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Abstract-The main objective of this paper is to explore
how much information about the characteristics of end-to-
end network paths can be inferred from relying solely on
passive packet-level traces of existing traffic collected from
a single tap point in the network. To this end, we show that a
number of structural properties of aggregate TCP/IP  packet
traces reveal themselves and can be compared across differ-
ent time periods and across parts of the traffic destined to
different subnets by exploiting the built-in scale-localization
ability of wavelets. In turn, these structural properties and
the resulting comparisons suggest the feasibility of new ap-
proaches for inferring and detecting qualitative aspects of
network performance in a fashion that is similar to relying
on active measurements, but without disturbing or biasing
the metrics of interest. To showcase the feasibility, we devel-
oped WIND, a prototype tool for wavelet-based Inference for
Detecting network performance problems and illustrate its
capabilities to detect anomalies in underlying network path
conditions with two examples of passively measured packet
traces from two different networking environments. We ad-
dress and experiment with ways of validating the output
of WIND and end with a discussion of the potential of full-
fledged wavelet-based analysis (i.e., the ability to localize a
signal in scale and time) for future measurement studies.

Keywords- Wavelets, Scale-Localization, Energy Func-
tion, Passive Measurements, Network Performance.

I. INTRODUCTION

Active or passive network measurements have been es-
sential ingredients for inferring or assessing performance-
related problems within individual IP clouds or along
end-to-end paths in the Internet. By injecting new traf-
fic (“stimulus”) into the network, active measurement
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methodologies can often elicit certain responses to that
stimulus from individual network components or from the
network. In turn, these responses are used to infer perfor-
mance metrics such as bulk throughput [29],  packet delay
[lo],  [Ml,  [32],  [35],  packet loss [32],  [35],  [37],  bot-
tleneck link bandwidth [lo],  [14],  [25],  [32],  [35],  link
bandwidths along the end-to-end path [17],  [24],  [26],  hop
counts [18],  or other path characteristics [31],  [32],  [35],
[23],  [9], [30].  Active measurements cover only those
parts of the network that are being probed, do not gener-
ally deal with application performance, and ISPs  are typ-
ically restricted to use them within their network. In ad-
dition, active measurements have the potential to add sig-
nificantly to the existing network load, thereby perturbing
the network, biasing the ensuing observations, and compli-
cating the interpretation of much of the resulting analysis.
Drawing a natural analogy to physics, Paxson [33] refers
to these drawbacks as “Heisenberg” effects. In contrast,
by focusing exclusively on existing network traffic, pas-
sive measurement techniques typically have the advantage
of completely eliminating these ill-understood Heisenberg
effects. Unfortunately they suffer from the drawback that
we are often at a complete loss as to how to infer important
performance metrics or network path characteristics from
the non-intrusively recorded traffic from any given link in
the network.

In this paper, we explore the feasibility of alleviating
this drawback of passive measurement methodologies -
without compromising their appealing advantages - by
focusing on and exploiting wavelet-based analysis tech-
niques to infer and extract certain end-to-end network
path characteristics from IP packet traces recorded off a
network link. To this end, we rely on a built-in scale-
localization ability of wavelets which is ideally suited for
detecting “hidden” but highly regular/irregular traffic pat-
terns in measured traffic traces. In turn, for a given con-
nection or set of connections, such patterns can be used to
accurately infer the time scales associated with the dom-
inant round-trip times (RTT) experienced by the packets
traversing the network and allow for a qualitative assess-
ment of how network performance can change along net-
work paths over time due to, e.g., sudden load changes,
congestion build-ups, or possible route changes. To il-
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lustrate these “detective” capabilities, we have developed
WIND, a fast,  Close-t0  on-line prototype tool for WaVelet-
based INference for Detecting network performance prob-
lems, that currently relies on passively recorded packet-
level traces of existing traffic from a given link within the
network. WIND filters the measured traffic according to the
dominant applications running between representative cus-
tomers and the most popular destinations, processes the re-
sulting packet traces by applying wavelet techniques, and
uses a set of heuristics for detecting potential network per-
formance problems by correlating the wavelet-based trace
analysis results across time and across network paths. We
are not aware of any “obvious” alternatives for obtaining
the same sort of information; e.g., NetPlow  data is too
coarse-grained, SNMP gives link statistics available only
within an AS, and IP-accounting is inadequate. Using
two data sets of measured packet-level traces, we report
on WIND'S abilities to infer certain performance metrics
and to use them for pointing out potential network per-
formance problems, under quite different networking en-
vironments. One of the traces was collected from a 100
Mbps FDDI ring of a commercial ISP, the second resulted
from recording the traffic on a T3 link connecting an indus-
trial research lab to the rest of the Internet. We also address
the issue of validating the output of WIND by computing
additional fine-grained statistics such as round-trip time
distributions and comparing their characteristics to those
inferred from the wavelet-based methods.

The rest of the paper is structured as follows. In Sec-
tion II we review related work. Next in Section III, we
describe our methodology of using the scale-localization
ability of wavelets to extract, from a time series of traf-
fic rate information, the round-trip times experienced by
the individual packets; we illustrate our approach with a
number of simple but informative examples. Section IV
gives an overview of the WIND tool that runs on top of
a passive monitor and implements this particular “finger-
printing” capability. We report in Section V on how WIND
fares in practice when faced with measured packet traces
from two very different networking environments and con-
clude in Section VI by commenting on how this work may
open up new opportunities for exploiting passive as well
as active network measurements.

I I .  RELATED WORK

Despite the existing vast literature on active and passive
measurements, we are only aware of a few studies that
are directly relevant for our purpose; i.e., share the same
commitment to passive measurements of existing traffic
and put similar emphasis on the need for novel analysis
methods for extracting relevant performance-related infor-

mation from these measurements. Valuable resources that
provide general information about various measurement
methodologies are [33],  [8],  [13],  [12].  In terms of our
focus in this paper on passive measurements of existing
network traffic, the work by Seshan et al. [38] on SPAND
(short for shared passive network performance discovery)
is close in spirit to our present study and discusses the ben-
efits of working with shared, passive measurements from
a collection of hosts rather than with active measurements
from a single host when trying to determine network path
characteristics. In this context, another relevant study is by
Balakrishnan et al. [6],  whose empirical investigations re-
vealed significant stability of network paths characteristics
(i.e., available bandwidth) over time and across hosts that
are close to each other; in other words, hosts which share
portions of a network path tend to obtain similar amounts
of throughput. Stability of the amount of available band-
width over time has also been reported by Paxson [34],
where it is noted that the opposite (i.e., wide variations) is
true for other network path characteristics such as RTT and
packet loss. As for passive network measurement studies
in general, [ll],  [27],  [36],  [15],  [40]  are prime exam-
ples that illustrate the wealth of information that can be
extracted from passively measuring traffic at a single tap
point in the network and using commonly available time
or frequency domain-based analysis techniques. More re-
cently, [19] introduced a new traffic analysis method that
exploits the full range of the time- and scale-localization
abilities of wavelets and suggests new opportunities in
traffic analysis: novel capabilities for detecting “interest-
ing” features or patterns in time and scale in the underly-
ing packet trace and correlating them to known network-
ing mechanisms that reveal themselves in terms of spe-
cific network path properties. In fact, the present paper is
motivated to a large degree by the empirical observation
reported in [19] and expands on the wavelet-based traffic
analysis techniques outlined in [ 191.

