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Wavelet Analysis of Long-Range-Dependent Traffic

Patrice Abry and Darryl Veitch

Abstract—A wavelet-based tool for the analysis of long-range with tails which decay slower than the exponential decay
dependence and a related semi-parametric estimator of the Hurst familiar from Markovian models [11], [13], [27], [28], [32]. In
parameter is introduced. The estimator is shown to be unbiased the absence, however, of a complete program of data analysis
under very general conditions, and efficient under Gaussian . ' " . . . '
assumptions. It can be implemented very efficiently allowing informed r_n_ode_l select_lon, parameter estimation, a_nd_flnally
the direct analysis of very large data sets, and is highly robust model verification against relevant performance criteria, the
against the presence of deterministic trends, as well as allowing connection between LRD and performance metrics cannot be
their detection and identification. Statistical, computational, and  fylly understood.
numerical comparisons are made against traditional estimators Among the outstanding issues in the list above, there are

including that of Whittle. The estimator is used to perform " f ticular i ¢ hich tribute to in th
a thorough analysis of the long-range dependence in Ethernet WO Of particular importance which we contribute to in the

traffic traces. New features are found with important implications ~Present paper. The first is the primordial problem of data
for the choice of valid models for performance evaluation. A analysis/parameter estimation in the presence of LRD. It is
study of mono versus multifractality is also performed, and a well known [10] that even the most elementary of classical
preliminary Stgdg of th.e.St.at'onaEty with respect to the Hurst  gatistics require significant revision in the face of long-range
parameter and deterministic trends. dependence. For example, letbe a wide-sense-stationary

Index Terms—Hurst parameter, long-range dependence, pack- process in discrete time with LRD, by which we mean that

et traffic, parameter estimation, stationarity, telecommunica- the covariance function, (k) takes the form
tions networks, time-scale analysis, wavelet decomposition. z

Ye(k) ~ e k=2 oo (1.1)
[. INTRODUCTION where ¢, is a positive constan#{ € (0.5,1). The Hurst

HERE is now ample evidence that long-term correlatio@@rameterf measures long-range dependenég, = 0.5
are present in a wide range of generalized data typggrrespondmg to the classical case of short-range dependence.

including many of those likely to form major componenté” this context, Beran [10, p. 160] shows that the distribution of

of telecommunications traffic in high-speed networks. The k+n
best known example is given by the high-quality Local Area Tpn = Z zi | /n
Network Ethernet traces of Leylanet al [24] recorded at i=k+1

Bellcore over a number of years under a variety of conditiongnds to a normal variable with increasing sample sizbut

These large data sets show very clearly the scale-dependgm slower rate than the classiggh. In fact, the statistic
properties of Ethernet traffic, and in particular the presence

of long-range dependence (LRD), for instance, in the point z2(p, ey, H) = In =W o1-H 1.2)
process describing frame arrival instants. Video traffic [12] is T

another case of note. Bera al demonstrate the presencavhere

of long-range dependence over a wide range of time scales 9 1

in variable bit rate traffic (VBR). Long-range dependence 0 = ¢y (H(2H - 1))

has also been found in other traffic contexts, notably i@ ,qumptotically standard normal. Thus even the estimation
Wide Area Networks [29], and in Common Channel S|gnallngf the mean of a stationary process, because of the appearance
(CCSN/SS7) traffic [17]. L of H as anexponentin (1.2), depends strongly on the LRD
The question of the impact of such characteristics on n&fganomenon. The fact that this is true in general for statistics
work performance is the subject of much current researcly,| pp processes shows that is of central importance. It is

as well as considergble confusion and debate. What se.em%ii[rél that it be estimated well, and if joint parameter estimation
refutable, however, is that LRD in real data does indeed 'mpqgtimpossible or impractical, that it be estimated first

significantly on queueing delays [18], and that certain simpli- The main aim of the paper is to introduce an estimation tool

fied analytical models of single-server queues incorporatigg, ., \vavelet analysis [2], [3] which provides a natural, sta-
LRD corroborate this by exhibiting virtual work distributionsigticaily and computationally efficient, estimator of the Hurst

. . . 1Qﬁlrametel{’—l . Itis known [10] that simple traditional estimators
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in practice for large data sets (such as those here) due tdn a second paper we use these insights to select a specific
high computational complexity and memory requirementsompact model, and test it extensively against real data in
Furthermore, they are not naturally matched to the essentialynulation experiments.
simplescale behavior of LRD. In contrast, wavelet analysis is The remainder of the paper is set out as follows. In Section
first of all a tool which studies the scale-dependent propertidswe introduce wavelets, wavelet analysis, and the wavelet-
of data directly via the coefficients of a joint scale-time waveldtased estimator off. Its theoretical properties are compared
decomposition. As such, very little needs to be assumed abtutthat of the Whittle estimator and its Discrete version, as
the underlying process. Should evidence of LRD be foundgll as classical alternatives. Numerical comparisons against
it then offers an unbiased semiparametric estimator whithe discrete Whittle estimator are given.
can be very efficiently implemented using techniques from In Section Ill stationarity is briefly discussed, and a full
nonredundant multiresolution analysis [3]. account of the wavelet estimator’s properties with respect to
The wavelet-based estimator has the additional virtue of rdeterministic trends. Numerical examples compare its perfor-
bustness against an important class of nonstationarity, namefgnce against the discrete Whittle estimator.
the addition of deterministic trends. This is a particularly In Section IV we introduce briefly the nature of the Ethernet
important advantage in an LRD context where it is verglata sets and their first-order statistics. We then show how each
difficult, in theory and in practice, to distinguish between redface can be analyzed from different points of view, and give
trends and long-term sample path variations due to LRD. Wee results of a wavelet-based LRD analysis for each. The
show how the nature of trends in data can be determined, angplications for model choice are discussed. The multifractal
their effects onH estimation greatly reduced or even rigornature of the data is investigated and finally a preliminary
ously eliminated, by varying a characteristic of the analyzingsult on the stationarity with respect .
wavelet known as the number of vanishing moments. A full Finally, in Section V we summarize the main results.
discussion of stationarity is beyond the scope of this paper,
however, we believe that a real attempt to deal with this issue
is indispensable to any useful application of stationary LRD
models to data. We, therefore, discuss deterministic trengls The Long-Range Dependence Phenomenon
in some detail, and also perform a preliminary investigative
analysis of the variation off with time in Ethernet data.
The second objective of the paper is the analysis of Ether

Il. WAVELET-BASED ANALYSIS OF
LONG-RANGE DEPENDENCE

Although new to telecommunications, the long-range depen-
r(ij&nce phenomenon has long been recognized in many fields
data using the wavelet-based estimator. Although substan Iuc_jmglth_ydrology, tlurbulencte,dtzlhol??r)]/, Zn?_ ;gmmc}:rlnglgtpr
work has already been done, and the presence and impa sics. Itis commonly accepted that the de |n|t.|on OFLRDIS

e slow power-law decrease of the autocorrelation function of

LRD clearly established, we show that there are importa i tati din (1.1) itk
things to learn about the structure of the data before quarﬂi—WI e-sense-stationary process expressed in (1.1) &i

tatively accurate models for performance evaluation purpos%é’ correqundmg fo the divergence of the autocorr_elatlon
can be proposed. The issues we consider are important Y9 An equivalent statement for the spectiipfv) of z is
traffic modeling in general, and not only for the Ethernet Lo (v) ~ cplv)t=2H, V=0 2.1)
traffic we consider here. Thus we go further than the published
studies [18] and [24], which concentrate on the time series where
interarrival instants. We measure, in addition, other aspects

of the data to gain insight into the process of the arriving

work itself. This is motivated by insights from analyticalandA is the Gamma function. Thus the LRD processes belong
studies [11], [27], which show that the precise structure ?6 the class of random processes which take the foffn|
arriving work is crucial, LRD in itself cannot determi”eforarange of frequencies close to0. The LRD phenomenon
performance. For example, [11], [23], [36], the GI—M—1g 5,54 ciosely related to the properties of scale invariance, self-
queue with interarrivals of infinite variance has an LRQimijarity, and hence fractals, and is therefore often associated

arrival process but classical exponentially distributed queygy, statistically self-similar processes such as the fractional
tails. On the other hand, Weibullian (stretched exponentigd}onian motion [26].

