traces are then shipped back to Sprint Labs
for off-line analysis.

A passive optical splitter on an OC-3, OC-12 or OC-48
link is connected to amonitoring system: a high-end Linux
PC equipped with a University of Waikato DAG3 or DAG4
card [2]. The DAG card captures the first 44 bytes of every
IP packet on the link, adds 12 bytes of framing information
and 8 bytes of timestamp, globally accurate to about 5µs and
synchronized using a GPS receiver in the PoP. The monitor-
ing system transfers these 64-byte packet records over the
PCI bus from the DAG card to main memory, then writes
them to a RAID array over another PCI bus in 1MB chunks,
enabling full-rate traces to be captured to disk even on OC-
48 links with minimum-size packets. Atrace in this context
is therefore a vector of 64-byte packet records (on the order
of a billion of them). The monitoring system collects packet
records up to the capacity of the on-board disks.

While we do not capture packet payloads (simply
IP/TCP/UDP headers), no sampling of packets is performed:
we record every packet on the link for the duration of the
trace run. This results in very large trace datasets: each mon-
itoring system captures between about 50 and 100 gigabytes
of data. In addition to the packet traces, we also collect topol-
ogy information about the PoP configuration and routing ta-
bles in effect at the time of the trace. The results of a trace
run therefore consist of the following:

• Packet traces from different links in different PoPs, each
one between 50 and 100 gigabytes in size.

• PoP configuration information (topology, etc.)

• BGP routing tables downloaded from the routers

• IS-IS contingency tables downloaded from the routers.

Currently, we monitor 9 bidirectional links at one PoP (18
traces at a time). Two other PoPs are in the process of being
instrumented, and we will be monitoring about 10 bidirec-
tional links in each. A day-long collection of packet traces
amounts to about 1 TB of data, and we expect this to increase
to several terabytes per day in the near future.

1



Analyzing this amount of data poses serious challenges in
system design and implementation.

ANALYZING THE DATA
All data acquired by the monitoring systems is shipped back
to Sprint Labs for off-line analysis. The data is stored pri-
marily on two large tape jukeboxes. For processing, traces
are loaded off tape onto RAID storage arrays connected to
one or more nodes of a 17-machine Linux cluster. We can-
not keep all the traces on-line simultaneously.

Analysis involves processing trace files, BGP and IS-IS
tables, and other information in assorted ways. Since this
is primarily a networking research project, the nature of the
analysis is somewhat open-ended. It is not our purpose here
to report on the analysis and its results, but we describe some
representative operations on traces to give an idea of the sys-
tems problems involved in handling them.

Simple statistics gathering

Here we process a trace extracting information such as inter-
packet delay distribution, protocol types, etc. This is simple
sequential processing of a single trace at a time, though in
some cases it can generate reasonably large result sets.

Isolation of TCP flows

We can process a trace to reassemble each TCP flow. This
allows us to infer round-trip time (RTT) distributions for the
flows on a link, for instance, as well as generate statistics
for TCP goodput. While this is also sequential processing
of a single trace, it generates very large result sets and little
information is thrown away at this stage, for several reasons
(most of the traffic we observe is TCP, for instance).

Trace correlations

An important part of our research involves looking at queue-
ing delay distributions through routers. For this we need to
take a trace of a link entering a router, and one taken at the
same time from a link exiting the same router. From these
we generate a list of those packets which both entered on the
one link and exited on the other during the period in which
both the traces were being taken. Correlating two traces in
this way is a frequent operation and is currently performed
by building a large hash table of packet records of the first
trace, then looking up records in the second trace.

This operation clearly generalizes to the problem of corre-
lating all simultaneous traces into and out of a given router
during a trace run, and further to correlating all traces along
a packet path in the backbone.

Generation of network traffic matrices

A traffic matrix for a network is a two-dimensional array
which shows for each combination of ingress and egress
PoPs the traffic between them. Traffic matrices are highly

dynamic, and may involve multiple internal routes through a
network between the same pair of PoPs.