As far as active measurement studies are concerned, it
is instructive to compare our approach with the multicast-
based method for inferring network-internal characteris-
tics pursued within the MINC project [41],  [3].  While
MINC relies on active measurements and is concerned with
a quantitative statistical analysis of the resulting measure-
ments for characterizing internal network behavior, our fo-
cus is on passive measurements and on a qualitative as-
sessment of the measured data that relates statistically sig-
nificant features directly to network-specific mechanisms.
In the context of studies that use both active and passive
measurements, some of the most significant work is due to
Paxson [31],  [34],  [32],  [35]  (see also [S],  [9]  for WWW-
specific work), who has previously noted a dire need for
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more adequate techniques for analyzing both active and
passive network measurements in ways that can reveal
hidden networking-related features and do so effectively
[35, p. 2771. The present paper addresses his very con-
cerns and identifies wavelet-based methods as prime can-
didates for replacing the traditional and generally inade-
quate time- or frequency domain-based analysis method-
ologies. It will be interesting to observe how in the years
to come, these proposed wavelet-based techniques will im-
pact the use of active and passive measurement strategies,
the analysis and interpretation of the ensuing data, and the
development of next-generation active and/or passive mea-
surement tools.

I I I .  D E T E C T I N G N E T W O R K P E R F O R M A N C E:
M E T H O D O L O G Y

The feasibility of analyzing passive measurements and
detecting “fingerprints” of network path characteristics
has been suggested in [19].  The analysis fully exploits
the wavelets’ abilities to uncover and identify highly ir-
regular/regular traffic patterns that are well-localized in
scale. By relating some of these patterns directly to known
network-specific mechanisms, they enable us to infer cer-
tain characteristics of network paths, which in turn can be
used to qualitatively assess network performance as expe-
rienced by the packets traversing these paths. The purpose
of this section is to illustrate with a set of simple examples
how a wavelet-based analysis of synthetically generated
time series or of traffic rate processes obtained from a set
of m-2 [5]  simulations can uncover “hidden” structures in
the data; e.g., the dominant RTT behavior associated with
the packets that make up the measured traffic.

A. Wavelet-based scaling analysis of aggregate trajjic

A.1 The energy function

Consider a time series Xa,k,  k = 0, 1,2, . . .,  at the finest
level of resolution 22n, and interpret Xa as a traffic rate
process (i.e., the number of packets per 10 ms, for exam-
ple). We coarsen Xa by averaging (with a slightly unusual
normalization factor) over non-overlapping blocks of size
two

x1,1, = 5 (X0,2/C + X0,2kSl) (1)

and obtain a new time series X1, a coarser resolution pic-
ture of the original series X0, Taking differences rather
than averages in Eqn. (1) results in quantities known as
details

4,k = 5 VO,2k  - X0,2kSl)  - (2)

Note that we can reconstruct the original time series Xa
from the coarser representation Xt  by simply adding in

the details dr ; i.e., X0 = 2-1/2(Xi  + dr).  We can iter-
ate this process (i.e., write Xi  as the sum of yet a coarser
version X2 of Xa and the details d2, etc.) for as many
scales as are present in the original time series and can
write X0 = 2Fni2Xn  + 2+12d,  + . . . + 2-li2dl.  We
refer to the collection of details dj,k as the discrete (Haar)
wavelet  coeficients,  they make up what is commonly re-
ferred to as the discrete (Haar) wavelet  transform, and they
may be calculated iteratively using Eqns. (l-2)‘.

To investigate the scaling properties of a given time se-
ries, we concentrate in this paper on the scale-localization
property of wavelets; that is, we use the discrete (Haar)
wavelet transform of the time series to examine the behav-
ior of a given statistics of the wavelet coefficients at each
resolution level or scale, as a function of scale. In par-
ticular, we focus here on a statistics known as the energy
jhction  Ej and defined by

Ej = j&. c Idj,A2, j = 1,2, . . . . 72,
3 k

where Nj  is the number of coefficients at scale j. We in-
terpret Ej as the average energy contained at scale j of the
trace and examine how this quantity changes as we move
from finer to coarser scales. To this end, we plot log(Ej)
as a function of scale j, from finest (i.e., j = 1) to coarsest
scales, and use the resulting energy function plot to de-
termine qualitative aspects of the scaling behavior of the
underlying time series [19].  In all of the energy function
plots in this paper, the scale j is on the bottom axis and the
corresponding actual time (in seconds) is plotted on the top
axis for reference.

A.2 The energy function of some synthetically generated
time series

The following set of toy examples is intended to illus-
trate how a qualitative wavelet-based energy function anal-
ysis is capable of revealing certain structural properties ex-
hibited by an underlying time series.

Periodic time series: Consider the periodic time
series X of length 1024 that consists of the pattern
0, 0, 1, 1, 1, l,O,  0, repeated 128 times Manual inspection
of Eqn. (2) shows that all wavelet  coefficients dj,k  are zero
except those for scales j = 2 and j = 3, reflecting the
presence of periodic patterns at scales j = 1, and j =  4
and beyond, and of irregular patterns at scales j = 2 and
j = 3. This an similar examples suggest that highly reg-d
ular or periodic structures in time series reveal themselves

‘We res t r ic t  th is  expos i t ion  to  the  use  of  Haar  wavele ts .  The  sca l -
ing analysis results presented below are either based on Haar wavelets
or more general wavelets  (e.g., compact ly  supported Daubechies
wavelets  [ 161).
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in terms of small wavelet coefficients, and the energy func-
tion appears to capture such behavior adequately. We sub-
sequently refer to such low values of the energy function as
“dips.” Note that using traditional Fourier analysis meth-
ods would give similar insight into the structure of X as
does the energy function method considered here.

White noise time series: We consider two time se-
ries Y 1 and Y2. Y 1 is constructed by letting the interar-
rival times of individual events be i.i.d. exponentially dis-
tributed with mean 10 and counting the number of events
that occur in each time unit. When calculating the cor-
responding energy function, Figure 1 (top plot, solid line)
shows that the values are roughly constant across all scales,
a trademark of white noise processes [ 11.