tails are found for the Fractional Brownian Storage Model \ote that we denote by: both a wide-sense-stationary

of Norros [27] and for the superposition of a large nuMbefocess, and a realization of it referred to asignal de-
of small peak-rate ON/Off fluid sources [11]. Even mor%ending on the context.
extreme behavior is found for superpositions of large peak-

rate ON/Off fluid sources, that is, power-law tails with infiniteB. Multiresolution Analysis and Discrete

expectation [32] (see also [13] and [28] for related results)Vavelet Transform: A Short Review

Our extended analysis of the Bellcore data reveals somea myjtresolution analysis (MRA) consists in a collection
striking features with important implications for the choicgy hested subspacdd’; },c z, satisfying the following set of
of a model capable of capturing the work-arrival process. Vlﬁ‘?operties [14]:

also discuss the issue ofono- versus multifractahodeling, . . . Lo

and conclude that the data traces are well described by’ ) jQZVj = 0%, jgzvj is dense inl*(R).
monofractals. o i) V; C V1.

¢ =7 e, AQH — V) sin(n — nH)
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o iii) z(t) € Vj — x(2't) € Vo. where ), (respectively,¢; ;) are shifted and dilated tem-
e iv) There exists a functiom(t) in V;, called thescaling 5 ) o
function such that the collectiofipo(t — k), k € Z} plates of_z/;o (respectlvely;j)o), called Fhe dual mother wayel_gt
is an unconditional Riesz basis f®f. (respectively, the dual scaling function), and whose definition

depends on whether one chooses to use an orthogonal, semi-
orthogonal, or bi-orthogonal DWT (see, e.g., [6] and [14]).
{pj(t) =279 2¢0(277t — k), k € 2} They can practically be computed by a fast recursive filter-
bank-based pyramidal algorithm whose computational cost is
extremely low (see, e.g., [14]).

Similarly, the scaled and shifted functions

constitute a Riesz basis for the spdée Performing a mul-
tiresolution analysis of the signal means successively pro-
jecting it into each of the approximation subspatgs .
C. The Wavelet-BaseH Estimator
approx; (t) = (Projy,z)(t) = Y aa(j, K)dn(b)- 1) Definition of the Estimator:The coefficient|d.(j, k)|?
k measures the amount of energy in the analyzed signal about

Since V; C V;_1, approx; is a coarser approximation ofthe time instant2’% and frequency2 =71y, wherev, is an
z than is approx;_; and, therefore, the key idea of thearbitrary reference frequency selected by the choicepfit
MRA consists in examining the loss of information, that ishas been suggested [2], [3] that a useful spectral estimator can
the detail, when going from one approximation to the nexte designed by performing a time average of {#g(j, k)|?
coarser onedetail;(t) = approx;_(t) — approx,(t). The at a given scale, that is,
MRA analysis shows that the detail signalstail; can be
directly obtained from projections of onto a collection of L. (2770) = 1 Z |da (5, k)[? (2.5)
subspaces, th&/;, called the wavelet subspaces. Moreover, i
the MRA theory shows that there exists a functigy called
the mother wavelet, to be derived frogy, such that its wheren; is the available number of wavelet coefficients at

templates{y, ;(t) = 279/24o(279t — k),k € Z} constitute OCtave;. Essentiallyn; = 277n wheren is the length of the

a Riesz basis foiV; data.l',(») is therefore a measure of the amount of energy
_ _ . that lies within a given bandwidth around the frequency
detail;(t) = (Projyw,z)(t) = > _ du(j, k)t k(1) and can therefore be regarded as a statistical estimator for the
k

spectruml’,.(v) of z. In fact, one can show [3] that, when
Basically, the MRA consists in rewriting the information inis a wide-sense-stationary process, the expectatidn, a§
x as a collection of details at different resolutions and a

low-resolution approximation EL,(2791) = /Fx(l/)2j|\llo(2j1/)|2d1/ (2.6)
j=J
z(t) = approx,(t) + Zdetailj(t) where ¥, denotes the Fourier transform of the analyzing
J=1 waveletiyy. From this relation, one sees tHat suffers from

the standard convolutive bias, that is, the spectrum to be
= Z%(l k) g(t) + Z Z do(J, k)¢k(t). (2.2) estimated is mixed within a frequency range corresponding to
k k the frequency width of the analyzing window at scgleThe
Theapprox; essentially being coarser and coarser approxim@ucial point here is that for LRD signals this bias reduces
tions of = means thaty, needs to be a low-pass function. Thdaturally to a_S|mpIe form, enabling an un_blased estimation of
detail;, being an information “differential,” indicates ratherZ- TO see this, recall the spectral behavior (2.1) and assume
that v is a bandpass function, and therefore a small Wa\)‘g_,r the moment that this form holds fpr all frequencies. The
a wavelet More precisely, the MRA shows that the mothePias equation (2.3) can then be rewritten as
wavelet must satisfyf ¢o(t)dt = 0 and that its Fourier N
transform obey$¥o(»)| ~ ™, — 0 whereN is a positive Bl (27 10)
integer called the number of vanishing moments of the wavelet = ¢7[277|4=2%) [ |y =25 0o ()2 dv }
—; 2H-1 1-2H 2 (27)
[14]. =127 w0) 1o ) [y NWo(v)|? du.
Given a scaling functionyy and mother wavelet),, the
discrete (or nonredundant) wavelet transform (DWT) is
mapping fromL?(R) — I?(Z) given by

j=1

Erom (2.7), one sees that in the case 1gfv|* processes
the standard convolutive bias turns into a multiplicative one.
Moreover, this multiplicative constant is independent of the
x(t) — {{az(J k), k € 2}, {do(4,k),j=1,---,J, k€ Z}}. analyzing scalg. It is, therefore, possible to design an esti-
(2.3) mator H for the parameteH from a simple linear regression

N _ _ _ of logy(I'2(2771%)) on j, that is,
These coefficients are defined through inner produciswith

two sets of functions: logy (I (277 1)

20 B) = (@00 } (2.4) ~ log; <i S 4.6, k>|2> —(A-1j+e 28)
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where ¢ estimates 3) Efficiency off: It is known [10], [34] that in the pres-
ence of LRD the standard sample estimatbfn >, 22) for
logQ(Cf/|,,|(1—2H)|\I/0(,,)|2 dv) second-order statistics such as the variance of the pracess
has very poor statistical properties, because a time average

is performed over strongly correlated data. In the wavelet
coefficient representation space, it has been shown [20] that
for LRD processes with parametéf

Ed,(j,k)d.(4, k") = O(|k = K'|PH 272Ny, |k — K| — oc.
(2.13)

provided that the integral
/ || A2 W o (1) |2 do (2.9)

converges. Performing a weighted least squares fit between

the scales (octaveg) and j, yields the following explicit This clearly shows that the correlation structure of the trans-

formula for the estimator of{: formed data, that is, the data represented through the wavelet
coefficients, is not LRD provided the no-bias conditityn >