Traffic matrices are extremely useful to know for the pur-
pose of capacity planning and traffic engineering in a net-
work. While we cannot generate precise traffic matrices for
Sprint’s network without instrumenting all PoPs, by using
traces from a small number of PoPs together with BGP ta-
bles from the time of the trace, we can infer traffic with a
high degree of accuracy.

EARLY EXPERIENCES
Research work to date on the trace data has tended to pro-
ceed in an ad-hoc manner: analysis software has been writ-
ten from scratch and on demand, storage management (in
particular transfering data between disk and tape) is per-
formed manually with few clear conventions on file nam-
ing and identification, and individual researchers have tended
to produce their own tools and results in isolation. In some
ways this has been beneficial: we have generated interesting
results quickly, and have developed experience with dealing
with the kinds of operations people perform on the data.

However, at the same time we have reached the stage
where this approach is becoming unworkable. The kinds of
issues that have arisen include:

• The total amount of data we expect to collect over the
course of the project is on the order of tens of terabytes.
Since this is more than our total on-line storage (cur-
rently about 2TB), this raises the problem of when to
move datasets from tape to disk, in an environment with
multiple users sharing data.

• The results of the early data processing steps are gener-
ally needed by most forms of analysis, and often large
datasets in themselves. At present there is no facility
for sharing result datasets, or even knowing if a desired
set of results has already been computed. This results in
much lost time and duplicated effort.

• Certain analyses take not only the raw data traces, but
also associated BGP tables or topology information as
input. It would expedite the analysis process if different
types of data can be correlated in a systematic way.

• Given the need to reuse results (due to the cost in time
of regenerating them), we need a way of determining
which datasets are affected by a bug subsequently dis-
covered in a piece of analysis software. Currently there
is none.

As the number of people on the project has grown, these
problems have become correspondingly more serious - for
small workgroups, informal contacts suffice to keep track of
people and data, whereas we expect to have more than 10
people using the data in the near future. We have decided that

2



the analysis platform needs to be significantly enhanced to
support the ongoing sharing of results, software tools, insight
and project history among the project members.

NEW DESIGN
Based on our experience in the early stages of the project, we
are currently working on implementing a system for manag-
ing the metadata relating to traces and analysis results, and
ultimately performing storage management for the project.

Our approach to addressing some of these problems bor-
rows ideas from workflow management and software con-
figuration management systems like Vesta [5]. However,
unlike some such systems, the goal here is not to build an
environment within which all processing of our trace data
occurs: experience shows that such systems are generally
heavyweight and ultimately restrictive.

The problem breaks down fairly naturally into three areas:

1. Storage of data (traces, tables, results)

2. Source code maintenance of analysis programs

3. Metadata management.

We discuss only metadata management here. Storage
management will continue to be an ad-hoc solution tied to
the particular SAN, tape library, etc. in operation and we be-
lieve it is best left this way: the datasets are too large for us
to manage in a conventional database. Source code manage-
ment is performed well by systems such as CVS[4], and we
do not intend to reinvent the wheel.

Consequently, we concentrate on the management of
metadata within the project in this paper. We also emphasize
that the following design is in an early stage. We expect the
ideas to develop as we gain more experience from building
and using the system in the course of the project.

Metadata Abstractions and Model
We are interested in capturing processes of trace acquisition,
analysis tool development, and data processing in ways that
are immediately useful to the project while not “getting in
the way” of the networking research.

Our proposed system for keeping track of data, results, and
analyses within the project is based on four key abstractions
of the problem: raw input data sets, analysis programs, re-
sult data sets, and analysis operations. We use these to form
a dependency graph to represent both the data and results ac-
quired from the project, and the research progress made by
the project participants.

Raw input datasets

Raw datasets are acquired by the monitoring project rather
than generated. This includes the trace files themselves, but
also additional data relating to the network, in particular BGP

routing tables in effect when the trace was acquired, and in-
formation about the topology of both the Sprint backbone as
a whole and of individual PoPs being monitored. BGP tables
are downloaded in real time directly from routers during a
trace collection, while topology information (which changes
much less frequently) may be entered by hand.

Each dataset has a varying number of attributes. For ex-
ample, for trace data we need to know when the trace was
taken, its duration, which link on which router the trace was
acquired from, what data format the trace is in (the data for-
mat has changed as the equipment has evolved).