We construct Y2 just like Yl, but incorporate a sim-
ple form of local periodicity structure as follows. Let the
interarrival times of individual events be i.i.d. exponen- .+)  c- t - ---
tially distributed with mean 15, and count the number of 2 4 6 B 10
events that occur in each time unit. Next pick a quarter Scab  /

of the events at random and assume that each of the ran-
domly picked event triggers an additional event exactly 8

Fig. 1. Energy function plots of time series Y 1 and Y 2 (top),
and 21 and 22 (bottom).

time units later; repeat this procedure with another set of a
quarter of randomly picked event, but this time, the newly or less pronounced local periodicities based on the depen-

triggered event happen exactly 18 time units later. The re- dency  on RTT, and that the resulting regular traffic pat-

sulting energy function is depicted as a dotted line in the terns can be inferred from the resulting energy function

top plot of Figure 1. Comparing the two different energy plot. Note also that conventional frequency-domain anal-

function plots, we notice that the local periodicity structure ysis is unlikely to succeed in detecting and identifying the

imposed onto Y2 results in wavelet coefficients at scale sort of local periodicities considered in example Y 2.

4 that are smaller in magnitude than those corresponding Self-similar time series: Moving beyond the white

to Y 1 at that same scale, reflecting the behavior observed noise examples Yl and Y2, we construct next two self-

earlier for time series X. This decrease in the absolute similar time series 21  and 22. The constructions of 21

magnitude of the wavelet coefficients of Y2 around scale and 22 are identical to those of Yl and Y2, respectively,

4 manifests itself more clearly when examining the corre- with the exception that the interarrival times are now i.i.d.

sponding energy function which shows a dip at scale 4 that Pareto-distributed with (Y = 1.2 and a mean of roughly 10

extends to some coarser scales due to the presence of the [15].  The results are shown in the bottom plot in Figure 1.

second local periodicity of 18 time units. As expected (e.g., see [l]),  the wavelet coefficients of 21

Note that our main reason for experimenting with time are scale-invariant in the sense that the resulting energy

series of the type Y2 is the presence of a more or less peri- function plot shows a linear relationship between 1ogEj

odic  component in measured Internet traffic that is created and j, with a slope between 0.5 and 1.0. As far as 22 is

by the TCP protocol. TCP is using ack clocking to space concerned, the explicitly imposed local periodicities show

the sending of packets across some window of time; that up in very much the same way as they did for the time

is, if the time it takes between sending a packet and receiv- series Y2. As before, conventional frequency-based meth-

ing the corresponding ack is the RTT, then a sender that ods are not likely to provide a similar assessment of the

transmits a packets at time ti  will send another packet at presence of local periodicities in time series 22.

time ti + RTT.  Of course not all acks trigger the send-
ing of a new packet, nor do acks  arrive precisely in lock A.3 The energy function of some NS  simulation traces

step, separated by RTT. Indeed, the behavior of TCP is, To move one step closer to applying the above wavelet-
among other aspects, controlled by its congestion control based analysis to actual traffic traces, we examine in this
mechanisms (slow start and congestion avoidance) and the subsection the scaling properties of traffic traces collected
receiver window [39].  What Y2 tries to capture is that in a network simulation environment. The simulation en-
the superposition of many TCP connections creates more gine used throughout this study is ns-2 [5],  and in the fol-
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lowing, we are especially interested in trying to understand
the influence of round-trip times and network congestion
on the wavelet decomposition of the resulting traces and on
the properties of the corresponding energy function plots.

Fig. 2. Network configuration for ns-2 simulations.

All of the simulation experiments reported in this paper
involve the simple network topology depicted in Figure 2.
Our toy network consists of a single server (node l), a set
of high-speed clients (nodes 5 - 405),  and a number of
links. The clients are connected to the network via 30 - 31
Mbps links, the server has a 100 Mbps connection to the
network, and two additional links (A, B) comprise the rest
of the network. Link A is used to limit the capacity of the
network to a value of 1.5 Mbps and represents, in fact, the
bottleneck link in our simulation setup. The link B band-
width is set at 100 Mbps, and we use this link to observe
the dynamics of the traffic before it traverses the bottleneck
link A. The number of buffer spaces available for buffer-
ing packets 2 in node 3 for link A is limited to 50 while
all other nodes are allocated plenty of buffer space. All
simulated routers use “drop-tail” buffer management. The
delays of links A and B are 5 ms, while the delay of link
C is 1 ms. To study the influence of round-trip time (RTT)
variability we choose two different network environments:
one in which the delay of the links to the clients is a con-
stant equal to 1 ms, and another in which the delay of the
links to the clients is uniformly distributed between 1 and
128 ms. We rely on the Web workload model considered
in [19]  3 that iS very Shnih  t0  SURGE [7].

No congestion, single vs. variable RTT: To ensure

‘m-2 allocates buffer  space in terms of number of packets and not
number of  bytes.

3We  consider the following probability distribution functions for the
sess ion  a t t r ibu tes ;  number  of  pages  per  sess ion:  cons tan t  300 ,  inter-
page t ime:  Pareto with mean 50 and shape 2,  number of  objects  per
page: Pareto with mean 4 and shape 1.2, inter-object time: Pareto with
mean 0.5 and shape 1.5, and object size: Pareto with mean 12 (in KB)
and shape 1.2.

Fig. 3. Energy function plots for traces from simulations with
negligible congestion; comparing single vs. variable RTI’.

minimal losses and a single RTT, the first simulated sce-
nario involves just 50 Web clients, and the delays along all
links to the clients are assumed to be 1 ms. In this situation,
we expect to observe pronounced local periodicities on the
order of 24 ms (complete RTT), 29 ms (complete RTT +
transmission delay for 1000 bytes across a 1.5 Mbit link),
12 ms (the time it takes from observing a data packet from
the server to a client on link B to seeing the correspond-
ing ack from the client to the server on link B), and 2 ms
(the time it takes from observing an ack from a client to
the server on link B to seeing the next data packet from the
server to the client on link B). Checking the resulting en-
ergy function plot in Figure 3 (solid line), we observe a dip
that stretches from about 16 ms to about 128 ms; that is, the
range of time scales corresponding to local periodicities of
12 and 29 and to a lesser degree to multiples of 29. The
dip is strongest around 32 ms, the next-largest time scale
corresponding to the RTT. As expected, when increasing
the delay of the links to the clients to, e.g., 128 ms, the
main dip from scale 32 ms to a corresponding larger value,
which in this case is 512 ms (not shown here).