J2 J2 Jo H — 1 is satisfied, in contrast to the LRD of the original data.
1 Z: Sjjn; — Z: S5j Z: Sy This reduction is a nontrivial effect due to the combination
H(ji,j2) = 3 =0 LI of the analyzing Waveletj\being bandpass with vanishing
J2 J2 . J2 . moments (i.e..Uo(r) ~ ¥, — 0), and the wavelet basis
jgl % jgl Si1% = <j§1 Sj]) being built from the dilation operator (i.e2//2W,(27v) ~
Wo(v),» — 0). Such a reduction in the correlation range
(2.10) . .
allows the use of the standard sample variance estimator
1/n; 37, |d= (4, k)|? to estimatd’,(2714). More precisely, un-
where der Gaussian and quasidecorrelation of the wavelet coefficient
1 hypotheses and in the asymptotic limit, a closed form for the
= IOgQ(H—j Z |d. (4, k)% variance of the estimate &f can be obtained and is given by
k .
O'?{ = VaI‘H(jl,jQ)
and the weightS; = (nln®2)/2/t! is the inverse of the 2 1-27
theoretical asymptotic variance gf [1], [3]. = n;, 221 — 2=+ (J2 4 4) 4 2-27 (2.14)

2) Bias of H: The above definition foid holds provided
that (2.1) holds for all frequencies and that (2.6) convergeihere J = j» — ji is the number of octaves involved in
We can relax the first condition since in (2.7) we are free the linear fit andn; = 27/tn is the number of available
choose only the range of scales over which (2ldgshold. coefficients at scalg;. It can be shown that this variance is
Now consider the convergence of (2.9). In fact, estimatidhe smallest possible, that is equal to the Cramer—Rao bound,
problems in the presence of LRD often arise from the singulf@ & given.J. For further details on this estimator, see [2]
behavior of 1/|v|* spectra atv = 0 which causes suchand [3].
integrals to diverge. When designing [6] the mother wavelet4) Confidence Intervalsfrom the above closed from for
o, One is free to select one of its important characteristid§le variance estimation (therefore, under Gaussian and asymp-
namely, the numbeN of vanishing momentsy is an integer totic assumptions), one can derive a confidence interval

such that H-o0p25 <H<H-+oy2s
Vk=0,1,---,N—1, /tkz/)o(t) dt=0. (2.11) Wherez; is thel — 3 quantile of the standard Gaussian distri-
bution, i.e.,P(z > z3) = . All the results presented below,

] ] both in numerical simulations and actual data analysis, were
Clearly, this parameter also controls the behavior of the Fourl%mputed withd = 0.025 (i.e., 95% confidence intervals)

transform of the wavelet about = 0 based on the above hypotheses.

5) Importance ofN, the Number of Vanishing Moments:
The possibility of choosingv provides a very powerful means
of detecting and identifying trends in the data and of canceling

[To(v)| = O("Y),  v—o.

It is easy to check that provided their effects, as explained in detail in Section IIl.
N also plays a central role in the variance &f. The
N>H-1 (2.12) above theoretical relations regarding bias and variance shows

that the largerN is, the better the estimation. However, this
the behavior of| ¥y (»)|* at the origin will beflat enough to theoretical improvement with increasing is balanced by the
balance the singularity of the long-range-dependent spectriungrease of the number of wavelet coefficients polluted by
thus ensuring the convergence of (2.9). When this inequalltprder effects (due to the finite length of the data), resulting
is satisfied, we have shown that the log-log regression-based diminishing number of available wavelet coefficients and
H estimator is asymptotically unbiased, and in practice h#serefore an increase of variance. A good practical compromise
very low bias even for short data sets [3]. seems to beV ~ H + 1. An elegant solution to this tradeoff
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would be the use ofravelets that live on an intervf81] which  explained by its belonging to the wavelet-based framework,
take care of border effects in a clever way so as to avoid tivhich can therefore be seen as a generalization whereby the
decrease of available coefficients when increasihg simple N = 1 Haar analyzing function, which takes the
6) Choosing the Wavelet or the Wavelet Transfordp to  value 2-/2 over [0, T /2], —2~%/2 over [Tp/2, 1], and zero
now we have restricted, for the sake of clarity, our definitioalsewhere, is replaced by functions (or wavelets) of higtier
of the H-parameter estimation to the DWT framework. It can 2) Frequency-Domain Estimation.RD causes the spec-
however be extended to any redundant wavelet transform (them of a process to behave as a power law for frequencies
continuous wavelet transform, for instance) without difficultyclose to0. It is therefore natural to think of using spectral es-
We have shown in detail in [3] and [4] that despite its redurtimation to measuréf. A standard spectral estimator consists
dancy and a much higher computational cost, the performangeaveraging smoothed periodograms computed on different
of the estimator using a redundant wavelet transform is ngieces of the data
superior to that given by the DWT, neither theoretically nor P
practically, except in some specific situations. fg(y) _ Z
Within the DWT, another interesting question is the choice
of the mother wavelet. In [1] and [3] it was shown that for the ) . )
estimation ofH, the only property of the wavelet that matterg/here P is the number of data pieces, their length, and
is its number of vanishing moments. Whether the wavelety. @ Weighting window. It has been shown in detail [2],
are symmetrical or not, form an orthonormal, semi- or bf3] that when applied tol/|»|* signals, such a spectral
orthonormal basis or not, makes no theoretical nor significgftimator results in an estimator df, based on a linear
practical difference. The reason why we chose Daubechfisin @ log(r) versuslog(l’;(»)) plot, which is strongly
wavelets is not orthonormality but the fact that they have Riased. Basically, this is because a constant-bandwitith=
finite time support (that eases the handling of border effecté§onstant spectral estimation is performed which in no way
and that they form a basis where the number of vanishifiggtches thel/[v| structure of the spectrum to be analyzed.
moments can be naturally increased. Moreover, increasing!n contrast, the wavelet-based quantityn; 3-, |d=(4,k)|*
does not result in an excessive extension of their time supp&@n be read as a spectral estimate with a constant relative

They are, however, certainly not the only choice. bandwidth (/A = constan}t, which perfectly matches a
power-law shaped spectrum [2], [3].

2

/a:(t — kLYwr(t) exp(e27vt) dt
k=1

D. Comparison with Standard Estimators

. . . o E. Wavelet Di te-Whittle Estimati
1) Time-Domain EstimatorsBy definition, the LRD avelet versus Liscrete e =stimation

phenomenon is related to the power-law behavior of certainl) The Discrete-Whittle Estimator:Maximum-likelihood
second-order statistics (variance, covariance)) of the Estimation (MLE), the best known fully parametric method,
process with respect to the duratihof observation. Many ©ffers a coherent approach to estimator design which is capable
estimators ofH are therefore based on the idea of measurifj Producing an unbiased, asymptotically efficient estimator
the slope of a linear fit in a log-log plot. The so-calledor H (as well as for other parameters). The Whittle estimator
variogram orR/S estimators are famous examples of thigonsists of two analytic approximations to the exact Gaussian
approach but are known to have poor statistical performan®dLE, suggested by Whittle in 1953 in order to avoid the huge
notably high bias and suboptimal variance. For a detailé@mputational complexity of the exact algorithm. In the 1980’s
review of these and other estimators, see [10] or [35]. Thei] it was shown that nothing is lost in this approximation,
is, however, a time-domain estimator with better propertidd the sense that asymptotically the estimator is unbiased and
known as theAllan variance[7], which consists in measuring €fficient, just as in the exact case.