Input datasets never change. We assume that an input
dataset, once acquired, will never be modified.

Result data sets

As with raw input data, the results of processing data are
also retained as immutable objects (at least, all those results
deemed sufficiently important).

The difference between result datasets and raw input
datasets is that in principle, given sufficient information
about how they were generated, any result dataset can be dis-
carded and subsequently regenerated from the original data.

Analysis programs

Eachversionof a program used in the project is represented
by an entity in the system. The project has inevitably gener-
ated lots of custom software, ranging from scripts for statis-
tical packages like Matlab and S/Plus to C programs for ef-
ficiently processing the large out-of-core datasets. All these
reside in a version control repository (currently CVS).

The motivation for representing each separate version of a
piece of software as metadata is this: the software inevitably
evolves as the project progresses, new functionality is added,
formats change, and bugs are fixed. Each result obtained in
the project is potentially tied to a version of the software that
produced it. An extreme case is the discovery of a bug which
affects analysis results - it is important to identify which re-
sult sets should be considered potentially invalid as a conse-
quence of a programming error.

Analysis operations

An analysis operation is a combination of input datasets and
programs, which generates a number of result datasets as out-
put. For each operation, we need to keep track of the time,
input datasets, specific version of programs, output datasets,
and precisely what was done to produce them.

Specifying precisely what an analysis operation consisted
of can be quite simple; for example, we might record the
Unix command line used to process the data. Given knowl-
edge of the versions of programs used, we can in principle
reconstruct any output data from the version control reposi-
tory and the input data.

3



Model

The four kinds of abstraction above are time-invariant: new
elements (datasets, program versions, analyses) are added,
but none are ever deleted. They naturally form a dependency
graph, where the arcs are analysis operations and the nodes
are datasets and program versions.

Given this graph, we can not only keep track of what
traces, results and software we have. Other benefits include:

• Much of the data loading and storing is automated that
less human intervention is needed and thus expedite the
analysis effort.

• Any result can be reliably reproduced from raw data
sets.

• Not only the raw data sets and results, but also the
procedural information is shared among researchers,
adding much efficiency in communication.

• The model provides a sound basis for storage manage-
ment by providing temporal and spatial constraints be-
tween the data sets.

DESIGN AND IMPLEMENTATION
The dependency graph for the project metadata is easily rep-
resented in a relational database schema, and consequently
stored in a RDBMS (in our case PostgreSQL, due to ready
availability). Not only does this provide a convenient base
for building the system, it also allows incremental deploy-
ment of functionality when time and resources permit, an
important factor in our project.

Interaction with version control

The database can interface to the version control repository
by referencing modules and major release numbers (for ex-
ample, using CVS’s version tagging capabilities). While it
is impractical for the metadata store to track every version
of every source file in the repository, it makes sense to track
majorreleasesof the in-house software1.

This has the consequence that only analysis operations us-
ing “release” versions of software can be tracked by the sys-
tem. We feel this is a small price to pay for the ability to
cache and reproduce results. In any case researchers are free
to experiment with new analysis software, they are simply
required to check their code in, and thus make it available
to others, for their results to be reproducible. This is simply
good scientific practice.

Linkage to data storage system

Currently trace files are identified by canonical filenames,
which encode where and when the trace was taken. We are

1While researchers will write new software and enhance existing pro-
grams, we expect that the common case will involve already-built tools.

in the process of making each input dataset self-describing,
as with the format used by CAIDA for network traces [1],
which will make reliance on a canonical filename less impor-
tant, and enable us to populate the database of traces semi-
automatically.

Having each dataset self-describing facilitates integrity
checking. It also makes the metadata independent of file lo-
cation, an important prerequisite to building a storage man-
agement mechanism above the database.

User interfaces

There will be at least two user interfaces to the metadata. Us-
ing current software engineering tools it is easy to construct
sophisticated user interfaces for browsing the metadata, ei-
ther through a window system or a web browser.