To introduce some amount of variability in the RTT, we
next change the 1 ms delays along the links to the clients.
More precisely, we allow the link delays to be sampled
from a uniform distribution between 1 and 128 ms. As a
result, the RTTs  will increase from the dominant 24 ms
value and take on values in the range of 24 to about 276
ms. The effect of this change from a single RTT value to a
more heterogeneous RTT behavior can be seen in Figure 3
(dotted line), where the dip now extends into some of the
larger scales (on the order of 512 ms).

Congestion, single vs. variable RTT: Returning to the
single RTT environment from before, we rerun the simu-
lation with 300 Web clients instead of the 50 considered
before, with the intention to run the system into conges-
tion, thereby causing losses, which in turn forces TCP to

2 1 7



Scale,

Fig. 4. Energy function plots for traces from simulations with
significant level of congestion; comparing single vs. variable
RTT.

retransmit. Thus, congestion can be expected to introduce
yet another regular pattern, with a period that reflects the
length of the timeout. The resulting energy function plot is
shown in Figure 4 (solid line) and demonstrates convinc-
ingly that the dip has shifted to larger time scales (on the
order of 512 ms to about 2 set) and that because of conges-
tion, the once dominant RTT value of 24 ms has become
much more variable due to queuing delays in the buffers
and TCP retransmission mechanism.

Rerunning the variable RTT environments for the 300
Web clients, the resulting energy function plot is depicted
as a dotted line in Figure 4. As expected, congestion on top
of variable RTTs  ensures an even wider dip in the energy
function, with additional mechanisms contributing to this
widening (e.g., congested bottleneck link).

B. Distributional analysis of packet-speciJc  properties

In the case of the m-2 simulation traces, we have used
the knowledge of the simulation setup to infer the domi-
nant round-trip time characteristics in the network. How-
ever, the available packet-level data allow us to actually
compute detailed round-trip time (RTT) and retransmis-
sion timeout (RTO) statistics using the following heuristic.
Each packet is either an acknowledgment packet (ack) or
a data packet. If a packet is a data packet with sequence
number s, we check if it is the first packet with this se-
quence number; if it is not, the packet is a retransmitted
packet, and we can compute a sample of the RTO by tak-
ing the difference between the timestamp of the current
packet and the time we encountered the most recent packet
with that same sequence number. If the packet is an ack
packet with sequence number s, we check if it is the first
ack packet; if it is not the first ack packet, we ignore it, oth-
erwise we compute the difference between the timestamp
of the ack packet and the timestamp of the corresponding

data packet. This is a sample of the RTT.4
From these computed sample RTTs  and RTOs,  we com-

pute the (empirical) log-density finctions  (i.e., conven-
tional density function on logarithmic x-axis) and the (em-
pirical) complementary cumulative distribution function
(CCDF), where the latter can be obtained by integrating
the former from x to 00, x 1 0. Figure 5 shows the result-
ing log-density functions (top) and CCDFs (bottom) for
the measured RTT values; similar plots can be obtained for
the RTO values but are not shown here. Note that the over-
all behavior of these functions is as expected5: the RTT
(and RTO) values gradually shift to the right (i.e., increase
in magnitude) as we move from no congestion/single RTT
to no congestion/variable RTT to congestion/single RTT
and finally to congestion/variable RTT. In particular, we
note that while increased congestion does not dramatically
impact the RTT CCDFs (with the exception that multiple
RTT values appear due to increased queueing), it has a
significant impact on the RTO CCDFs. In fact, while we
hardly experience any timeouts in the lightly loaded sce-
nario with 50 Web clients (if there are any, the RTO is
negligible), under congestion, the retransmission timeouts
can become significant and take on relatively large values.

C. From  energy plots to R’IT  behavior and vice versa

For the set of m-2 simulation experiments performed in
Section III-A.3, we can now address the question whether
or not wavelet-based traffic analysis techniques - in the
case at hand the energy function plots - can be used reli-
ably to detect and/or infer “fingerprints” of network path
properties when relying solely on passive network mea-
surements. While the feasibility of such an approach to de-
tecting network path conditions was originally advocated
and illustrated in [ 191,  its practical relevance has remained
uncertain, if not doubtful.

More specifically, by combining the results from our en-
ergy function experiments with the observations concern-
ing the behaviors of RTT (and RTO), we would like to
know if changes in the energy function plots are good in-
dicators of changes in network path conditions (and vice
versa). For a qualitative answer to this question, we con-

4Note  that in Section 3 below, we use a slightly more elaborate way to
compute the R’IT  and RTO samples.  Referring to the t ime interval  be-
tween a data-a&/data-data pair as an R’IT/RTO  sample is a very rough
classif icat ion of  periodic elements  in  TCP transmission.  Refinements
such as Kam’s algorithm are a subject of further investigation.

6While one might expect to see a single mode at the value of the R’IT
in the log-density function corresponding to the no congestion/single
RTT simulation, note that even in this case queueing will occur at the
bottleneck link; given a speed of the bottleneck link of 1.5 Mbit, it is
not surprising that for TCP connections with large amounts of data to
transfer, the RTT increases to roughly 100 ms.
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Fig. 5. Log-density functions (top) and CCDFs (bottom) for
RTT values for the different simulations.

sult Figures 4 and 5 and observe a relative clean-cut,
though by no means perfect, one-to-one correspondence
between the shape of the energy functions resulting from
the four simulation experiments (i.e., no congestion/single
RTT, no congestion/variable RTT, congestion/single RTT,
and congestion/variable RTT) and the location on the x-
axis of the corresponding RTT (and RTO) CCDFs: the
wider the dip, the more likely it is to find larger RTT (and
RTO) values. Put differently, RTT (and RTO) values that
are on the average smaller and less variable result in en-
ergy function plots for the underlying packet traces with
more pronounced dips, reflecting a higher likelihood for
giving rise to regular traffic patterns over a narrow range
of time scales. Note that this qualitative assessment applies
for the CCDFs as well as for the log-density plots, but for
the latter, it is less obvious how to account for the differ-
ent modes that are present in the different log-densities.
Because the CCDFs are obtained by integrating the corre-
sponding densities, the former tend to obscure the presence
of some of the modes, are generally much smoother, and
are therefore more amenable for making comparisons with
other CCDFs. Given this encouraging result about being
able to infer - at least qualitatively, and for that only in the
context of a toy simulation model - network path condi-

tions such as RTT behavior and congestion scenarios from
energy function plots of the underlying traffic, the chal-
lenge remains whether the same sort of qualitative “finger-
printing” capabilities can be used and will work when ap-
plied in real-life networks. In the remainder of this paper,
we illustrate how to overcome this challenge by develop-
ing a tool that mimics that hybrid quantitative/qualitative
approach outlined in this section.