the expectation of squared difference of averages of the datd "€ approximation essentially replaces the covariance ma-
within windows of lengthZ’ trix by an integral of a function of the spectrum. As described

i ) in detail elsewhere [10], computational difficulties remain,
1 & b Lt T motivating a further approximation: the discretization of the
Va(l) = = / x(u) du —/ x(u) du g L : , . -
K ‘ < A ) frequency dpma!n integration rewritten in terms of the peri
odogram. It is this discrete version which we compare against
where K is the number of segments of siZ¢in the data. in this section. Being based on a parametric estimator, a
This quantity also behaves as a power lawiofvhen LRD specific family of processes must be chosen. We compare
is present and allows aonbiasedestimation ofH. In fact against the fractional Brownian noise (fGn) and fractional
[21], the Allan variance can be rephrased in term of th&RIMA( 0, d,0) processeg$d = H — 1/2). For the numerical
wavelet-based estimator, provided that tHaar wavelet is comparisons here and in the next section, we useStiias
used, thus implementations described in Beran [10].
—oj—lpy _ FANp 2) Statistical ComparisonNonrigorous results of Graf
Vall' =27"T0) = Eld:(j, k)| [22], [10] suggest that the discrete-Whittle (D-Whittle)
where 1; is an arbitrary (small) sampling period. The im-estimator is also asymptotically unbiased and efficient, at
proved properties of the Allan variance-bagdédestimator are least in the fGn case. Assuming that this is in fact the case
1we thank a reviewer for suggesting this improvement which will béor Gaussian process in general, the second-order statistics
implemented in the next version of the tool. of the D-Whittle and wavelet estimators would then be

k= th
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the signal as a whole. This doestimply any reduction in the

0.08f 1 range of scales analyzed. Because of these advantages, we say
o0 : D-Whittle(ARIMA) that the wavelet estimator is capable of analyzing continuous
0.06} 1 time signals. By this we mean that we are free to use a very

- D-Whittle(fGn) high sampling period} in the numerical discretization of the

0.04+ | continuous time data, to capture accurately the fine detail of

* . Wavelet (D2) o the signal. We cgnnot. do this for. the D-Whittle case as the
o0k o size of the resulting discretized signal would be prohibitive.

In summary, the wavelet-baséfl estimator therefore leads to

a simple, low-cost, scalable algorithm.

4) Estimation versus Analysis—The Semiparametric Ap-
proach: The D-Whittle estimator solves many of the com-
putational problems of the Gaussian MLE approach, but the
+ essential disadvantage of parametric methods remain, that a
-0.04r Yo, 1 specific parametric family of processes must be chosen. In
most practical data analysis situations, however, one has no

-0.06 1 idea of the exact correlation structure of the data, and an
05 o0s o7 08 o3 : > ina.ppro.priate choice.of parametr?c family can result in biased
Actual H ‘ estimation, as seen in the D-Whittle fARIMA results for fGn
. . - . . _data of Fig. 1. Compare also columns 4 and 5 of Table I.
Flg. 1. _Blas performance forvflnl'te sample size. The wavelet estimator glv_ﬁ] . .
point estimates, here based @h, j2) = (2, 6), where the true value always | N€ wavelet estimator, on the other hand, enablearadysis
lies within the confidence interval. This is not the case for the two D-Whittlef the scale behavior in a nearly hypothesis-free manner. Thus
gisrgmgttgcrjs}g\mlch are biased for finite sample sizes, here 4096 pomtstmi'logQ(Q].) versuﬁogQ(l/nj Zk |dac(J7 k)|2) plOt is a tool for
the detection of LRD, the determination of the range of scales
(or equivalently, of frequencies) over which the power-law
asymptotically equivalent under Gaussian assumptions, boihavior holds, and a test for the presence of spurious trends
attaining the Cramer—Rao minimum variance. They will not b&s discussed in the next section. If scaling behavior across a
identical in practice, however, since in the wavelet case not glinge of scaleg; to j» is observed, the wavelet estimator is
scales are used in the estimation, but only fhecales where then an effective semiparametric technique for the estimation
the asymptotic scaling behavior is actually observed, resultio§ the corresponding?.
in larger confidence intervals. A numerical comparison of the In common with all semiparametric methods, however, there
two estimators under non-Gaussian conditions is given by the problem of the arbitrary nature of the cutoff scales
Testsignal8 in Table I, for which the marginal distributionsr frequencies at which the LRD behavior is taken to hold,
are bimodal. We see that a failure of the Gaussian assumpti@), the exact choice of; and j». Here the wavelet-based
biases the D-Whittle estimator slightly, but does not effect thestimator has a significant advantage in practical terms because
estimation by wavelet. of the reduction in variance property of the wavelet coefficients

Regarding the first-order statistics, it is important to note thatross scaledn fact, a relation similar to that of (2.10) for the
the D-Whittle estimator is only asymptotically unbiased (dueeduction acrosime holds true also for scales. It implies that
to the periodogram) while the wavelet estimator is unbiasetie estimation within 4/|v|* regime is relatively independent
This is illustrated in Fig. 1, where a comparison is made f@cross scales, allowing the beginning of such a regime to be
different values ofH. We see that except for lod values, clearly identified, if present. In other words, the short-range
that the D-Whittle point estimates fall further from the trueorrelation structure does not pollute the estimation of the
value than the width of their confidence intervals. This is ndong-range-dependent structure, simplifying greatly the task
the case for the wavelet estimates. of the choice of cutoff scale.

3) Computational IssuesThe D-Whittle estimator relies
on the periodogram, which has a low computational cost. A
minimization procedure is involved however which requires
many repetitive evaluations, leading to a significantly higher ) .
overall cost. Moreover, problems of convergence to local mif- General Considerations
ima rather than to the absolute minimum may be encounteredAs discussed in the Introduction, the testing of the stationar-
On the other hand, the wavelet-based estimator requires oitfyhypothesis is particularly difficult in the presence of LRD,
the simple calculation of a DWT, which can be done iwhere many classical statistical approaches cease to hold.
O(n) operations (even less than that of a FFT) using the faten without LRD, however, there is the fundamental problem
pyramidal filter-bank-based algorithm [25], followed by timehat there are an infinity of ways in which a process can be
averaging. For very large data sets the filter-bank algorithm hasnstationary. Normally we must choose a particular model
another significant advantage with respect to memory usag@amework and test for stationarity only against the types of
The signal can be split into blocks of a treatable size, and thenstationarity encompassed by it. To assist in the process
separate calculations combined to obtain the exact result fiois important to includea priori information concerning

+

Estimated H - actual H

~0.02} KK

I1l. STATIONARITY
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the known “physics” of the problem. For example, in the
context of Ethernet traffic the first thing to note is that it is
clear that the data isot stationary, because of the diurnal 095 v :
cycle, lunch breaks, etc. On the other hand, it is reasonable to
expect that for smaller timescales where network conditions
are relatively stable, that stationarity will be a natural and o9l
useful assumption. Linear trends, for instance, are not to be
expected oma priori physical grounds. The task in such a @
context is therefore to determine the timescale at which we :
can reasonably assume stationarity. Clearly, we would like
this to be as large as possible for both practical and statistical
reasons. Unfortunately, we cannot explore this issue properly
here, however, we present in Section V some simple results %8
on the stationarity of the Ethernet traces with respect to
the variation of H with time. We now turn to address in

detail a special but important case of nonstationarity, that of  o.7s}
generalized deterministic trends.