The more challenging part of the interface work is a
command-line interface to capture analysis operations. To
make the operation as simple as possible to researchers ac-
customed to using ad-hoc software commands, such as:

$ trace correl -o outputfile trace1 trace2

—we would ideally require a minimal change to log the
result, such as:

$ log trace correl -o outputfile trace1 trace2

Thelog command would ascertain the input datasets, ver-
sion number of the program being invoked, and the filename
of the output dataset. A number of mechanisms immedi-
ately suggest themselves: requiring programs to support a
-version option, having the database maintain a list of
MD5 hashes of release binaries, etc. We intend to investi-
gate a number of approaches.

Incremental deployment and enhancements

A final, but important, advantage of implementing the meta-
data store as a database is the ability to deploy new func-
tionality incrementally. This is essential as the monitoring
project evolves and we add more functionality to the system.
Some of the features that probably will not make it into the
first version, but can be added later, include:

• Automatic storage management: have the system make
decisions as to when to copy datasets from tape to disk,
and when to delete the disk copy. In this way the disk ar-
ray becomes much more of a cache for the tape archive.

• Result caching: ideally we would automate the caching
of results, including fetching previously generated
datasets when the system can ascertain that a particu-
lar analysis operation would not generate anything new.

• Job scheduling: given the limited resources for process-
ing data (disk space and processors), there is a need for
a batch job scheduler which understands dependencies
between datasets and the possibility for sharing data be-
tween jobs. While this is known to be hard, there is con-

4



siderable research literature from the mainframe field in
the 1970s on the problem which we could to undertake
the task.

• Automation of analysis: operations such as “run pro-
gramx over every trace file collected on linky in the
last 6 months” could be implemented over the metadata
store given suitable storage management.

Caveats

Perhaps our biggest challenge in designing a system like this
is to know where to stop. In the past configuration man-
agement and workflow systems have foundered because of
a combination of two factors: firstly, they tried to represent
too much information about the usage of the system, and sec-
ondly, they were not sufficiently flexible in handling events,
data and usage patterns outside the scope of the system.

We hope to avoid this trap. The need to deploy the sys-
tem incrementally “around” our fellow researchers forces a
design which does not try to capture all the activities of the
research group, while still coping with the real needs of the
group.

CONCLUSION
A number of factors make efficient management of data
within the our monitoring project important: the size of raw
data sets (on the order of a terabyte each), the changing na-
ture of the network itself over the course of the project, the
concurrent development of analysis tools, and the need to be
able to reproduce results and reuse them for further analysis.

A further challenge is posed by the requirement that users
not be restricted in what they do with the data: this is a net-
working research project, and to our knowledge analysis of
very large, accurately timestamped packet-level traces of an
Internet backbone has not been attempted before.

We are attempting to produce an flexible, minimally intru-
sive system for capturing the complex relationships among
datasets and programs for subsequent use. This paper has
described the current state of our thinking about this prob-
lem.

ACKNOWLEDGEMENTS
This work has benefitted greatly from discussions with
the other members of the Sprint IP Monitoring project:
Supratik Bhattacharyya, Imed Chihi, Christophe Diot,
Chuck Fraleigh, Gianluca Iannaccone, Ed Kress, Bryan
Lyles, Konstantina Papagiannaki, and Nina Taft.

REFERENCES
[1] CAIDA. Coralreef web page. http://www.caida.org/

tools/measurement/coralreef/, March 2001.

[2] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pear-
son. Design principles for accurate passive measurement. In

Proceedings of the Workshop on Passive and Active Measure-
ments (PAM 2000), Hamilton, New Zealand, April 2000.

[3] C. Fraleigh, C. Diot, B. Lyles, S. Moon, D. Papgiannaki, and
F. Tobagi. Design and deployment of a passive monitoring in-
frastructure. InProceedings of the Workshop on Passive and
Active Measurements, Amsterdam, Netherlands, April 2001.

[4] P. Lederqvist. CVS: Concurrent Versions System v. 1.11,
November 2000. Available fromhttp://www.cvshome.org/
docs/manual/cvs.html.

[5] R. Levin and P. R. McJones. The Vesta Approach to Precise
Configuration of Large Software Systems. Research Report
105, Compaq (then Digital) Systems Research Center, 130 Lyt-
ton Avenue, Palo Alto, CA 94301, USA, June 1993.

5