IV A N I N F E R E N C E T O O L F O R D E T E C T I N G N E T W O R K

PERFORMANCEPROBLEMS

To implement the methodology outlined in the previous
section, we developed a prototype tool called WIND, short
for Wavelet-based INference for Detecting network per-
formance problems. We use the term network performance
problems to refer to load changes, increased network con-
gestion, or route changes that impact the round-trip times
that, in turn, can significantly affect the performance of ap-
plications using the network. In its present version, WIND
is non-intrusive; it only records existing traffic and does
not generate new traffic. The main objective of WIND is
to enable an on-line almost real time wavelet-based anal-
ysis of measured traffic destined for the busiest subnets.
WIND operates from observation period to observation pe-
riod (the default value for the duration of an observation
period is 10 minutes); at the end of each period, it gener-
ates various statistics. Among these are energy function
plots for detecting network problems and various counters
to notice and react to changes in server popularity, user be-
havior, and/or protocol and application usage. For exam-
ple, WIND can re-rank the subnets  based on popularity and
in this way change the subnets  that it focuses the analysis
on for the next observation period.

To support this functionality, WIND has an efficient core
which streamlines packet header extraction, traffic volume
accounting, and wavelet coefficient computation in real
time. A supplementary component of WIND handles calcu-
lation of round-trip time (RTT) and retransmission timeout
(RTO) associated with those packets that come from or go
to the busiest subnets.  Being computationally very inten-
sive, this component is operated only off-line and the re-
sults are used for validation purpose. WIND comes with a
rich set of traffic filtering options. For example, we can fil-
ter the measured traffic by dominant services and applica-
tions running between (a set of) representative customers
and the most popular destination(s). The filtering options
offer flexibility to “zoom in” on interesting observation pe-
riods, subnets,  or applications.
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A. Streamlined per-packet processing

The core processing performed by WIND consists of
three phases: low-level packet capturing, traffic volume
accounting, and wavelet coefficient computing. The pro-
cessing time of the three phases combined is constant
or close-to constant; that is, WIND’S core that promises
wavelet-based inference for detecting network perfor-
mance problems can be conducted in real time.

In the first phase, WIND collects packet-level traces from
a tap point in the network, by adopting the libpcap [21]
implementation. Each packet captured by libpcap
is passed on to the packet header processing part of
t cpdump [22]  which is also adopted by WIND. The
packet header information is subsequently streamlined into
the second and third phases. Optionally, the packets cap-
tured by 1 i bpcap can be duplicated, and written into files
in binary format for off-line processing.

In the volume accounting phase, WIND classifies pack-
ets into subnets  based on configurable netmasks of the
form 255.255.0.0. For each of the source and destination
IP addresses, WIND looks up a hash table based on the sub-
net address and updates the packet volume statistics. The
kind of statistics collected are described in Section IV-D
below. The computation cost is bounded by the fraction of
the number of subnets  to the number of bins in the hash
table, which enables one to trade off memory for constant
speed. Only the source and destination subnet addresses
and packet timestamps are passed to the third phase.

In the wavelet analysis phase, WIND processes only
packets traversing the top X busiest subnets  (the default
value for X is 20) where information about the top X bus-
iest subnets  is obtained through sorting traffic volumes in
the previous observation period(s). Given that WIND needs
the information about which subnets  to consider before it
can compute the wavelet coefficients, the computation of
the wavelet coefficients is typically done based on the vol-
ume statistics of the previous time period or some prede-
termined set of subnets  if WIND is operated on-line. If
WIND is operated off-line it can consider any set of sub-
nets. For each packet traversing one of the X busiest sub-
nets, WIND checks the timestamp and generates the asso-
ciated packet rate process entries (i.e., time series entries
indicating number of packets per 10 msec). If the current
packet arrives within the same 10 msec bin as the previ-
ous packet, a packet counter is incremented; otherwise, the
new time series entry is pushed to the wavelet coefficient
computation and the packet counter is reset. The imple-
mentation of the wavelet coefficient computation uses the
recursive filter-bank-based pyramidal algorithm (e.g., see
[43])  which has a lower computational cost than that of

a fast Fourier transform and can be implemented on-line
and executed in real time (our default analyzing wavelet is
the d4 wavelet [ 161). In our case, the average computa-
tion cost is bounded by the number of levels or time scales
considered during the recursive wavelet coefficient com-
putation and is pre-determined by the duration of observa-
tion period and the time unit used in generating the packet
rate processes. At the end of each time period WIND com-
putes the energy function for each subnet from the wavelet
coefficients.

B. Additional feature

Another feature of WIND concerns the inference, calcu-
lation, and processing of round-trip times (RTT) and re-
transmission timeouts (RTO). In contrast to the core pro-
cessing which aims at generating real-time network re-
ports, results from this RTT/RTO  feature are mainly used
to validate potential performance problems identified by
the wavelet-based inference methodology. RTT and RTO
calculations are computationally intensive and are per-
formed off-line. To perform the RTT/RTO  estimation,
WIND typically operates on the t cpdump trace generated
by the real-time processing. For each packet that travels to
or from one of the X busiest subnets,  WIND extracts the
exact source address port, destination address port, and se-
quence number. If the packet carries data, WIND looks up
a hash table indexed by the unique source and destination
address port pair and sequence number. If no existing en-
try is found (i.e., a new data packet), the timestamp of the
data packet is recorded in a new entry into the hash table.
If the packet is an ack and WIND finds a corresponding data
packet in the hash table, the time difference is taken as an
RTT sample. Upon obtaining an RTT sample, WIND up-
dates the various RTT-related statistics for the correspond-
ing source and destination subnets.  If the packet carries
data and a corresponding entry is found in the hash table
(i.e., a retransmission), WIND takes the difference of the
two timestamps as an RTO sample and updates the RTO-
related statistics for the corresponding subnets.

Occasionally, there is more than one ack per data packet.
This can happen either when the next data packet is lost
and the subsequent data packets trigger the TCP receiver to
send duplicate acks,  or when the original ack packet gets
stuck somewhere in the network for too long and causes
the retransmission timer to expire (also known as the false
retransmission problem.) The retransmitted data then trig-
gers the same ack to be sent. To account for these sit-
uations, the corresponding RTT samples are obtained by
subtracting the data packet’s timestamp from the times the
duplicate acks  are observed. Similarly, there can be occa-
sionally two or more retransmissions per data packet, due
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to actual data packet drops or false retransmission. The re-
sulting RTO samples are all accounted for in the resulting
traffic statistics. Upon obtaining an RTT sample, WIND

updates the average RTT for the corresponding subnet and
increments the empirical histograms of RTT’s  respectively.
The process is similar for RTO samples. The histogram
bins are sized proportionally to the time scales used in en-
ergy function analysis.