0.85F

Estimated H

[oF 3
O¥
*
XK
*
*
*
¥
*

L 2 4 6 8 10
B. Deterministic Trends Amplitude of the linear trend

Assume that the Slgr!at(t.) ConSIStS.O.f §tat|on§ry dat? Fig. 2. Bias comparison with linear trends. D-Whittle fGn and wavelet-based
s(t), plus some contaminating deterministic function of time; csimates for a fractional Gaussian nofgé = 0.82) with superimposed
p(t) such thate(t) = s(¢) + p(t). We would like to be able linear trends of increasing amplitude. The bias in the Whittle estimate

to measured correctly for the data. and detect and identi rastically increases with increasing trend, while the wavelet estimation
! emains essentially constant, provided that the analyzing wavelet possesses

the trend. at least two vanishing moments.
One example is the fact that a slowly (power-law shaped)

decaying trend added to a short-range-dependent pracesscross the entire trace in units of the trace sample variance
can generate autocovariance estimations with slowly decayisgshown in the third column of Table I). We found that the
tails, which could be incorrectly mistaken for evidence thd&-Whittle estimates were at first unaffected, and then became
z is stationary with LRD. The opposite problem can alsimcreasingly biased, finally saturating at absurd values. This is
occur, that the data is LRD but this is masked by the overadl be expected of a parametric estimator, as it is based in an
nonstationary behavior af due to the trend. Alternatively, the essential way on the assumption that no trend is present. The
presence of the trend may not be recognized, being confusedin purpose then of the following discussion, and of Table |
with the local statistical trends characteristic of LRD. In eadn particular, is to illustrate and contrast the robustness of the
case, the trend may drastically bias the estimatiorHofor wavelet estimator across a wide range of conditions, rather
the datas. We will show both from numerical simulations andhan to demonstrate the failure of the D-Whittle estimator. In
theoretical arguments that the wavelet-based estimator enalpl@gicular we are not interested in trying to quantify at what
us to detect and even identify such trends, and to avoid the&nd amplitudes the D-Whittle estimation become seriously
adverse effects on the estimation Hf affected as a function of trend type. Note that since we are
In the paragraphs below we compare the wavelet aiderested in evaluating the polluting effect of a deterministic
D-Whittle estimators over a number of test signals wheggldition to a single realization of a process, we must compare
deterministic trends have been added to a stationary signatied estimateof H obtained with and without the trend against
known H. Testsignall is a realization of fractional Gaussiaeach other, and not against the real valueHof
noise (fGn) withH = 0.82, synthezised by a spectral method. 1) Linear Trends: Let us focus first of all on linear trends,
Testsignal2a to Testsignal2j consists of Testsignall plus linesimce this is the simplest case which is most often of interest.
deterministic trends of increasing amplitudes. In Testsignakdg. 2 clearly shows that the D-Whittle estimates in the
to Testsignal7, quadrati@?), quartic (#*), increasing power- presence of a linear trend depart progressively from the correct
law (¢3/2), sinusoidal(sin 27 f), and decreasing power lawvalue as the amplitude of the trend increases. This is because
(t—1/%) trends have been added. In Testsignal8, the margirttiaére is no allowance for a trend in the underlying parametric
of the process was chosen to be bimodal and hence stronglydel. When the trend grows to the same magnitude as the
non-Gaussian, while retainingl = 0.82 (see Section II-E data, Whittle’s method does its best to interpolate between the
for a discussion of this case). In Testsignal9 and Testsignaib. On the other hand, the wavelet-based estimates remain
decreasing and increasing power-law trends, respectively, weomstant whatever the amplitude of the trend, provided that
added to ordinary Gaussian noiSé = 0.5). The magnitude one uses wavelets witlV > 2.
of the trend for (most of) these test signals is given in the third 2) Polynomial Trends:Now consider polynomial trends of
column of Table | as a multiple of their respective sampleigher degree (see Testsignal3 and Testsignal4 in Table I).
variances. Once again we observe that whereas Whittle estimates fail
For each of these signal types we studied the effect whenever the amplitude of the trend becomes too large, the
increasing the trend amplitude (the magnitude of the tremchvelet-based estimation remains accurate provided that the
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TABLE |
Bias COMPARISON WITH DETERMINISTIC TRENDS. COMPARISON OF D-WHITTLE AND WAVELET-BASED H ESTIMATES FOR TEST SIGNALS CONSISTING OF
DETERMINISTIC TRENDS p(t) OF DIFFERENT KINDS SUPERIMPOSED ONSIMULATED FRACTIONAL GAUSSIAN NoISE WiITH H = 0.82 (TESTSIGNALL). EACH TEST
SiGNAL HAs 1 = 4096 PoINTs. THE CONFIDENCE INTERVALS ARE NOT REPRODUCED AS THEYARE OF THE SAME ORDER OFMAGNITUDE (~0.02) FORALL THREE
ESTIMATORS. D# STANDS FOR THESTANDARD DaubechieSVAVELETS WITH § VANISHING MOMENTS.NOTE THAT D1 Is ALso THEHAAR WAVELET. THE TREND SIZE Is
CALCULATED AS (mnaxy p(t)—min¢ p(t))/o WHERES |S THE SAMPLE VARIANCE OF THE DATA s(t). FOR TESTSIGNALS THERE ARE ~3 PERIODSACROSS THETRACE

Testsignal Signal Type Trend Size Whittle-fGn | Wh-fARIMA Wavelet D
1 fGn (H = 0.82) — 0.80 0.86 0.82 D1
2f +at 4.61 0.88 0.94 0.81 D2
3 +at? 0.676 0.80 0.86 0.82 D3
4 +at* 3.8 x 1011 1.00 1.50 1.97 D1
2.95 D2

3.71 D3

0.80 D4

0.82 D5

0.82 D6

5 +at3/? 432 1.00 1.50 0.86 D1
0.81 D4

6 +asin 2w ft 2.70 0.86 0.92 0.78 D1
nf~3 0.82 D3

7 tat—1/4 15.8 0.88 0.95 0.99 D1
0.81 D3

8 non-Gaussian — 0.79 0.85 0.81 D1
9 Gn +at—1/4 7 0.63 0.66 0.501 D2
10 Gn +att/4 7 0.76 0.80 0.507 D2

N of the wavelet is tuned to the degrétof the polynomial in general this overlap significantly complicates analysis and
trend p(¢), that is, provided estimation. To see why choosing wavelets with higlsignif-
icantly improves this situation consider the power-law trend

N=P+L1 p(t) = at®, a a constant. The wavelet coefficients read

To explain this, recall that a wavelet, with N vanishing .
moments is, by definition (2.11), orthogonal to the space ofdp(j; k) = 2J(a+l/2)c/ ||t (1) exp(e2m k) dv
polynomials of degree less than or equal Xo— 1. Hence
the detailsd,(j, k) corresponding te(t) vanish provided that where C is a constant independent of the scalelt can
N > P+ 1. It follows that the estimation off will not be checked numerically that for a given the magnitude
be affected by the presence of the trend, as it is entirad§ these coefficients decreases with increagiglincreasing
absent from the details of the signal, i.é,(j, k) = d;(j,k). N therefore enlarges the range of scales whég¢j, k)| <
This can also be given a useful spectral interpretation. Th& (5, k)|, that is, where the effect of the trend is negligible.
Fourier transform of a polynomial of ordét consists, within ~ The upper plot in Fig. 3 shows that when using the Haar
the distribution theory framework, in th&'th derivative of wavelet(N = 1) to analyze Testsignal5, a large number of
the Dirac impulse functioﬁi(”)(u). The frequency content of scales,; = 4 to j = 9, are corrupted by the presence of the
a polynomial is therefore concentrated at the null frequene¢¥? trend, preventing an accurate estimatefbfor even the
and since wavelets are bandpass functions, in fact satisfyogtection of the LRD. However, with Baubechies4vavelet
[U()| = OWY),r — 0, they will be blind to a given (N = 4), the log-log plot falls close to a straight line (note
polynomial for N sufficiently large. that there is no data point at sc@ldor D4 due to insufficient