C. Filtering options

WIND offers a rich set of traffic filtering options. Some
of the options are inherited from t cpdump. For instance,
when applying the filters net 128.3 and port 80,
WIND’S tcpdump part streamlines port 80 packets com-
ing in to or out from network 128.3, which may constitute
a set of representative customers or popular destinations.
Other options are add-ons to enable flexible “zooming”
functionalities. For example, traffic can be further clas-
sified into subnets  with user-specified aggregation levels.
As part of the scaling and RTT/RTO  analysis, data can be
collected for the busiest X subnets  observed in the previ-
ous observation period or according to a pre-specified list
of interesting subnets. In the former case, WIND’S data
collection can adapt to changes in service and/or server
popularity. When interesting scaling phenomena are iden-
tified in an interesting subnet,  one can “zoom” in for more
details by adding a filter for the subnet and specify a finer-
grained level of aggregation. WIND also analyzes traffic
based on its direction. For data presented in this paper, we
consider bi-directional traffic.

D. Periodic network reports

WIND generates periodic reports on traffic volume, scal-
ing behavior, and RTT/RTO estimation. Within each ob-
servation period and given some aggregation of IP ad-
dresses, WIND keeps track of the cumulative (i.e., since the
beginning of the measurement period) number of IP pack-
ets and bytes, as well as of the number of packets and bytes
within the current observation period; it does so on a per-
packet-type (i.e., IP,  TCP, UDP, and others) basis. At the
end of the entire measurement period, WIND generates a
file containing subnet addresses of the top interesting sub-
nets according to the cumulative traffic volume, which can
be re-used for further off-line processing [28] [44].

Within each observation period, and given the top in-
teresting subnets,  WIND keeps track of the relevant packet
rate processes, i.e., the time series of packet arrival per
10 msec. These time series are then streamlined into
the wavelet coefficient computation as described in Sec-
tion IV-A. At the end of each period, WIND computes the
per-scale energies in the traffic traces to the different sub-

net. These per-scale energies are used for generating the
corresponding energy function plots, the basic tool for our
wavelet-based approach to detecting network performance
problems. The per-period reports contain mainly the en-
ergy function information, but can also contain the entire
wavelet transforms and/or the time series data, useful for
applying or experimenting with other possible wavelet-
based analysis techniques. Lastly, these periodic reports
can also provide RTT and RTO information in terms of
averages and histograms on a per-subnet basis.

V. AN  ILLUSTRATIVE  EXAMPLE

In this section we explore the capabilities of WIND to
detect network performance problems on measured data
from two different networking environments. We use one
of the data sets to illustrate the main features of WIND,
including a number of heuristics for extracting “interest-
ing” events from the periodic reports provided by our tool.
Here, an “interesting” event typically refers to a time pe-
riod where
. increased network load in some part of the network in-
creased congestion significantly;
. a route change resulted in significantly increased round-
trip times for some part of the traffic;
. server or network outages had a severe impact on the
performance of the network application.
Note that the performance problem does not necessarily
affect all traffic. Indeed, it is likely that it will only impact
the traffic along some network paths to a few subnets.  The
second data set is used to showcase WIND’S flexibility to
work in different networking environments, to point out
shortcomings of the current implementation of our tool,
and to suggest possible improvements.

Our idea for identifying “interesting” events is to iden-
tify a typical or expected behavior (performance) of traffic
rate processes. While it is hard to do this in general due
to the huge variability in the Internet, we expect packets
between the same subnets  to traverse the same networks
and therefore experience the same service from the net-
work. Therefore it should be much easier to define the
typical behavior of the packets going from, e.g., represen-
tatitive customer, to a subnet specified by an IP  address and
a network mask. While some packet will experience bet-
ter service from the network than others one would expect
that the differences are relatively small as long as there are
no significant change in either the routes, the load, and/or
the congestion levels along the network path that the pack-
ets take. Yet, these are exactly the kind of events that we
want to detect. Therefore we propose to monitor the per-
formance as characterized by the energy function and look
for significant changes that happen from one time period
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to the next. (To add stability we propose to use an ex-
pected energy function rather than the one from the last
time period.) In addition one can use the energy functions
to observe the relative performance that traffic to a subnet
might experience.

A. Description of available data sets

Throughout this paper we use the following high-quality
data sets. The trace DIAL was gathered from an FDDI
ring (with typical utilization levels of 5-10%) that connects
about 420 modems to the rest of the Internet. Although
we collect every packet seen on the FDDI ring, we restrict
our analysis of DIAL to (bidirectional) modern user traf
Jic only. Collection of the trace started on Wed. June 28,
2000 at 15:57 and ended Sun. July 2 at 00:40 and consists
of a total of 360,000,OOO  packets or more than 14.5 GB of
compressed data. We refer to the subset of the data from
Fri. 14:lO to 23:30 as DIALS.  A second data set, non-ISP,
was collected off an Ethernet connecting an industrial re-
search laboratory to the Internet via a T3 connection. The
trace LAB was collected on July 11, 2000, between 18:08
and July 12,200O 04:05 and consist of 18,000,OOO  packets
or more than 0.7 GB of compressed data.

B. A step-by-step application of the WIND tool

To start, the top plot in Figure 6 shows the traffic rate
processes (i.e., number of packets per 10 minutes) associ-
ated with five different subnets  for the duration of 8.5 hour
or 52 observation periods, each of length 10 minutes from
DIALS.  For observation period 12, the middle plot shows
the energy functions corresponding to the traffic rate pro-
cesses over 10 minutes for the five different subnets.  Be-
ing more interested in the shape of the energy functions
(e.g., dips, breakpoints, etc.) than in their magnitude, we
devise the following simple heuristic procedure (Heuristic
1A) for comparing different energy functions and relating
them to a “benchmark” or reference energy function. We
choose as our reference energy function the (arithmetic)
average of the five subnet energy functions (taking a per-
scale average) and normalize by requiring all energy func-
tions to coincide with the reference energy function at the
smallest scale (in subsequent plots, the reference energy
function is always high-lighted in black). Note that this
normalization simply means adding or subtracting an off-
set to each energy function so as to shift them up or down
to take the same value at the smallest scale6.  In the case of
the five different subnet energy functions depicted in the
middle plot of Figure 6, the effect of this normalization is

‘This corresponds to multiplying the original time series by some
factor.

Fig. 6. A view across subnets:  Traffic rate processes for
five different subnets for the duration of 52 periods from
traceDIAL (top); energy function plots resulting from the
period 12 traffic rate processes for the five subnets (middle);
normalized versions of the energy function plots (bottom).

shown in the bottom plot of that same figure and illustrates
that the overall shape of the individual energy functions
remains preserved.