3) Arbitrary Trends: When the trend is not polynomial butdata). In Testsignal6, the corrupting trend consists of a low-
some smooth function, we observe that increasigstill frequency sinewave. The bottom plot in Fig. 3 shows that
helps to cancel its influence and very accurate estimates ¥dnen analyzed with the Haar wavelet, the polluting effect
H are recovered, whereas again the D-Whittle estimator givesthe sine is numerically important across scajes 6 to
values whose bias increases with the amplitude of the trepd—= 9. With a Daubechiesdvavelet (N = 4), the effect of
Testsignal5 to Testsignal7 in Table | are examples for vetige trend is concentrated in scgle= 8, enabling the inclusion
large, moderate, and large amplitude, respectively. This cahoctaves6 and 7 in the regression. This can be explained
be interpreted in at least two ways. First, selectinghamill ~ using the spectral interpretation above. IncreasMgauses
effectively cancel the part of the trend which can be efficientthe Daubechies wavelet to tend to an ideal bandpass filter,
approximated by polynomials of degréé— 1. IncreasingN  thereby concentrating the effect of the sine waveform onto a
would therefore approximately cancel any smooth functiosingle scale.
The second interpretation is again from the spectral viewpoint.The results for Testsignal7 in Table | show that the D-
Smooth trends have, in most cases, an important frequeMittle estimator can be biased even by a trend that tends
content near = 0. The LRD phenomenon basically consistso zero. Testsignal9 gives the same result fér = 0.5,
of a power-law behavior of the spectrum near= 0 and a particularly interesting case as it illustrates that the D-
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of the LRD phenomenon is the fact that it can be used to
meaningfully analyze the important class of nonstationary
processesX (¢) with stationary incrementsthat is, Y, (¢) =

X(t + 7) — X(¢) is stationary. The fractional Brownian
motion (fBm) is the canonical reference for such processes.
Its corresponding increment process is the fGn, which has
been used as the typical example throughout this paper. The
properties and implications of the wavelet tool in the study
of processes with stationary increments are fully detailed in
[20] and [21]. Here we simply note from the fact that the
spectrum of fGn read$'sq,(v) ~ |v|~3 - that wavelet
analysis can give a consistent meaning to the idea of defining
the “spectrumTp,, (v) ~ |v|~2#+D) of fBM. Thus whereas

to estimate thed parameter of an fBm signal using Whittle's
technique one must first compute the increments, with the
wavelet estimator one can work with the process itself. In
this case, the nobias equation (2.12) becomés> H.

This feature is particularly useful in the context of stationary
point processes, where it may be more natural and/or more
convenient to analyze the corresponding counting processes,

Which have stationary increments [2], [3].

numbers of vanishing momeni$, in the presence of corrupting deterministic

trends, top: Testsignal5t3/2 with large amplitude), bottom: Testsignalé
(sin 27 ft with moderate amplitude andf ~ 3, n = 4096). WhenN =1,
the effect of the trend is felt over a wide range of scales, preventing a correct
estimation ofH . IncreasingN concentrates their influence onto a very small
number of scales, thereby widening the range of scdlewailable for the A. Ethernet Data

timation. . .
estimation 1) Aims of the AnalysisEthernet data has now been exten-
Whittle estimator is biased by a power-law-decreasing tresively studied and the presence of scaling behavior established
for short-range-dependent data of finite length. This is Ipeyond question for the great majority of traces collected.
contrast to the asymptotic lack of bias for the exact MLE arfdonetheless there are important issues which remain uncov-
Whittle estimators (see [10, p. 143]). Testsignall0 is similar &red. We outline a more thorough approach to the analysis of

IV. WAVELET-BASED ANALYSIS OF ETHERNET DATA

Testsignal5 but witt = 0.5 and a trend of smaller amplitude.LRD which reveals features of importance for model building.
4) Experimental Procedure and the Identification of Trendg:hese ideas are valuable for the modeling of packet data in
In practice one does not usually know the form of the trenggneral, not only Ethernet data. More specifically, we study
nor even necessarily that there is one. The correct experimeitit® LRD structure of the work itself, since it is this which
procedure therefore consists of performing estimations wiih essential for performance evaluation purposes. We show
increasingV. Successive estimates will change rapidly uptil that some aspects of the data analysis approach used to date
is large enough to eliminate the polynomial components of tiée well justified, whereas others are not. We also tackle
trend, followed by a slower convergence to the final estimatiee question of the monofractality versus multifractality of
as trend components of a more general form are gradudihe data. Finally, we make a preliminary contribution to the
eliminated. Heuristic yet reliable identification of trends caftationarity question. Throughout we make use of properties
therefore be obtained by examining the speed and nature of @ighe wavelet-based estimator which allow approaches which
convergence withV. For example a sharp transition to stabl&ere previously very difficult or even impossible.
estimates can be taken as evidence of a polynomial trend of) Brief Description for the Data:The data sets analyzed
the appropriate degree, as clearly illustrated in Table | witre three Ethernet traces from the well-known set collected

Testsignal4, where the entries stabilize for= P + 1 =

at Bellcore in the late 1980's and early 1990's. They are

This procedure will fail in the presence of discontinuousgvailable from anonymous ftp from ftp.bellcore.com in the
deterministic trends, for instance, sharp level changes in thles lantraffic{pAug, pOct, OctExt.TL.Z. These very-high-
mean. The D-Whittle estimator will also fail in such a case.quality traces (no loss, jitter 100 ps) have been described
We see that the wavelet tool allows estimation of the Hurlst great detail elsewhere [24]. Here we restrict ourselves to a
parameter without a prior detrending procedure. This is a vepsic description of the contents of the above files.
important advantage as detrending in the presence of LRDEach file consists of 1 million rows in two columns. Each
raises difficult statistical issues regarding the joint estimatiosaw relates to a single Ethernet frame. The first column gives

of regression parameters aitfl

C. Stationarity versus Stationary Increments

the timestamp (measured from the beginning of the trace)
for the end of the frame in seconds. The second column
gives the integer size in bytes of the frame. The actual traffic

So far we have considered wide-sense-stationary processesisists therefore of a sequence of disjoint alternating frames
Another fundamental feature of the wavelet-based analysisd silent periods. The Ethernet protocol imposes a minimum
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Fig. 4. Marginal frame and interarrival distributions for pAug. The frame distribution is highly non-Gaussian, taking only a few values. Thivahterar
distribution is roughly exponential.

silence between frames of 52,65, or 65.75 bytes, and a TABLE I

minimum (maximum) frame size of 64 (1518) bytes We will H VALUES FOR THE DIFFERENT ASPECTS OF THEDATA. THERE Is No
EVIDENCE OF LINEAR OR QUADRATIC TRENDS THE ESTIMATE BEING STABLE

measure time in either seconds or bytes as appropriate. One € AT D2. THE ResuLTs ARE CONSISTENT WITH THE PREMISE THAT THE

byte corresponds to»>8L0~" seconds. VALUE OF H IS THE SAME FOR BOTH WORK AND ARRIVALS IN FULL
3) First-Order Statistics: Simple summary statistics for the  DETAIL OR AFTER AGGREGATION AND FOR THE COMPONENT SEQUENCES
first half of trace pAug are shown in Fig. 4. The results for the_pAug X P Ws Cs F S A

other two traces are similar. The frame-size histogram in Fig|4L: D1 | 0.798 | 0.822 | 0.793 ] 0.804 | 0.805 | 0.804 | 0.797
- D3 | 0.800 | 0.822 | 0.794 | 0.822 | 0.818 | 0.809 | 0.784