Next, to check and validate some of the WIND results,
we make use of WIND’S feature to calculate RTT and RTO
information. To this end, Figure 7 shows the CCDFs of
the RTT and RTO values calculated from the packet traces
of the same five period 12 traffic rate processes used in the
middle and bottom plots in Figure 6. Again, for compar-
ing the different CCDFs and relating them to some “typi-
cal” CCDF, we rely on a heuristic (Heuristic 1B) and de-
fine the reference or benchmark CCDF for RTTs  (RTOs)  to
be the one constructed from all RTT (RTO) samples from
all five packet traces and add them as dotted black curves
to the plots. We will illustrate momentarily how to use
the various reference functions (i.e., energy function, RTT

222



Fig. 7. RTT (top) and RTO (bottom) CCDFs associated with the
period 12 traffic rate processes for the five different subnets
from above.

CCDF, and RTO CCDF) to interpret the output of WIND.

Figures 6 and 7 illustrate that the performance indeed de-
pends on the subnet considered. For example subnet 3 has
much smaller RTTs  and experiences almost no retransmis-
sions, while subnet 2 has small RTTs  but quite a few and
long retransmissions. These correlate well with the results
of the scaling analysis shown in the energy plots. More
specifically, the scaling plot for subnet 2 shows a dip at the
scales corresponding to 10 to 100 seconds, the range of the
RTO values for this subnet.  The scaling plot for subnet 3
shows a dip at 0.2 seconds matching the median RTT. In
this sense, the experience gained from the NS-2  simula-
tion experiments discussed in Section 2 also applies to real
networking environments-at least for the one considered
here-and our heuristic methods for calculating reference
functions seem reasonable.

Instead of fixing an observation period and analyzing
the traffic to and from different subnets  during that period,
we can instruct WIND to focus on a single subnet and ana-
lyze traffic to and from that subnet across different obser-
vation periods. To this end, the top plot in Figure 8 shows
the traffic rate process over about 50 successive periods
for a single subnet,  separated according to the dominant
protocols (note that in this case, TCP is responsible for al-
most all the traffic). For 10 observation periods numbered
22 - 31, the middle plot shows the resulting normalized
energy function plots, including the reference energy func-
tion, which in this case is the average energy function over

all 52 time periods. Our goal is to use this plot to identify
“interesting” time periods; i.e., periods that are likely to
experience performance problems.

To automate the process of identifying “interesting” pe-
riods, we rely on yet another heuristic (Heuristic 2A) for
determining whether an energy function is “noticeably”
different from the “typical” or reference energy function.
In short, we decided on a heuristic procedure that (1) fo-
cuses on those energy functions that are below the ref-
erence function (for low energy function values suggest
either low overall traffic volume or highly regular traffic
flow-indications of possible network problems such as
congestion, route change, or user behavior change); and
(2) takes into account different scaling behavior in small,
medium, and large time scale regions, reflecting respec-
tively inter-packet, round-trip, and retransmission timeout
time scales. To quantify the difference between a given
energy function and the reference energy, we use a met-
ric that measures some notion of “region-specific area be-
low the reference function”7. If the difference in any of
the three regions exceeds a certain level, the corresponding
observation period will be automatically flagged as “inter-
esting”. The level is determined by considering the energy
functions whose metrics exceed the 90% quantile. To see
Heuristic 2A in action, the bottom plot in Figure 8 shows
the energy functions corresponding to those periods that
our implemented procedure flagged as “interesting” (i.e.,
periods 26,30,  and 31). Note that when compared to all
the 10 energy function curves shown in the middle plot,
Heuristic 2A appears to succeed in picking out the likely
“trouble makers”.

Once WIND has flagged an observation period “interest-
ing”, how can we check whether or not there is indeed a
problem during the period in question along the paths to
the subnet at hand? Furthermore, if there is a problem, can
we explain what sort of performance problem occurs by
correlating the energy functions with traffic volume, RTT
or RTO information, or with other available data? Mo-
tivated by the NS-2  experiments in Section 2 which sug-
gest the feasibility of correlating the energy function with
the RTT and/or RTO CCDFs, we devise a new heuristic
(Heuristic 2B) along similar lines to Heuristic 2A to flag
an observation period as “interesting” based on a compari-
son of the RTT and RTO CCDFs against the reference RTT
CCDF and reference RTO CCDF, respectively, where the
latter are computed based the samples obtained from all 52
periods. Heuristic 2B uses the same metric as Heuristic 2A
for measuring the differences between a given CCDF and
the corresponding reference CCDF, and a CCDF is flagged

7We  approximate the area by computing a weighted sum of the differ-
ences between the energy function and the reference energy function.
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Fig. 8. A view across time: Traffic rate process for a single sub-
net over a number of different observation periods, separated
by protocol (top); normalized energy functions and refer-
ence energy function corresponding to 10 successive periods
numbered 22 - 31 (middle); normalized energy functions
(and reference energy function) corresponding to the three
periods that WIND flagged as “interesting” (bottom).

(and the corresponding period is deemed “interesting”) as
soon as the difference exceeds a given threshold. The re-
sults of applying Heuristic 2B are depicted in Figures 9 and
10. For example, the top plot in Figure 9 shows the RTT
CCDFs resulting from the 10 observation periods 22 - 31
and also includes the reference CCDF. The bottom plot
depicts those RTT CCDFs that Heuristic 2B identified as
troublesome, resulting in the periods 29, 30, and 31 to be
classified as “interesting” from a RTT CCDF perspective.
Similarly, Figure 10 shows that periods 23, 26, and 31 are
flagged as “interesting” as a result of the automated RTO
CCDF analysis. This implies that in this case, WIND’S se-
lection of periods 26,30, and 31 as being “interesting” is
a success. Time period 26 is “interesting” because of in-

Fig. 9. A view across time (cont.): RTT CCDFs and refer-
ence RTT CCDF corresponding to 10 successive periods
numbered 22 - 31 for a single subnet  (top); RTT CCDFs
(and reference CCDF) corresponding to the three periods
that Heuristic 2B flagged as “interesting” a$ far as unusual
RTT behavior is concerned (bottom).

creased RTOs while periods 30 and 31 are “interesting”
because of increased RTTs.  False positives with regard to
the correlation with RTT and RTO behavior, are those pe-
riods that the wavelet heuristic identifies as “interesting”
but that are not flagged by the RTT or RTO heuristic.

Running WIND on other parts of the data, with ei-
ther pre-determined or running lists of top-20 subnets,  we
found that after some fine-tuning of the heuristics used in
the automated procedures for detecting and identifying pe-
riods of network performance problems, our tool success-
fully classified problematic periods in 80 - 90% of the
cases. By successful, we mean here that either the corre-
sponding RTT or RTO analysis or a simple investigation of
traffic loads indicated unusual network performance dur-
ing the periods that WIND flagged as “interesting.”

C. W I N D  in practice: Experiences and shortcomings

After illustrating the network performance detection
methodology of WIND on a data set collected from a par-
ticular networking environment, we next report on some of
our experiences when running WIND on data sets collected
from a very different environments with distinctly different
characteristics as far as RTT behavior, application and traf-
fic mixes, user behavior, etc. are concerned. In short, our
experience has been that fine-tuning the parameters used in
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Fig. 10. A view across time (cont.): RTO CCDFs and refer-
ence RTO CCDF corresponding to 10 successive periods
numbered 22 - 31 for a single subnet  (top); RTO CCDFs
(and reference CCDP)  corresponding to the three periods
that Heuristic 2B flagged as “interesting” as far as unusual
RTO) behavior is concerned (bottom).

our heuristics, especially in Heuristics 2A and 2B, to cap-
ture “normal” operating conditions for the network under
consideration is crucial for keeping the number of false-
positive below 10% or so. To illustrate the effects that lead
to false-positives, consider Figure 11 which was obtained
running WIND on our second data set, focusing on a single
subnet,  and looking across 10 successive periods labeled
22 - 31. While the top plot in that figure shows the traffic
rate process (all TCP) over the whole measurement period
(i.e., 48 observation periods), the middle plot states that
periods 23 and 31 have been identified as “interesting” by
WIND. However, upon closer inspection, the fact that the
energy function corresponding to period 31 is almost flat
turns out to be an artifact of the very low traffic load dur-
ing this period (see top plot). In this sense, some care is
needed when interpreting such outliers in the space of pos-
sible energy functions, but finding remedies is sometimes
as easy as checking traffic volume statistics.

The scaling plot labeled 23 also indicates a potential
problem with our simple heuristics. In fact, while WIND

flags period 23 as “interesting,” indicating that the appli-
cation suffers worse than average performance, a more
careful investigation into this particular packet trace re-
veals that quite the opposite is true; that is, the packets of
this traffic experienced better RTT performance than dur-

Fig. 11. A view across time (for our second data set): Traffic
rate process to single subnet  cross periods 1 - 50 (top); nor-
malized energy function plots (and reference energy func-
tion) for period 23 and 31 flagged by WIND as “interesting”
out of the 10 periods labeled 22 - 31 (middle); RTT CCDFs
for the 10 periods 22 - 31 (bottom).

ing some of the other observation periods (see the bottom
plot of Figure 11, where the CCDF corresponding to the
period 23 scaling plot is in the very lower left-hand comer,
suggesting very good RTT performance. The reason why
our Heuristic 2A yields this false-positive is that it does
not account for dips in the energy functions that shift to
smaller time scales. The RTT CCDFs in the bottom plot of
Figure 11 also point out that without more refined heuris-
tic procedures, WIND will not detect all possible shifts in
round trip time.

In the examples we considered so far, the differences be-
tween the energy function plots have been in general sig-
nificant. Figure 12 (top) shows selected energy function
plots where the differences seem minimal. Nevertheless
the corresponding RTT CCDFs give clear evidence that the
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Fig. 12. Normalized energy function plots for selected time pe-
riods (top); R?T CCDFs  corresponding to selected periods
(bottom).

RTT behavior was significantly different during those time
periods. The reason for this justified or unjustified “warn-
ing” is again in the simplicity of our heuristics; improving
them by, for example, requiring the measured differences
between a given energy function and the corresponding
reference function to exceed a certain absolute threshold,
will likely take care of the problem pointed out by this ex-
ample. We have also experienced cases where the energy
function plots indicate potential problems that none of the
other metrics considered so far (e.g., RTT, RTO, volume,
or other simple detection heuristics) could capture and/or
confirm. We suspect that in some of these cases, the en-
ergy function plots pick out systematic/periodic compo-
nents that are present over certain time scale(s) but remain
hidden from those other metrics; however, we will pursue
this in future work.

VI. CONCLUSIONS

In this paper, we explored the feasibility of inferring
information about network path properties from passive
packet-level measurements collected from a single tap
point to the Internet. To this end, we exploit a number
of structural characteristics of measured TCP traffic that
reveal themselves by relying on the scale-localization abil-
ity of wavelet-based analysis methods. We show that it is
possible to detect different network performance problems
in a manner that is completely non-intrusive (i.e., no arti-
ficial traffic is generated). In fact, relying exclusively on

existing network traffic, we can obtain information about
the present state of (parts of) the network. We concurrently
collect and analyze packet-level measurements from active
users and applications as they communicate across the In-
ternet. Our methodology is adaptive in that it can follow
popularity and activity shifts; it also appears scalable since
it keeps statistics only for the most popular networks.

To illustrate our proposed methodology, we developed
WIND, a prototype tool for Wavelet-based INference for
Detecting network perfromance problems. We show-
case WIND’S capabilities (and shortcomings) for detect-
ing network performance problems by applying it to mea-
sured user traffic from two different networking environ-
ments. For each environment we correlate the results of
the wavelet-based trace analysis across time and across
different network path. In addition to performing the
computationally inexpensive wavelet-based trace analy-
sis, we also compute other, computationally more expen-
sive networking-related quantities such as RTT and RTO
statistics. We observe how the different statistics change
over time and how they are correlated to the results of
our wavelet-based analysis. Despite implementing rela-
tively simplistic heuristics for correlating the various quan-
tities, for the two networking environments considered, we
found WIND to have a 80 - 90% success rate in correctly
identifying network path-related problems; that is, detect-
ing network performance problems that can be confirmed
(or even explained) via use of some other data. Study-
ing the degree to which there are network problems that
RTT/RTO- and/or WIND-based analysis methods are un-
able to detect remains an interesting future research topic.

Although our approach in this paper focuses exclusively
on the use of passive measurements for detecting network
problems, there is nothing that prevents one from apply-
ing the same type of wavelet-based analysis to active mea-
surements. In fact, in an effort to ultimately correlate
network performance problems with network topology-
specific aspects, we have already begun to extend WIND

to also perform, collect, and analyze active measurements,
in particular t racerout  e data. We fully expect that
applying the broad spectrum of available wavelet tech-
niques, especially a combined time- and scale-localization
approach for investigating network-related measurements
locally in time and scale, has the potential for creating
unprecedented opportunities for exploiting the informa-
tion contained in a combination of carefully-made ac-
tive and passive measurements. In view of the potential
of such a full-fledged wavelet approach towards analyz-
ing network measurements, our present exclusive focus
on the wavelets’ scale-localization abilities seems narrow-
minded, but the results obtained here already point out new
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