reveals that frames take typically one of just a few values. Thg]. D31 0.025 1 0016 10016 10017 10.021 10.020 [ 0.017
interarrival times, however, can be roughly described by
exponential distribution. The statistics are calculated assumlng
stationarity and that the large size of the traces allows gooflSilence durations, anfl4,,,» = 1,2,---} the sequence of
estimates despite the LRD. inter-Arrival times. We will examine the LRD properties of
4) Modelling Approach:To analyze the data we need teeach of X, P, Ws, Cs, F, S, and A. We exploit the fact
choose a stochastic model framework. Since silences are tgt the wavelet estimator allows us to study each of these
restricted to be multiples of bytes, a process general enougha uniform framework, independent of whether the index
to fully capture the Ethernet arrival process must be definedadn the state space is continuous or discrete, the nature of the
continuous time. Denote this process ¥, ¢ € IRT} where marginals, or of other finer details of the respective processes.
the state space is the St 1}, corresponding to the presence
or absence of a frame. Alternatively, we may ignore features
at very small time scales and discretize time. The discrde Results: Evidence for LRD anfd Estimations
version of X we denote b W ,.,n = 1,2,---} whereWs , 1) The Complete Work Proceds We will describe re-
is the integral ofX, over [né, (n + 1)¢) corresponding to the sults for pAug. Results for the other two traces are similar
total Work which arrived during this time interval, adis unless stated otherwise. The plot in Fig. 5 evidences the
a positive constant. To simplify the representation, we coulkistence of the LRD phenomenon over a very large range
consider the arrival instants of frames only. g, t € Rt}  of scales:(j1,j2) = (14,25). Performing an estimation over
be the continuous-time Point process where each frame arriygl j,) = (14,24) to avoid the fluctuation at scalt due to
is represented by a Dirac impulse, and otherwhisés zero. horder effects (lack of data), we obtak = 0.798 + 0.025.
The discrete version of this we we denote b¢s.,n = This estimate is insensitive to an increaseNnas shown in
1,2,---} a discrete-time, discrete-state-space Counts procgsg. 5 and Table I, indicating the absence of trends in the
corresponding to the number of frame arrivals in the intervahta. See Table IlI for results for the two other signals. Recall
[nd, (n+1)6). Clearly, neitherP nor Cs capture the structure that traditional estimators, including the D-Whittle estimator,
of arriving work, and as discussed in the Introduction, it igannot be used to analyze continuous-time signals such as
this which is essential for performance evaluation purposes. P due to computational limitations.
Nonetheless, it is the process which has been the preferred 2) The Continuous-Time Point ProceBs When applied
framework to date [18], [24]. The assumption is that it captures P we observe (plot in Fig. 5(b)) LRD behavior over an
all of the LRD behavior, so that the work can simply beven wider range of scalesji,j») = (10,23), allowing a
“added” as essentially instantaneous arrivals according to tery accurate estimation off and a clear determination of
marginal distribution of the frames. We test the validity ofhe minimum time scald;,, over which the data needs to be
this assumption by examining the dependence propertiesobiserved before scale-invariant behavior begins. We find, for
the work separately. To this end, 1¢F,,,n = 1,2,---} be pAug, T, ~ 10 ms andH = 0.822 + 0.012, consistent with
the sequence of Frame sizds,,,n = 1,2,---} the sequence that obtained forX.
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TABLE 111
H VALUES FOR THE DIFFERENT TRACES. ESTIMATIONS PERFORMED
ON THE CoMPLETE WORK PROCESSX OR THE SIMPLIFIED
CoNTINUOUS-TIME POINT PROCESSP ARE COMPLETELY CONSISTENT

Signal D1 pAug pOct OctExt
X I% 0.798 0.825 0.947 5 log2(scale) 15
cI 0.024 0.026 0.017 @)
(T, Jo (14, 24) (15, 22) (14, 22)
P H 0.822 0.824 0.943
cI 0.012 0.016 0.017
(J1. Jo (10, 23) (13, 22) (14, 22)
157 T T i T ) 5 log2(scale) 15
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Fig. 6. Analysis of pAug: aggregated proces3&s, Cs, and sequences
(c) F, S, A, Plots oflog(I'z (27 7rq)) with waveletD1. Plots (a) and (b) show

. . ) . . . the clear presence of LRD in the aggregated procedseand Cs. The H
Fig. 5‘d Analzss\l of géug. continuous time representatidfsand P. Plots values are very close to those&fand P, respectively, illustrating the validity
(@) and (c) showlog(2/) versus of the aggregation approximation. In plots (c), (d), and (e) the discrete-time
- ; N rocesse$’, S, andA are analyzed. Each displays LRD with almost identical
logs (Fa(27710)) = logo(1/n; Y Ida (4, F)[?) 0 Y Py

H estimates, each consistent with thatf
k

with waveletsD1 and D3, for the complete work procesk. It evidences

a power-law behavior and therefore LRD over a wide range of scales a{giee Table 11). Although intuitively this is not a surprisin
enables anaccurate estimationf (b) consists in the same plot for the ) g y P 9

process, exhibits LRD over an even wider range of scales and yields the Sg,%gult, as aggreganon over a given flxe_d scale does not affect
estimate forH. the properties over ranges beyond this scale, we can offer
a more complete explanation from the wavelet framework.

It is interesting to note that the plot in Fig. 5(b) is StrikinglyAs previously indicated, the wavelet decomposition basically

reminiscent of what is observed for certain variations of t gonsists _in splitting data into an approximation and details.
: . . . . or X this reads

Poisson point process for which the arrival ratés itself a ,

stationary LRD continuous-time process. A canonical example . 70 .

of such a doubly stochastic point process which may constituteX(t) - Z ax (Jo, K)o 1 (t) + Z Z dx (4, k)b x(t).

a good candidate model for data is given by takix@) = k g=1 ok

fGngy (t)[1], [4], [30]. This possibility and variants of it are Suppose thaf, is chosen so as to be smaller than the smallest

currently under investigation. scalej; at which the LRD phenomenon occurs, then the details
3) The Aggregated ProcessBg andCs: From plots in for j = 1 to 5 = jo can be discarded without changing the

Fig. 6(a) and (b), the presence of LRD in the discrete @stimation ofH, and we could therefore replace the analysis

aggregated processés; and C; is clear, and estimates forof X by that of the approximation}, ax (jo, k)¢j, 1(t). In

H are obtained consistent with those found f&r and P the case of the Haar multiresolution (cf. Section Il) for which
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the scale functionp, is the indicator function ovef0, Tp],
where Tj is the arbitrary (very small) sampling period, one
obtains exactly

W6=2j0 Ty = Z ax (jov k)d)jo,k(t)'
k

For wavelets of highetV, the approximation is not strictly
equal toW;s but has the same low-pass approximation inter-
pretation. This connection allows a general reformulation of
the aggregation technique used to process LRD data within
the multiresolution framework [5] and justifies the usual
[24] practice of usingCs to replace P in the analysis of
LRD. Moreover, it offers a framework to sele€t The same
arguments and conclusion hold férs and X.

4) Frame F', SilenceS, and Inter-Arrival A Sequences:
Because the samé was found forX and P, or equivalently Fig. 7. Analysis of pAug: rescaled details probability density functions. It
Ws and Cs, we may be tempted to conclude that the processows that when rescaled by a factori(1=1/2), the probability density
P somehow “carries” the LRD of the signal. Indeed, this j&inction _estimates of the_ dgtails_df collapse onto a single_z curve, close to

. . . aussian function. This is evidence that a single scaling parameter fully
the assumption that has been made in previous work [18], [&Ecribes the data, which is therefore monofractal.
when Cs has been used to represent the data. To investigate
further the “sources” of LRD inX, we now examine, S,
and A. From Table Il and Fig. 6 we see that, remarkably, ifito thirty-two contiguous segments and perfofnestimates
each case the sani# is recovered. These estimates are robudg if @ach were independent. This is justified by the quasidecor-
with respect to an increase &f. The most significant result relation of the wavelet coefficients discussed in Section II-
is that for the sequence of frame siz&sA priori these could C and expressed in (2.10). To each segment corresponds
have been mutually independent, and indeed this has been&Reestimation ofd and a common (asymptotic) confidence
|mp||c|t assumption to date: that the LRD is Captured@y interval. We I’efel’ to the mean Of these 32 estimates as the
and that the frames can be added independent|y in a Sim‘[‘ﬂgan," and we center the confidence interval about it. For
way. Since they are in fact LRD, we see that a model basedug and pOct, almost all the estimates (see Fig. 8) lie within
on this idea would give the incorrect estimation of arrivinghe confidence interval. Moreover, the mean corresponds very
work, and hence misleading performance results. The lesgdpsely to the point estimate o obtained from the entire
here, which is of general applicability, is that many aspect&ce. This is good heuristic evidence tifatindeed remains
of a signal or data trace may be LRD, but for performand&®nstant across these traces. Heiitecan remain constant
evalution purposes one must understand and include all @fer quite long intervals as pAug; the longer of the two traces,
those which impinge on thevork arrival process. It is not is almost an hour in duration. On the other hand, the estimates
sufficient to simply model one convenient aspect which h&@r OctExt show high variability, many falling outside the
the “right” H. Further questions are raised here such as thenfidence interval, indicating a clear nonstationarity. The
nature of the cross correlation sfand A. Work is in progress mean also differs significantly from thH estimate obtained
on these and on the incorporation of the results discussed Hepgn the whole trace. This may not seem surprising as the
into a compact traffic model. trace isx 35 h long and the diurnal cycle is clearly visible

5) Monofractal versus Multifractality:Now that theself- in a time series plot, however, this could have been due to
similarity over a wide range of scales is established, thBean rates varying wittH remaining constant. In fact, we
guestion which immediately arises is whether this singleave checked that the estimate obtained from the whole trace
scaling parameteH, measured from second-order statisticss not sensitive to an increase i, excluding the possibility
fully described the higher order statistics of the data. Thibat the variation observed results from a smooth cyclic trend.
amounts to deciding whether the data requiresi@o- or On the contrary, the estimates being strongly varying across
multifractal description [8]. One way of approaching such ¢he segments seem to indicate that the dynamics of the process
guestion is to study the probability density functions (pdf's) ajenerating the traces varies with time. The results here are not
the details{dx(j,k),k € Z} at fixed scaleg. Fig. 7 shows conclusive because the exact nature of the correlation between
that the pdf estimates of the rescaled coefficie#i{$j, k) = estimates made in adjacent data segments is unknown.
2—j(ﬁ—1/2)dX(j, k) collapse onto a single Gaussian function. With respect to pOct it has been noted before [16] that, as
This is known [8] to be evidence that the data are we$hown in the upper plot in Fig. 9, there is a level shift (that
described by the single scaling parameferand is therefore is an apparent shift in the mean), at around the 16-19 min
best modeled as a monofractal. Similar results were found foark of this half-hour trace. As was shown in [16, fig. 4],
pOct. variogram-basedi estimates [10] of the subseries to either

6) Stationarity with Respect tH: We now make a first, side of this transition are lower and markedly different to that
nonrigorous, and incomplete attempt to check the stationaryfof the whole trace. This fact lends itself to the interpretation
the data by examining the time variation Bf. We divideWWs that the value obtained from the whole trace has been corrupted

Probability Density Function

rescaled detail x 10*
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pAug smooth, occuring over approximately 3 min. We expect that
we can eliminate it for sufficiently higv (assuming that a
level shift can be viewed as a kind of linear trend). In the
present situation, we used = 2. This is a good examptdn

an experimental setting of where the wavelet estimator has a
strong advantage over other estimators such as the variogram
with respect to trend elimination.

12 V. CONCLUSION

T sl = ;;;*"% K K K * We have introduced wavelet analysis and the

06 log,(1/n; Z |d= (4, k)[?)
"

versusj plot as a tool for the examination of scale behavior
ﬁ ﬁ X in data. This tool allows the detection of LRD and the
semiparametric measurementiffor stationaryor stationary-
increment data. It has been shown how the wavelet-based
estimator derived from this plot is superior to alternatives,
being unbiased, not only asymptotically unbiased, but also
Fig. 8. Time variation of H. Each trace is split into 32 segments andefficient under Gaussian assumptions. The unbiased property
separatef] estimafes made for each, with a commaon asymplotic confidergids in general for processes with finite second moments. The
interval shown as the interrupted lines. The solid horizontal line shows not the ., . . .
mean of the estimates (inferred by the confidence interval) bubftiestimate €Stimator can be implemented by a direct computational rather
taken over the entire trace. The traces pAug and pOct appear stationary, wtlilan optimization-based algorithm with low computational
OctExt does not. complexity, both with respect to time and memory, allowing
the analysis of very large data sets. It can therefore be
< 10° pOct applied to continuous-time as well as discrete-time signals
! g T 1 ; T in a uniform framework. It also offers powerful advantages
' : ' with respect to the problem of stationarity. By varying the

121

segments

g4 i | number N of vanishing moments of the mother wavelet,
;I l | polynomial trends can be rigorously eliminated, and in practice
2 ! o i O essentially any smooth deterministic trend. The advantages are
I ! ! ! twofold: accurate determination df, and the detection and
O 200 400 600 800 1000 1200 1400 1600 identification of trend types. In this way, difficult problems
time (s) in the joint statistical estimation of regression parameters and
30 : . H can be entirely bypassed. Numerical comparisons against

~— Full trace : H = 0.80
-~ Partl: H=0.81:
|~ pantll:H=0.79 :

the D-Whittle estimator, the only alternative which is even
asymptotically unbiased, show that even when the generated
1 test signals belong to the underlying parametric family of
the D-Whittle estimator (we used fractional Gaussian noise),
- : the wavelet estimator is always at least as accurate. This is
s 10 15 due to its being unbiased even for finite data samples. When
log2(scale) the underlying parametric family is not appropriate, or in the
Fig. 9.  Elimination of level shift in pOct. The upper plot show for presence of trends, the wavelet estimator is clearly superior.
pOct withs = 10 s. A level shift seems to occur at around the 16 to 19 min e have used the advantages of the wavelet-based estimator
mark. The lower plot shows wavelet-based estimates. Essentially ideffticalto study in greater depth the LRD nature of some the Bellcore
o s o et o St o o SELDITEL races. We found that the- sequences of frames,
silences, and interarrival times each possess LRD with the
sameH as the full signalX, indicating that the approach of
by a nonstationarity in the mean, perhaps to the point of givinuging only the discrete frame-counting procéssto represent
the appearance of LRD when there is none. In the lower pitte data will not be adequate for performance evaluation
in Fig. 9 we perform a wavelet analysis of the trace and tHirposes. This highlights an important general principle, that
subseries and findd values which are in close agreementSimply capturingan aspect of the data which possess LRD
in fact within the original confidence interval. It seems thel$ not sufficient. We were able to justify, however, and
that H does not vary across the level shift or the trace, that #Xplain within the wavelet framework, the aggregation method
value is indeed greater thar2, and that the wavelet estimatorhereby the continuous-time work processor frame-arrival
can measure it accurately deSpite the shift. This latter faCEWe thank the reviewer who pointed out this issue in the pOct time series
can be explained by noting that the the shift is actually quited suggested these comparisons.

log2(hatGamma)
N
w

8
o
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processP are replaced by the discretized versiong and

Cs,

tifractality for the traces pAug and pOct, and found that

[14]

respectively. We performed a test of mono- versus m I1-5]

monofractal model is clearly preferable. Finally, we performed

a preliminary analysis of stationarity with respect the timE6

variation of H. We found that pAug and pOct seem consistent

with the hypothesis thall does not vary, but not OctExt.
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